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Abstract

Let F be a graph and k be a positive integer. With a graph G, we associate
the quantity ck,F (G), the number of k-colorings of the edge set of G with no
monochromatic copy of F . Consider the function ck,F : N −→ N given by ck,F (n) =
max{ck,F (G) : |V (G)| = n}, the maximum of ck,F (G) over all graphs G on n vertices.
In this paper we study the asymptotic behavior of ck,F and describe the extremal
graphs for the case in which F is a matching, a short path or a star.
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1 Introduction

Let F be a fixed graph and k be a positive integer. In this paper, we study
F -free k-colorings of a graph G, that is, edge colorings of G with k colors such
that there is no monochromatic copy of F . More precisely, given a graph G,
we consider the number ck,F (G) of F -free k-colorings of G, and we study the
extremal function ck,F : N −→ N, where ck,F (n) maximizes ck,F (G) over all
graphs G on n vertices; formally, ck,F (n) = max{ck,F (G) : |V (G)| = n}. For
instance, if there is a single color available, we have c1,F (n) = 1, with equality
c1,F (n) = c1,F (G) for every graph G on n vertices that does not contain a copy
of F . A graph G on n vertices with ck,F (G) = ck,F (n) is called extremal.

The function ck,F (n) is related with the Turán number ex(n, F ) of F , i.e.,
the maximum number of edges in a graph on n vertices that does not contain
a subgraph isomorphic to F . Indeed, from this definition, it is easy to see that
the inequalities

kex(n,F ) ≤ ck,F (n) ≤ kk·ex(n,F )

hold for every n. To obtain the lower bound, one may choose a Turán graph
G for F , that is, a graph on n vertices with ex(n, F ) edges and no copy of F .
Since any k-coloring of the edges of G is trivially F -free, there are kex(n,F ) such
colorings for G. To obtain the upper bound, observe that for any k-coloring
of the set of edges of a graph on n vertices with (k ex(n, F )+1) edges, at least
one color class contains at least (ex(n, F ) + 1) edges, and hence contains a
copy of F . Therefore the value of ck,F (n) is achieved by a graph with at most
k ex(n, F ) edges, from which we deduce that ck,F (n) ≤ kk·ex(n,F ).

The following precise result, which was motivated by a conjecture of Erdős
and Rothschild [2], has been obtained by Yuster [7] in the case of triangle-
free 2-colorings (i.e., in the case k = 2 and ` = 3), and has later been ex-
tended to general K`-free k-colorings by Alon, Balogh, Keevash, and Sudakov
[1]. Here, and in the remainder of this work, we say that f(n) ≫ g(n) if
limn→∞ f(n)/g(n) ≥ exp(cn2) for some positive constant c, that is, f(n) is
greater than g(n) by an exponential function of n2.

Theorem 1.1 Let ` ≥ 3 be fixed. For n sufficiently large and k ∈ {2, 3}, we
have

ck,K`
(n) = kex(n,K`) = k(`−2)n

2/(2(`−1))+o(n2),

with ck,K`
(G) = ck,K`

(n) only if G is the n-vertex Turán graph for K`, while,
for k ≥ 4, we have ck,K`

(n) ≫ kex(n,K`).

In the case of k = 4 colors, Pikhurko and Yilma [6] have determined the
families of graphs G on n vertices such that c4,K3(G) = c4,K3(n) and such that



c4,K4(G) = c4,K4(n), where n is sufficiently large. The analogue of Theorem 1.1
has been obtained for other classes of forbidden monochromatic subgraphs F :
the case of edge color-critical graphs has been settled in [1] for k ∈ {2, 3},
implying for instance the case of odd cycles.

A common feature of the above results is the following: when the number
of colors is either two or three, the corresponding Turán graph is eventually
extremal. On the other hand, the Turán graph is suboptimal by an exponential
function of n2 when at least four colors are used. Actually, given a graph F ,
Lemma 2.1 in Alon et al. [1] may be used to establish that, for k ∈ {2, 3},
we have ck,F (n) ≤ kex(n,F )+o(n2). In particular, when the number k of colors is
two or three and the forbidden graph F is not bipartite (and hence ex(n, F ) =
Ω(n2)), this implies that G is never too far from being extremal in the sense
that, given ε > 0, there exists n0 such that, for n ≥ n0, we have

ck,F (n) ≤ k(1+ε) ex(n,F ).

Again by [1], we have ck,F (n) ≫ kex(n,F ) if F is not bipartite and k ≥ 4.
In light of this, it is natural to ask if a similar behavior holds for bipar-

tite graphs. Here, we study the function ck,F (n) for some forbidden bipartite
graphs F with linear Turán number. It turns out that, in sharp contrast to
the non-bipartite case, the relationship between this function and the Turán
number ex(n, F ) depends heavily on the graph F . For instance, when F is a
matching I` consisting of ` ≥ 2 independent edges, we observe the same phe-
nomenon of the non-bipartite case: the corresponding Turán graph is extremal
if the number of colors is k ∈ {2, 3}, while it is not extremal for k ≥ 4. Now, if
F is a path on three or four vertices, Turán graphs may be extremal for k = 2
colors, but they are not extremal if the number of colors is k ≥ 3. Finally, if
F is a star St = K1,t with t leaves, then the Turán graph associated with it
is not extremal even when 2-colorings are considered. This behavioral variety
suggests that it might be difficult to obtain general properties of ck,F (n) and
its extremal graphs when F is bipartite.

2 Forbidden matchings

In this section, we show that, when F is a matching I` of ` ≥ 2 edges, the be-
havior of the function ck,F (n) resembles the non-bipartite case, that is, Turán
graphs are extremal when k ∈ {2, 3}, but are not extremal otherwise. Fur-
thermore, we determine the extremal graphs for all values of k and ` if n is
sufficiently large. To state these results, we need a preliminary definition.



Definition 2.1 (a) Given integers c ≥ 1 and n ≥ c, let Gn,c = ([n], En,c) be
the graph on the vertex set [n] = {1, . . . , n} such that {i, j} ∈ En,c if and only
if min{i, j} ≤ c.
(b) Given integers k, ` ≥ 2, let c(k, `) = ` − 1 if k ∈ {2, 3}, and c(k, `) =
d(`− 1)k/3e if k ≥ 4.

Theorem 2.2 [5] Let k, ` ≥ 2 be fixed integers. There exists n0 = n0(k, `)
such that, for n ≥ n0, we have ck,I`(n) = ck,I`(Gn,c(k,`)). Moreover, the graph
Gn,c(k,`) is the unique extremal graph up to isomorphism.

When ` = 2, this theorem is a special case of the results obtained by the
current authors in [4]. Erdős and Gallai [3] have shown that, if (`− 1)(n− `+
1) +

(
`−1
2

)
>
(
2`−1
2

)
, the graph Gn,c(k,`) = Gn,`−1 is the Turán graph for I`, so

that, for large n, the Turán graph is indeed extremal if and only if k ∈ {2, 3}.

3 Forbidden paths and stars

We now address colorings with forbidden monochromatic paths and stars.
Given ` ≥ 2, let P` be the path on ` vertices and S` = K1,` be the star with `
edges. As the colorings of G avoiding monochromatic copies of P3 are precisely
the proper k-edge-colorings of G, in particular we study the largest number
of proper k-edge-colorings over all graphs on n vertices.

We shall see that, for F being a path or a star, the behavior of ck,F (n) is
different from the non-bipartite case. The Turán graphs on n vertices associ-
ated with forbidding each of these graphs have been obtained by Erdős and
Gallai [3] in the case of paths, and in the case of stars they seem to be folklore.
In both cases, the number of edges is asymptotically linear in n.

If F is a path on three vertices, we are able to show that its Turán graph
is extremal for 2-colorings, i.e., c2,P2(n) = 2bn/2c for all n ≥ 2. However, for 3-
colorings, we prove the following, which determines c3,P3(n) and the extremal
graphs for all values of n.

Theorem 3.1 Let n ≥ 2 be a positive integer. For n = 2 we have c3,P3(2) = 3,
and c3,P3(G) = c3,P3(2) holds only for G = K2. For n = 3 we have c3,P3(3) = 6,
and c3,P3(G) = c3,P3(3) is only achieved by G = K3 or G = P3. For n ≥ 4, the
function c3,P3(n) is given by



c3,P3(n) =


18n/4 if n ≡ 0 mod 4,
30 · 18(n−5)/4 if n ≡ 1 mod 4,
66 · 18(n−6)/4 if n ≡ 2 mod 4,
126 · 18(n−7)/4 if n ≡ 3 mod 4.

There is a single graph G on n ≥ 4 vertices with c3,P3(G) = c3,P3(n). For
4 ≤ n ≤ 7 it is a cycle on n vertices. For n = 4n′+i, n′ ≥ 2 and i ∈ {0, 1, 2, 3},
the graph G consists of n′ vertex-disjoint cycles, (n′ − 1) of which on four
vertices and one of which on (4 + i) vertices.

For even values of n, the Turán graph for P3 is a matching In/2, which
admits 3n/2 distinct proper 3-edge-colorings. For n divisible by 4, however,
the above result states that the number of proper 3-edge-colorings in a vertex-
disjoint collection of 4-cycles is 18n/4 ≥ 2.05n, which is much larger than
3n/2 ≤ 1.74n. A similar exponential gap can be verified for all values of n in
the case k = 4, and, more generally, for every k ≥ 4.

With regard to forbidden paths P4 on four vertices, we obtain the following.

Theorem 3.2 Let G be an n-vertex graph. For n ≡ 0 mod 3, it holds that
c2,P4(G) ≤ 2n. If either n 6≡ 0 mod 3 or G is not isomorphic to the Turán
graph for P4, then c2,P4(G) ≤ 31 · 2n−5.

As proved in [3], if n ≡ 0 mod 3, the n-vertex Turán graph for P4 is unique
and consists of n/3 pairwise vertex-disjoint triangles. On the other hand,
the Turán graph is not unique for n 6≡ 0 mod 3, where it is given by every
combination of g ≤ bn/3c pairwise vertex-disjoint triangles with a star on the
remaining (n − 3g) vertices. In particular, the number of P4-free 2-colorings
of the Turán graph is equal to 2n if n ≡ 0 mod 3 and to 2n−1 if n 6≡ 0 mod 3.
Hence Theorem 3.2 implies that, in the case n ≡ 0 mod 3, the Turán graph for
P4 is the unique extremal graph. For n 6≡ 0 mod 3, if G is an n-vertex Turán
graph for P4, we deduce from Theorem 3.2 that the multiplicative gap between
c2,P4(G) and c2,P4(n) is smaller than 2. However, if n = 4, a triangle with one
attached edge admits 10 > 24−1 = 8 distinct P4-free 2-colorings. For n = 5,
two triangles sharing exactly one vertex admit 18 > 25−1 = 16 distinct P4-free
2-colorings. This shows that, at least for a few small values of n 6≡ 0 mod 3,
we have c2,P4(n) > 2n−1, and the Turán graph is not extremal.

Moreover, Turán graphs are never extremal for k ≥ 3, since the following
lower bound holds for every k ≥ 3 and n ≥ 6:

ck,P4(n) > (k(k − 1))n−2 > kn.



So far nothing is known for forbidden paths P` with ` ≥ 5.
Finally, when the forbidden graph is a star St with t ≥ 3 rays, we obtain

upper and lower bounds on ck,St(n) for every k ≥ 2. In this case, the corre-
sponding Turán graph fails to be extremal even when k = 2. Indeed, note that,
if a graph G admits a k-coloring of its edges with no monochromatic star St,
its maximum degree is at most k(t− 1). Now, for every integer d in the range
1 ≤ d ≤ k(t− 1), let χk,t(d) be the number of k-colorings of a star Sd with no
monochromatic St. Let χk,t = max0≤d≤(t−1)k χk,t(d) be the maximum number
of St-free k-colorings of Sd, which is achieved by d = (t − 1)k. We are able
to show, with entropy arguments, that ck,St(n) ≤ (χk,t)

n/2. Moreover, we may
estimate the number of St-free 2-colorings of the complete bipartite graph Kt,t

to prove that c2,St(Kt,t) ≥ 2t2−2. For n divisible by 2t, if we consider n/(2t)
vertex-disjoint copies of Kt,t, this implies that c2,St(n) ≥ 2

t2−2
2t

n. For t ≥ 3, this
number is exponentially larger than 2(t−1)n/2. Note that the latter is precisely
the number of St-free 2-colorings of an n-vertex (t − 1)-regular graph, which
is a Turán graph for St. However, the extremal graphs for St are not known
even for small values of t ≥ 3.

References

[1] N. Alon, J. Balogh, P. Keevash, and B. Sudakov, The number of edge colorings
with no monochromatic cliques, J. London Math. Soc. (2) 70, 2004, 273–288.

[2] P. Erdős, Some new applications of probability methods to combinatorial analysis
and graph theory, Proc. of the Fifth Southeastern Conference on Combinatorics,
Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1974),
39–51. Congressus Numerantium, No. X, Utilitas Math., 1974, 39–51.

[3] P. Erdös and T. Gallai, On maximal paths and circuits of graphs, Acta Math.
Acad. Sci. Hungar. 10, 1959, 337–356.

[4] C. Hoppen, Y. Kohayakawa, and H. Lefmann, Hypergraphs with many Kneser
colorings (Extended version), arXiv:1102.5543v1, 39 pp.

[5] C. Hoppen, Y. Kohayakawa, and H. Lefmann, Edge colorings of graphs avoiding
monochromatic matchings of a given size, preprint.

[6] O. Pikhurko, and Z. B. Yilma, The maximum number of K3-free and K4-free
edge 4-colorings, to appear in J. London Math. Soc., 24 pp.

[7] R. Yuster, The number of edge colorings with no monochromatic triangle, J.
Graph Theory 21, 1996, 441–452.


	Introduction
	Forbidden matchings
	Forbidden paths and stars
	References

