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Abstract. Inspired by previous work of Balogh [A remark on the number of edge colorings
of graphs, European Journal of Combinatorics 27(4) (2006), 565–573], we show that, given
r ≥ 5 and n large, the balanced complete bipartite graph Kdn/2e,bn/2c is the n-vertex graph
that admits the largest number of r-edge-colorings for which there is no triangle whose edges
are assigned three distinct colors. Moreover, we extend this result to lower values of n when
r ≥ 10, and we provide approximate results for r ∈ {3, 4}.

1. Introduction

There have been considerable advances in edge-coloring problems whose origin may be
traced back to a question of Erdős and Rothschild [4], who asked for n-vertex (simple) graphs
that admit the largest number of r-edge-colorings such that every color class is F -free, where
r is a positive integer and F is a fixed graph. (We remark that edge-colorings in this work are
not necessarily proper.) In particular, when F is the complete graph Kk+1 on k + 1 vertices,
they conjectured that the number of F -free 2-colorings is maximized by the n-vertex graph
with the largest number of edges avoiding Kk+1 as a subgraph. This is the k-partite Turán
graph Tk(n) on n-vertices, namely the balanced, complete k-partite n-vertex graph [15]. As
usual, given a positive integer n and a graph F , we shall write ex(n, F ) for the largest number
of edges in an n-vertex graph that does not contain F as a subgraph.

In other words, Erdős and Rothschild intuited that, even though n-vertex graphs containing
copies of Kk+1 may have more than ex(n,Kk+1) edges and may still contain a large number
of colorings such that no copy of Kk+1 is colored monochromatically, the number of such
colorings is surpassed by the number 2ex(n,Kk+1) of colorings of Tk(n). Yuster [16] proved this
conjecture for F = K3 and n ≥ 6 and Alon, Balogh, Keevash and Sudakov [1] proved it for
k ≥ 3 provided that n is sufficiently large. They also showed that, for large n, the graph Tk(n)
still admits the largest number of r-edge colorings avoiding Kk+1 if r = 3, but that this is not
the case for any r ≥ 4, where the ‘competition’ between configurations that may be colored
arbitrarily and configurations with more edges, but with restrictions on the way edges may
be colored, tilts toward the latter. Determining the extremal configurations for k ≥ 2 and
r ≥ 4 turned out to be a difficult problem, and so far the solution is only known for r = 4
and k ∈ {2, 3} (see Pikhurko and Yilma [12]).

In this paper, we consider a colored version of this problem: given a number r of colors
and a graph F , we define an r-pattern P of F as a partition of its edge set into at most r
classes, and an edge-coloring of a graph G is said to contain (F, P ) if G contains a copy of F
in which the partition of the edge set induced by the coloring is isomorphic to P . Naturally,
we say that an edge-coloring of G is (F, P )-free if it does not contain (F, P ). Note that we
forbid monochromatic colorings if P consists of a single class.
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DAAD 56267227 and 57141126). The first author acknowledges the financial support of FAPERGS (Proc. 2233-
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A preliminary version of some of the results of this work have appeared in the Proceedings of the Eight
European Conference on Combinatorics, Graph Theory and Applications, EuroComb 2015 [9].

1



2 C. HOPPEN, H. LEFMANN, AND K. ODERMANN

Let Cr,F,P (G) be the set of (F, P )-free r-edge colorings of a graph G. For fixed r, F and P ,
the problem is to find the n-vertex graph (or the family of n-vertex graphs) that admits the
largest number of (F, P )-free edge-colorings, which we call Cr,F,P -extremal graphs. The work
of Balogh [2] was the first to treat patterns that are not monochromatic. His results imply
that, for r = 2 colors and any pattern P of Kk+1 that uses both colors, the graph Tk(n) once
again yields the largest number of 2-colorings avoiding (Kk+1, P ) for n ≥ n0. However, he
also remarked that, if we consider r = 3 and a triangle where all colors appear (which we
call a multicolored or a rainbow triangle), the complete graph on n vertices already admits

3 · 2(n2) − 3 colorings, by just choosing two of the three colors and coloring the edges of Kn

arbitrarily with these two colors. This is more than 3n
2/4, which is an upper bound on the

number of 3-colorings of the bipartite Turán graph.
The current authors, along with co-authors, have considered the monochromatic version

of this problem for some families of bipartite graphs F , such as matchings [6], paths and
stars [7], and the problem for general patterns for matchings [8], stars [10] and complete
graphs [9]. We refer the reader to [7] and [9] for more precise accounts of the state of the art
for monochromatic patterns and for the general case, respectively.

In this paper, we deal with (F, P )-free edge-colorings of graphs in the particular case where
F = K3 and P is the rainbow pattern. For simplicity, we shall refer to this pattern as KR

3 .
We prove that, for r ≥ 5, the Turán graph T2(n) = Kdn/2e,bn/2c is the unique extremal graph
when n is sufficiently large.

Theorem 1.1. Let r ≥ 5 be a positive integer. There is n0 such that every graph of order
n > n0 has at most rex(n,K3) distinct KR

3 -free r-edge colorings. Moreover, the Turán graph
T2(n) is the only graph on n vertices for which equality is achieved.

This result is an improvement on [9, Theorem 1.2], which reached the same conclusion for
r ≥ 320. Our proof of Theorem 1.1 refines the argument used to prove [9, Theorem 1.2], which
in turn was based on a strategy developed in [1] for monochromatic patterns (and applied
to general patterns in [2]). Since it relies on the Regularity Lemma of Szemerédi [14], the
conclusion of Theorem 1.1 holds for very large values of n0. With different arguments, we
were able to prove the above result for n0 = 5 provided that r ≥ 10. We remark that Yuster’s
result [16] for 2-edge colorings avoiding monochromatic triangles has also been obtained for
all n ≥ 6. To the best of our knowledge, this is the only other known result for this problem
that holds for such a small value of n0.

Theorem 1.2. For all n ≥ 5 and r ≥ 10, the maximum number of KR
3 -free r-edge colorings

of an n-vertex graph is rex(n,K3), and this number is achieved only by the Turán graph T2(n).

We observe that K4 admits more KR
3 -free 10-colorings than T2(4) and that K5 admits more

KR
3 -free 9-colorings than T2(5), so that Theorem 1.2 is tight. Other comments about possible

improvements to this result are in Remark 4.8.
For the cases r ∈ {3, 4}, which have not been covered in Theorem 1.1, we have the following

approximate result.

Theorem 1.3. Given r ∈ {3, 4} and β > 0, there exists n0 such that the number of KR
3 -free

r-edge colorings of any graph G = (V,E) on n ≥ n0 vertices is bounded above by

2
n2

2
(1+β).

This result implies that the complete graph Kn is not far, with respect to the number
edge-colorings, from achieving the extremal value for both r ∈ {3, 4}. This was already
known for r = 3 (see [3]), while, for r = 4, both Kn and T2(n) are close to achieving the

extremal value. One may easily find approximately 6 · 2(n2) = 6 · 2(n2−n)/2 colorings of Kn
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by choosing two of the four colors and using them arbitrarily, while T2(n) may be colored in

exactly 4ex(n,K3) ≥ 2(n
2−1)/2 ways. We believe that the Turán graph should be extremal in this

case, but the fact that two very different configurations achieve a similar number of colorings
suggests that demonstrating this will require very precise estimates. It was also shown in [3]
that, for r = 3, the Turán graph T2(n) is the unique extremal graph for the pattern of K3

with two classes.
In Section 2, we present preliminary results for proving our main results. The proofs of

Theorems 1.1 and 1.3 are the subject of Section 3, while Section 4 deals with Theorem 1.2.

2. Preliminaries

In this section, we fix the notation and introduce basic concepts and results used to prove
our results. For simplicity, we shall assume that colors lie in sets [r] := {1, . . . , r}.

2.1. Regularity Lemma. To prove Theorems 1.1 and 1.3, we refine results of [9], which
adapted the approach of [1] for general patterns. The strategy is based on the Szemerédi
Regularity Lemma [14]. Let G = (V,E) be a graph, and let A and B be two disjoint subsets
of V (G). If A and B are non-empty, define the density of edges between A and B by

d(A,B) =
e(A,B)

|A||B|
,

where e(A,B) is the number of edges with one endpoint in A and the other in B. When
A = B, we write e(A,A) = e(A). For ε > 0 the pair (A,B) is called ε-regular if, for every
X ⊆ A and Y ⊆ B satisfying |X| > ε|A| and |Y | > ε|B|, we have

|d(X,Y )− d(A,B)| < ε.

An equitable partition of a set V is a partition of it into pairwise disjoint classes V1, . . . , Vm
of almost equal size, i.e., ||Vi| − |Vj || ≤ 1 for all i, j. An equitable partition of the set V of
vertices of G into the classes V1, . . . , Vm is called ε-regular if at most ε

(
m
2

)
of the pairs (Vi, Vj)

are not ε-regular.
We now state a colored version of the Regularity Lemma (see [11]) that will be useful for

our purposes.

Lemma 2.1. For every ε > 0 and every integer r, there exists a constant M = M(ε, r) such
that the following property holds. If the edges of a graph G of order n > M are r-colored
E(G) = E1 ∪ · · · ∪ Er, then there is a partition of the vertex set V (G) = V1 ∪ · · · ∪ Vm, with
1/ε ≤ m ≤ M , which is ε-regular simultaneously with respect to all graphs Gi = (V,Ei) for
1 ≤ i ≤ r.

We refer to a partition as in Lemma 2.1 as a multicolored ε-regular partition. Given such
a partition and given a color c ∈ [r], we can define the cluster graph associated with color
c as follows. Given η > 0, the graph Hc = Hc(η) is defined on the vertex set [m] so that
{i, j} ∈ E(Hc) if and only if (Vi, Vj) is an ε-regular pair with edge density at least η with
respect to the subgraph of G induced by the edges of color c.

We may also define the multicolored cluster graph H associated with this partition: the
vertex set is [m] and e = {i, j} is an edge of H if e ∈ E(Hc) for some c ∈ [r]. Each edge e is
assigned the list of colors Le = {c ∈ [r] | e ∈ E(Hc)}. Given a colored graph F , we say that
a multicolored cluster graph H contains F if H contains a copy of F for which the color of
each edge of F is contained in the list of the corresponding edge in H. More generally, if F is
a graph with color pattern P , we say that H contains (F, P ) if it contains some colored copy
of F with pattern P .
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In connection with these definitions, we shall use the following embedding result, whose
proof is quite standard and follows the arguments in the proof of Theorem 2.1 in [11]. (See
also Lemma 2.4 in [9].)

Lemma 2.2. For every η > 0 and all positive integers k and r, there exist ε = ε(r, η, k) > 0
and a positive integer n0(r, η, k) with the following property. Suppose that G is an r-colored
graph on n > n0 vertices with a multicolored ε-regular partition V = V1∪· · ·∪Vm which defines
the multicolored cluster graph H = H(η). Let F be a fixed k-vertex graph with a prescribed
color pattern P on t ≤ r classes. If H contains (F, P ), then the graph G also contains (F, P ).

2.2. Stability. Another basic tool in our paper are stability results for graphs. We shall
apply the following theorem by Füredi [5], which builds upon earlier work by Erdős and
Simonovits [13]. We state it for triangle-free graphs only.

Theorem 2.3. Let G = (V,E) be a triangle-free graph on m vertices. If |E| = ex(m,K3)− t
for some t ≥ 0, then there exists a partition V = V1 ∪ V2 with e(V1) + e(V2) ≤ t.

We recall the following bounds on the number of edges in the Turán graph T2(n):

n2 − 1

4
≤ ex(n,K3) ≤

n2

4
. (1)

For later use, we state the following fact about the size of the classes in a bipartite graph
with a large number of edges.

Proposition 2.4. G = (V,E) be a bipartite graph on m vertices and with bipartition V =
V1 ∪ V2. If for some t ≥ 1, the graph G contains at least ex(m,K3)− t edges, then we have∣∣∣|V1| − m

2

∣∣∣ < √2t.

Proof. If |V1| ≤ m/2−
√

2t or |V1| ≥ m/2 +
√

2t, then G contains at most

(m/2−
√

2t)(m/2 +
√

2t) = m2/4− 2t
(1)
< ex(m,K3)− t

edges, which is a contradiction. �

2.3. Entropy function. Consider the entropy function H : [0, 1] → [0, 1] given by H(x) =
−x log2 x− (1− x) log2(1− x) with H(0) = H(1) = 0. Note that limx→0+ H(x) = 0.

It is well-known that, for all 0 ≤ α ≤ 1, we have(
n

αn

)
≤ 2H(α)n. (2)

We will also use the following upper bound on the entropy function for x ≤ 1/8:

H(x) ≤ −2x log2 x. (3)

Indeed, it is easy to see that (3) is equivalent to g(x) = x lnx− (1− x) ln(1− x) ≤ 0. Taking
the derivative gives g′(x) = lnx+2+ln(1−x) ≤ 0 for x ≤ 1/8. With g(1/8) < 0 inequality (3)
follows.

3. The extremal graph for all r ≥ 5

The objective of this section is to prove Theorems 1.1 and 1.3, which use the colored version
of the Szemerédi Regularity Lemma given in Lemma 2.1. A particularly important ingredient
in the proof of the first result is a stability result of [9] (see Lemma 4.3), which extends
one of the main steps in the strategy developed by Alon, Balogh, Keevash and Sudakov [1]
(see Theorem 1.1) to prove that the Turán graph Tk(n) admits the largest number of r-edge
colorings avoiding a monochromatic copy of Kk+1, where r ∈ {2, 3}. Before stating this
stability result, we first describe the method in [1], which consists of two main steps:
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(i) Proving a stability result which states that any n-vertex graph whose number of
feasible r-edge colorings could beat the number of feasible r-edge colorings of Tk(n)
is similar to Tk(n), in the sense that its vertex set admits a partition into k almost-
balanced classes such that the number of edges with both ends in the same class is
small.

(ii) Proving that Tk(n) is extremal: starting with a counterexample on n vertices, one
shows that it is possible to find a counterexample on n − 1 or n − 2 vertices whose
‘gap’ to the desired optimal solution increases. A recursive application of this step
would lead to an

√
n-vertex graph whose number of colorings is too large to be feasible.

To prove the validity of Theorem 1.1, we show the following stability result.

Lemma 3.1. Given an integer r ≥ 5 and a constant δ > 0, there exists n0 with the following
property. If G = (V,E) is a graph on n > n0 vertices which has at least rex(n,K3) distinct
KR

3 -free r-edge colorings, then there is a partition V = W1 ∪W2 of its vertex set such that
e(W1) + e(W2) ≤ δn2.

Before demonstrating this lemma, we prove Theorem 1.3, as the ideas in the proof shed
light on the argument used in the proof of Lemma 3.1.

3.1. Proof of Theorem 1.3. Lemma 2.2 imposes constraints on the graph structure and
on the sizes of the lists on the edges of a multicolored cluster graph associated with a KR

3 -
free r-edge coloring of a graph G. Let H = (W,E) be a graph where each edge e ∈ E is
associated with a nonempty list Le ⊆ [r] of colors with the property that no copy of the

pattern KR
3 can be constructed with colors in the lists. Set c(r)(H, {Le}e∈E) =

∏
e∈E |Le| and

c(r)(H) = max{Le}e∈E{c
(r)(H, {Le}e∈E)} and c

(r)
m = maxH{c(r)(H)}, where the maximum

runs over all m-vertex graphs H.
Recall that, according to the statement of Theorem 1.3, the graph Kn is almost extremal

with respect to the number of KR
3 -free r-edge colorings when r = 3, while T2(n) is almost

extremal for r ≥ 4. The following two results state that these two graphs are extremal in the

‘reduced-graph level’, that is, with respect to c
(r)
m .

Lemma 3.2. c
(3)
2 = 3, c

(3)
3 = 9, c

(3)
4 = 81 and c

(3)
m = 2(m2 ) for all m ≥ 5. For m ≥ 5, the only

m-vertex graph H with c(3)(H) = c
(3)
m is the complete graph Km.

Proof. By inspection, we see that c
(3)
3 = 9 and the value is achieved by the 3-vertex graph

containing exactly two edges e, e′ with Le = Le′ = [3]. The value c
(3)
4 = 81 is achieved

by a 4-cycle and any other 4-vertex graph H satisfies c(3)(H) < 81. We use induction on
m ≥ 5. Let H = (V,E) be an m-vertex graph, where each edge e ∈ E is assigned a list Le

of colors. If |Le| ≤ 2 for every edge e ∈ E, then c(3)(H, {Le}e∈E) ≤ 2|E| ≤ 2(m2 ) and we are
done. Otherwise there exists an edge e = {u, v} ∈ E such that Le = [3]. For each vertex
w ∈ V \ {u, v} with {u,w}, {v, w} ∈ E we must have

∣∣L{u,w}∣∣ =
∣∣L{v,w}∣∣ = 1, otherwise a

rainbow triangle arises. Let ` denote the number of such vertices w. For all other vertices z
at least one of the pairs {z, u} and {z, v} is not an edge in H, hence for at most one of {z, u}
or {z, v} the size of the corresponding list is at most three. There are (m−2−`) such vertices
z. The subgraph H ′ of H induced on V \ {u, v} contains (m− 2) vertices, hence

c(3)(H, {Le}e∈E) ≤ 3 · 12` · 3m−2−` · c(3)(H ′) ≤ 3m−1 · c(3)(H ′).

If m = 5, then c(3)(H ′) ≤ c(3)3 = 9, and we infer that

c(3)(H, {Le}e∈E) ≤ 34 · 9 = 36 < 210 = 2(52).
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Analogously, if m = 6, then c(3)(H ′) ≤ c(3)4 = 81, and we have

c(3)(H, {Le}e∈E) ≤ 35 · 81 = 39 < 215 = 2(62).

For m ≥ 7, the induction hypothesis implies that c(3)(H ′) ≤ 2(m−2
2 ), and we infer that

c(3)(H, {Le}e∈E) ≤ 3m−1 · 2(m−2
2 ) < 2(m2 ),

which follows from 3m−1 < 22m−3 for m ≥ 4.

The proof also shows that, for m ≥ 5, equality c(3)(H) = 2(m2 ) holds for an m-vertex graph
H only if H = Km. �

For r ≥ 4, the value of c
(r)
m is achieved by the Turán graph T2(m).

Lemma 3.3. For every r ≥ 4 and m ≥ 2, we have c
(r)
m = rex(m,K3), and the only m-vertex

graph H with c(r)(H) = c
(r)
m is the Turán graph T2(m).

Proof. Let r ≥ 4 be fixed and use induction on m. If H consists of a single edge, we have

c(r)(H) = r = c
(r)
2 . By inspection, the graph H on three vertices having exactly two edges

yields c(r)(H) = r2, and any other 3-vertex graph H ′ satisfies c(r)(H ′) < r2, thus c
(r)
3 = r2.

Now let H = (V,E) be an m-vertex graph, m ≥ 4, with lists Le of colors for each edge

e ∈ E. If H is triangle-free, then c(r)(H) ≤ r|E| ≤ rex(m,K3). Therefore, assume that two
vertices u and v of H lie in a triangle. Let T ⊆ V \ {u, v} be the set of vertices w such that
{u, v, w} induces a triangle in H, where |T | = t ≥ 1. Let Zu (respectively, Zv) be the set of
vertices in V \ (T ∪ {u, v}) such that {u, z} ∈ E for each z ∈ Zu (respectively, {v, z} ∈ E for
each z ∈ Zv), thus |Zu|+ |Zv| ≤ m− 2− t. We distinguish two cases according to the size of
the list L{u,v}.

Case (a): Let 3 ≤
∣∣L{u,v}∣∣ ≤ r. In this case we must have

∣∣L{u,w}∣∣ =
∣∣L{v,w}∣∣ = 1 for each

vertex w ∈ T , as otherwise a rainbow triangle arises. For each vertex z ∈ Zu ∪ Zv and each
edge e = {u, z} or e = {v, z}, if present in H, we have |Le| ≤ r. Let H ′ be the on V \ {u, v}
induced subgraph of H. Using t ≥ 1 and the induction hypothesis for H ′ we infer that

c(r)(H, {Le}e∈E) ≤
∣∣L{u,v}∣∣ ·

(∏
w∈T

∣∣L{u,w}∣∣ · ∣∣L{v,w}∣∣
)
·

 ∏
z∈Zu
{u,z}∈E

∣∣L{u,z}∣∣
×

×

 ∏
z∈Zv
{v,z}∈E

∣∣L{v,z}∣∣
 · c(r)(H ′)

≤ r · 12t · rm−2−t · c(r)(H ′)
(t≥1)
≤ rm−2 · c(r)(H ′) ≤ rm−2 · rex(m−2,K3)

< rex(m,K3)

for any m ≥ 4, because ex(m,K3)− ex(m− 2,K3) = m− 1, and we are done in this case.

Case (b): Assume that
∣∣L{u,v}∣∣ ≤ 2. If

∣∣L{u,v}∣∣ = 2, then for each vertex w ∈ T we must have∣∣L{u,w}∣∣, ∣∣L{v,w}∣∣ ≤ 2, as otherwise a rainbow triangle arises. If
∣∣L{u,v}∣∣ = 1, then for any

t ∈ T at most one of the edges {u,w} or {v, w} might have a list of size at least three, but
then we are in Case (a) again. Thus,

∣∣L{u,w}∣∣ · ∣∣L{v,w}∣∣ ≤ 4 for each vertex w ∈ T . Let H ′

be the induced subgraph of H on the vertex set V \ {u, v}. By the induction hypothesis, we
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conclude that

c(r)(H, {Le}e∈E) ≤ 2 · 4t · rm−2−t · c(r)(H ′) ≤ 22t+1

rt
· rm−2 · rex(m−2,K3)

(r≥4)
≤ 2 · rm−2 · rex(m−2,K3)

(m≥4)
< rex(m,K3).

The calculations above show that c(r)(H) = c
(r)
m can only be achieved by the Turán graph

H = T2(m), which finishes the proof. �

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Let r ∈ {3, 4} and β > 0. Our parameters will be defined implicitly in
terms of η > 0, which we shall fix later. Let ε = ε(r, η, 3) > 0 and n0 = n0(r, η, 3) satisfy the
assumptions of Lemma 2.2, w.l.o.g. ε < η/2. Let M = M(ε, r) be as in Lemma 2.1.

Let n > max{n0,M} and let G = (V,E) be an n-vertex graph. Fix a KR
3 -free r-edge

coloring of G. By Lemma 2.1 we obtain a partition V = V1 ∪ · · · ∪ Vm for which the graphs
Gi = (V,Ei) induced by the edges in color i are ε-regular for all i ∈ [r]. Let H = H(η) be the
multicolored cluster graph associated with this partition, whose vertex set is [m].

We shall initially bound the number of r-edge colorings of G leading to the partition
V1 ∪ · · · ∪ Vm and the cluster graph H. Given a color i ∈ [r], there are at most ε

(
m
2

)
irregular

pairs in Gi with respect to the partition V = V1 ∪ · · · ∪ Vm, so that at most

r · ε ·
(
m

2

)
·
( n
m

)2
≤ r · ε

2
n2 (4)

edges lie in irregular pairs with respect to some color. By Lemma 2.1 and by the definition
of an ε-regular partition, there are at most (using m ≥ 1/ε)

m ·
( n
m

)2
=
n2

m
≤ εn2 (5)

edges with both ends in some class Vi. Moreover, the total number of edges of any color c
whose endpoints are in a pair (Vi, Vj) such that the density of edges in color c is less than η
is bounded above by

r · η ·
(
m

2

)
·
( n
m

)2
≤ rη

2
· n2. (6)

Using (4), (5) and (6) together with ε < η/2 gives at most rηn2 such edges, which we can

choose in at most
(n2/2
rηn2

)
ways. This set of edges may be colored in at most rrηn

2
ways. If Le

denotes the list of colors associated with each edge e ∈ E(H), the number of r-edge colorings
of G that give rise to the partition V = V1 ∪ · · · ∪ Vm and the multicolored cluster graph H
is bounded above by

( n2

2

rηn2

)
· rrηn2 ·

 ∏
e∈E(H)

|Le|

( n
m)

2

(2)

≤ 2H(2rη)n
2

2 · rrηn2 ·

 ∏
e∈E(H)

|Le|

( n
m)

2

≤ 2H(2rη)n
2

2 · rrηn2 ·
(
c(r)m

)( n
m)

2

,

where, for the second inequality, we used the fact that, by Lemma 2.2, H cannot contain a
copy of the pattern KR

3 . Further note that, as r ∈ {3, 4}, Lemmas 3.2 and 3.3 imply that

c
(r)
m ≤ 2m

2/2.
As m ≤ M(ε, r) is a constant, there are at most mn partitions V = V1 ∪ · · · ∪ Vm, hence

altogether at most
∑M

m=1m
n < Mn+1 partitions of size at most M . For each partition, there



8 C. HOPPEN, H. LEFMANN, AND K. ODERMANN

are at most 2rM
2/2 choices for the cluster graphs H1, . . . ,Hr. Thus, the number of KR

3 -free
r-edge-colorings of G is bounded above by

Mn+1 · 2r
M2

2 · 2H(2rη)n
2

2 · rrηn2 · 2n2/2.

To obtain the desired result, it suffices to fix η > 0 so that

Mn+1 · 2r
M2

2 · 2H(2rη)n
2

2 · rrηn2
< 2βn

2/2

for n ≥ nβ, which may be chosen sufficiently large. �

3.2. Proof of Lemma 3.1. Next we give a proof of Lemma 3.1. The general structure of
the proof is the same as that of Theorem 1.3, but more careful arguments are needed.

Proof of Lemma 3.1. Fix the number r ≥ 5 of colors and δ > 0. With foresight, fix η > 0
small enough to ensure that

91H(2rη) + 92rη < δ and 20H(2rη) + 20rη <
1

822
, (7)

where H(·) is the entropy function. As before, let ε = ε(r, η, 3) > 0 and n0 = n0(r, η, 3)
satisfy the assumptions of Lemma 2.2, where we choose ε < η/2, and let M = M(ε, r) be as
in Lemma 2.1.

Let G = (V,E) be an n-vertex graph, where n > max{n0,M} and fix a KR
3 -free r-edge

coloring of G. By Lemma 2.1 there exists a multicolored ε-regular partition V = V1∪· · ·∪Vm,
1/ε ≤ m ≤M . Let H = H(η) be the multicolored cluster graph associated with this partition.
We write Ej(H) = {e ∈ E(H) : |Le| = j} and ej(H) = |Ej(H)|, where j ∈ [r].

Using the arguments of the proof of Theorem 1.3, we may easily derive the following upper
bound on the number of r-edge colorings of G leading to the partition V1 ∪ · · · ∪ Vm and the
multicolored cluster graph H:

( n2

2

rηn2

)
· rrηn2 ·

 r∏
j=1

jej(H)

( n
m)

2

(2)

≤ 2H(2rη)n
2

2 · rrηn2 ·

 r∏
j=1

jej(H)

( n
m)

2

. (8)

There are altogether at most
∑M

m=1m
n < Mn+1 possible partitions. Thus, summing over

all partitions and all corresponding multicolored cluster graphs H, the number of KR
3 -free

r-edge-colorings of G is bounded above by

Mn+1 ·
∑
H

2H(2rη)n
2

2 · rrηn2 ·

 r∏
j=1

jej(H)

( n
m)

2

. (9)

By MAXCUT, for each multicolored cluster graph H we can choose a subset E′(H) ⊆
E2(H) of edges that is triangle-free and satisfies |E′(H)| ≥ e2(H)/2. We claim that

e2(H)/2 + e3(H) + · · ·+ er(H) ≤ |E′(H)|+ e3(H) + · · ·+ er(H) ≤ ex(m,K3). (10)

Indeed, if this were not the case, the multicolored cluster graph H would contain a triangle
whose edges have lists of size at least two, and where at least one of the edges has a list of
size three or more. In particular, H would contain a rainbow triangle, so that G would also
contain a rainbow triangle by Lemma 2.2, a contradiction.

First assume that e3(H) + · · · + er(H) ≤ ex(m,K3) − 10H(2rη)m2 − 10rηm2 for all mul-

ticolored cluster graphs H. Because each multicolored partition gives rise to at most 2rM
2/2
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multicolored cluster graphs, for r ≥ 5 the upper bound (9) becomes

Mn+1 · 2r
M2

2 · 2H(2rη)n
2

2 · rrηn2 ·

2e2(H) ·
r∏
j=3

jej(H)

( n
m)

2

≤ Mn+1 · 2r
M2

2 · 2H(2rη)n
2

2 · rrηn2 ·
(

2e2(H) · re3(H)+···+er(H)
)( n

m)
2

(10)

≤ rH(2rη)n2+rηn2 ·
(

2m
2/2−2(e3(H)+···+er(H)) · re3(H)+···+er(H)

)( n
m)

2

= rH(2rη)n2+rηn2 · 2n2/2 ·
(r

4

)(e3(H)+···+er(H))( n
m)

2

≤ rH(2rη)n2+rηn2 · 2n2/2 ·
(r

4

)n2/4−10H(2rη)n2−10rηn2

=

(
410

r9

)H(2rη)n2+rηn2

· rn2/4 � rex(n,K3), (11)

as r0.9 > 4 for r ≥ 5. Thus, for some multicolored cluster graph H we have e3(H) + · · · +
er(H) ≥ ex(m,K3)− 10H(2rη)m2 − 10rηm2, hence e2(H) ≤ 20H(2rη)m2 + 20rηm2 by (10).

Let Ĥ be the subgraph of H with edge set E3(H) ∪ · · · ∪ Er(H). Since Ĥ is K3-free, by
Theorem 2.3 there is a partition U1 ∪ U2 = [m], mi = |Ui|, with

e
Ĥ

(U1) + e
Ĥ

(U2) ≤ 10H(2rη)m2 + 10rηm2.

Proposition 2.4 implies that |mi −m/2| ≤
√

20H(2rη) + 20rη ·m, for i = 1, 2.
Let Wi = ∪j∈UiVj for i = 1, 2. Then,

eG(W1) + eG(W2) ≤ rηn2 + (n/m)2(e
Ĥ

(U1) + e
Ĥ

(U2) + e1(H) + e2(H))

≤ rηn2 + 10H(2rη)n2 + 10rηn2 +
(e1(H) + e2(H))n2

m2

≤ 30H(2rη)n2 + 31rηn2 +
e1(H)n2

m2
. (12)

To conclude the proof, we give an upper bound on e1(H).

To this end, we will estimate the number of pairs in U1 × U2 that are missing from E(Ĥ),
which we know to be at most 20H(2rη)m2 + 20rηm2. Let Ai = E1 ∩ [Ui]

2, i = 1, 2. Fix an
edge {a, b} ∈ A1. Then, for each vertex x ∈ U2, at least one of {x, a} or {x, b} is missing

from E(Ĥ). Considering also edges in A2, we get a total of at most |A1|m2 + |A2|m1 triples

{a, b, x} which cause some pair in U1 ×U2 to be missing from E(Ĥ). Each such missing edge
is counted at most m times, hence we have at least

|A1|m2 + |A2|m1

m

missing edges, which, combined with mi ≥ m/2−
√

20H(2rη) + 20rη ·m, implies that there
are at least

(|A1|+ |A2|) ·
(

1

2
−
√

20H(2rη) + 20rη

)
pairs in U1×U2 that are missing from E(Ĥ). However, we know that this number is at most
20H(2rη)m2 + 20rηm2, therefore, by our choice of η, we have

|A1|+ |A2|
(7)

≤ 41H(2rη)m2 + 41rηm2.
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Taking into account the at most 20H(2rη)m2 + 20rηm2 edges between U1 and U2 that are

missing from E(Ĥ), we infer that

e1(H) ≤ 61H(2rη)m2 + 61rηm2,

and (12) is at most

91H(2rη)n2 + 92rηn2
(7)

≤ δn2,

by our choice of η. �

3.3. Proof of Theorem 1.1. Now we have all the tools we need to prove Theorem 1.1. We
observe that the arguments in this proof allow us to derive exact results from a stability result
in a more general situation, which we address in the long version of [9] (not yet published).
For completeness, we include a proof of this fact restricted to rainbow triangles. (This proof
adapts the ideas in the proof of [1, Theorem 1.1] to rainbow triangles.)

Proof of Theorem 1.1. For a contradiction, we choose n0 appropriately (it will be large enough
to guarantee that the assertion of Lemma 3.1 holds for δ = 10−16r) and we let G 6= T2(n)

be a graph on n > n20 vertices with at least rex(n,K3)+m distinct KR
3 -free r-edge colorings, for

some m ≥ 0. We will show that G contains a vertex x such that the graph G − x obtained
by deleting x has at least rex(n−1,K3)+m+1 distinct KR

3 -free r-edge colorings, or it contains

two vertices x and y such that G − x − y has at least rex(n−2,K3)+m+2 distinct KR
3 -free r-

edge colorings. Repeating this argument iteratively, we obtain a graph on n0 vertices whose

number of KR
3 -free r-edge colorings is at least rex(n0,K3)+m+n−n0 > rn

2
0 . However, a graph on

n0 vertices has at most n20/2 edges and hence the number of such colorings is at most rn
2
0/2,

which is the desired contradiction.
Let δ2(n) denote the minimum vertex degree in the Turán graph T2(n). If G contains a

vertex x of degree less than δ2(n), then the edges incident with x may be colored in at most

rδ2(n)−1 ways. Thus G− x has at least rex(n−1,K3)+m+1 distinct KR
3 -free r-edge colorings and

we are done. Hence we will assume that all vertices of G have degree at least δ2(n), i.e., G
has at least ex(n,K3) edges.

Consider a partition V = V1 ∪ V2 of the vertex set of G which minimizes e(V1) + e(V2). By
our choice of n0 in Lemma 3.1, we have e(V1) + e(V2) < 10−16rn2. The bipartite subgraph
induced by the partition V = V1 ∪ V2 contains at least ex(n,K3) − 10−16rn2 edges. By
Proposition 2.4 we infer that ||Vi| − n/2| <

√
2 · 10−8rn for each i ∈ [2]. Let C denote the set

of all possible KR
3 -free r-edge colorings of the edges of G.

First consider the case when there is some vertex with many neighbors in its own class
of the partition, say x ∈ V1 satisfies |N(x) ∩ V1| > n/(103r2). Our choice of the partition
guarantees that in this case |N(x)∩V2| > n/(103r2), otherwise we could reduce e(V1) + e(V2)
by moving x to the other part.

Let C1 be the subset of all colorings for which there are subsets Wi ⊆ Vi with |Wi| ≥
n/(103r2r) such that all the edges from x to Wi are colored with color ci, i = 1, 2, where c1
and c2 are distinct. Consider a coloring of G in C1. There are less than r2 possible choices for
the colors c1 and c2. Since there are at most |W1||W2| edges between these two sets W1 and

W2, we have at most 2|W1||W2| ways to color edges between W1 and W2, as any color other
than c1, c2 would create a KR

3 . Since there are at most ex(n,K3) + 10−16rn2−|W1||W2| other
edges in this graph, and hence the number of colorings in C1 associated with this particular
pair of sets and this pair of colors is at most

rex(n,K3)+10−16rn2−|W1||W2| · 2|W1||W2|.
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As 22n is a generous upper bound on the number of pairs (W1,W2) with this property, we
have

|C1| ≤ r2 · rex(n,K3)+10−16rn2 · 22n ·
(

2

r

)n2/(106r4r2)

< rex(n,K3)−1

for large enough n. Here we used 2/r < 1/
√
r for r ≥ 5 and

r10
−16r ·

(
2

r

) 1
106r4r2

≤ r10−16r · r−
1

106r8r2 = r10
−16r− 10−6r

8r2 < 1.

Let C2 = C − C1. By the above discussion, C2 contains at least |C| − |C1| ≥ rex(n,K3)+m−1

colorings of G. We consider one of them. There is no pair (W1,W2) as in the definition of C1.
Let V c

i be the set of all neighbors y ∈ Vi of x where the edge {x, y} has color c, for i ∈ {1, 2}.
We say that a color c is rare for Vi if |V c

i | < n/(103r2r). Since |N(x) ∩ Vi| > n/(103r2),
it is impossible that all colors are rare with respect to some Vi. Therefore there are sets
W c
i ⊆ N(x) ∩ Vi with |W c

1 | ≥ n/(103r2r) and |W c
2 | ≥ n/(103r2r) of the same color c ∈ [r], as

otherwise we would have a pair (W1,W2) as in the definition of C1.
For r ≥ 5, the entropy function H satisfies

H(1/(103r2r))r
(3)

≤ 2

103r2r
log2(103r2r) · r ≤ 1

103r
· log2(2

10r2r)

<
1

103r
· log2(2

11r) =
11r

103r
≤ 1

102r
≤ 10−10.

Thus, for r ≥ 5, there are at most(
|Vi|

n/(103r2r)

)r−1
≤

(
n

n/(103r2r)

)r−1
≤
(

2H(1/(103r2r))n
)r
< 210

−10·n

at most (r − 1) rare colors with respect to Vi for i ∈ {1, 2}. The remaining edges can only
be assigned color c. Hence the number of ways to color all edges incident with x is bounded
above by

r · 22·10−10n < r2·10
−10n.

We already know that |C2| ≥ rex(n,K3)+m−1, and it follows that the number of KR
3 -free r-edge

colorings of G− x is at least

rex(n,K3)+m−1−2·10−10n ≥ rex(n−1,K3)+m+1

for n sufficiently large. This completes the induction step in the first case.
Now assume that every vertex has at most n/(103r2) neighbors in its own class Vi. We may

suppose that G is not bipartite, or else by Turán’s Theorem we would have |E(G)| ≤ ex(n,K3)

and therefore |C| ≤ rex(n,K3) with equality only for G = T2(n). Therefore, let {x, y} be an
edge contained inside one of the classes Vi, say x, y ∈ V1. Let W2 ⊆ V2 be the set of common
neighbors of x and y in V2. Let c be the color assigned to the edge {x, y}. For each vertex
v ∈ W2, the absence of a KR

3 implies that there are at most 3r − 2 choices for coloring the
pair of edges {v, x}, {v, y}. Edges incident with vertices which do not have both x and y as
neighbors may be colored in r ways. As x and y have at most n/(103r2) neighbors in V1, the
number of ways to color edges incident with x or y is at most

r·(3r−2)|W2|·rn/2+
√
2·10−8rn−|W2|+10−3rn ≤

(
3r − 2

r

)n/2+10−8rn

·rn/2+
√
2·10−8rn+10−3rn � r(7/8)n

for r ≥ 5 and n sufficiently large.
Hence the number of KR

3 -free r-edge colorings of G− x− y is at least

rex(n,K3)+m−(7/8)n ≥ rex(n−2,K3)+m+2.
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This completes two induction steps and finishes the proof of Theorem 1.1. �

4. The extremal graph for small values of n

The objective of this section is to prove Theorem 1.2, which shows that, for r ≥ 10, the
Turán graph T2(n) is the single Cr,KR

3
-extremal graph for all n ≥ 5. This refines the conclusion

of Theorem 1.1 for all r ≥ 10.
We start with a straightforward observation, which is added here for future reference.

Lemma 4.1. At most one new color may appear in an extension of a KR
3 -free coloring of

the complete graph Kn to a KR
3 -free coloring of Kn+1. In particular, at most n− 1 different

colors occur in any KR
3 -free coloring of Kn.

Proof. Clearly, if two new colors appeared on edges of such an extension, those two edges
would create a rainbow triangle with an edge in the original coloring of Kn. The second
statement follows easily by induction, as any coloring of K2 uses a single color. �

We shall also need the following simple result, which bounds the number of possible exten-
sions of a partial coloring.

Lemma 4.2. Let the vertices v1, v2 and v3 induce a triangle T , and let w be another vertex.
Assume that there are r colors available.

(a) If {v1, v2} has been assigned a color, there are (3r− 2) ways to extend this coloring to
a KR

3 -free r-coloring of T .
(b) If T has been assigned a monochromatic coloring and T + w induces a copy of K4,

there are (7r − 6) ways to extend this coloring to a KR
3 -free r-coloring of T + w.

(c) If T has been assigned a KR
3 -free r-coloring that is not monochromatic and T + w

induces a copy of K4, there are (5r − 2) ways to extend this coloring to a KR
3 -free

r-coloring of T + w.

Proof. For part (a), assume that {v1, v2} has been assigned color a. There are r possibilities
to color both edges {v1, v3} and {v2, v3} with the same color. If they receive different colors,
one of them must be assigned color a and the other may be colored in r − 1 ways, which
amounts to 2(r−1) different colorings. Hence there are 3r−2 ways to color the edges {v1, v3}
and {v2, v3} without producing a rainbow triangle.

For part (b), let a be the color assigned to T . There are r ways to assign the same color to
all the edges {v1, w}, {v2, w}, {v3, w}. Moreover, there are 3(r−1) ways to extend the coloring
so that exactly two of the three edges {v1, w}, {v2, w}, {v3, w} are assigned a color b 6= a. The
only other possible extensions are those where exactly two of the three edges incident with w
are colored a, whose number is also 3(r− 1). Thus the number of ways to assign colors to the
edges {v1, w}, {v2, w}, {v3, w} with no KR

3 is exactly (7r − 6).
Finally, for part (c), assume that the triangle T has been assigned colors a and b, where

the edge {v1, v2} has color a and the edges {v1, v3} and {v2, v3} have color b. There are 23

ways to extend this coloring to a coloring of T + w using only colors a and b. There are
(r − 2) ways to assign the same color c 6∈ {a, b} to the edges {v1, w}, {v2, w}, {v3, w}. There
are also (r − 2) colorings where {v1, w} and {v2, w} are assigned color c /∈ {a, b} and {v3, w}
is colored b. Similarly, there are (r − 2) colorings where {v1, w} and {v2, w} are assigned
color b and {v3, w} is colored c /∈ {a, b}. The only other KR

3 -free r-colorings are those where
{v3, w} has color b and {v1, w} (resp. {v2, w}) is colored a and then {v2, w} (resp. {v1, w}) is
assigned a color c /∈ {a, b}, which adds another 2(r− 2) colorings. Thus in this case there are
8 + 3(r− 2) + 2(r− 2) = 5r− 2 ways to color {{v1, w}, {v2, w}, {v3, w}} such that the 4-clique
T + w contains no KR

3 . �

Using Lemma 4.2, we may easily compute the number ofKR
3 -free r-colorings of some graphs.



EDGE-COLORINGS AVOIDING A MULTICOLORED TRIANGLE 13

Corollary 4.3. We have

|Cr,KR
3

(K3)| = 3r2 − 2r (13)

|Cr,KR
3

(K4)| = 15r3 − 14r2 (14)

|Cr,KR
3

(K4 − e)| = 9r3 − 12r2 + 4r. (15)

More generally, if H is a graph with vertex set {w1, . . . , w`} and G is obtained from H by the
addition of a new triangle T = {v1, v2, v3} and a subset of edges of {{vi, wj} : i ∈ [3], j ∈ [`]},
then

|Cr,KR
3

(G)| ≤
(

(3r2 − 3r)(5r − 2)` + r(7r − 6)`
)
· |Cr,KR

3
(H)|. (16)

Proof. By Lemma 4.2(a), equation (13) follows immediately.
To count the number of KR

3 -free colorings of K4, assume that the vertex set is {v1, v2, v3, w}
and let T be the triangle induced by {v1, v2, v3}. Each of the r monochromatic colorings of T
may be extended in (7r− 6) ways by Lemma 4.2(b), while Lemma 4.2(c) implies that each of
the (3r2 − 3r) colorings of T with exactly two colors may be extended in (5r − 2) ways, thus

|Cr,KR
3

(K4)| = r(7r − 6) + (3r2 − 3r)(5r − 2) = 15r3 − 14r2.

For K4 − e, we do as before, but we observe that there are only two edges between w and
the triangle T (and which form a triangle with one of the edges of T ), so that any coloring of
T may be extended in exactly (3r − 2) ways. This leads to

|Cr,KR
3

(K4 − e)| =
(
3r2 − 2r

)
(3r − 2) = 9r3 − 12r2 + 4r.

The previous discussion may be extended to a graph G with vertex set {v1, v2, v3, w1, . . . , w`}
and edges given by the union of the triangle T = {v1, v2, v3} and a subset of {{vi, wj} : i ∈
[3], j ∈ [`]}. Indeed, once T is colored, the set of edges connecting some vertex wi to the
triangle may be colored in at most max{r, 3r − 2, 7r − 6, 5r − 2} ways, depending on the
number of edges involved and on the coloring of T . Since max{r, 3r−2} ≤ min{7r−6, 5r−2}
for all r ≥ 1, the number of ways to extend a coloring of H to G is at most

(3r2 − 3r)(5r − 2)` + r(7r − 6)`.

This leads to the desired result if we combine this coloring with a K3-free r-coloring of the
edges of H. �

To give an idea of the proof of Theorem 1.2, we first prove a weaker version of it.

Proposition 4.4. For r ≥ 74 colors and n ≥ 4, the maximum number of KR
3 -free r-colorings

of any n-vertex graph is rex(n,K3), and this number is achieved only by the Turán graph T2(n).

Note, however, that for n = 3 and r ≥ 1, a triangle allows (3r2 − 2r) distinct KR
3 -free

r-colorings, while the corresponding number for the Turán graph T2(3) is only r2.

Proof. We use induction on n. For n = 4, the 4-cycle T2(4) admits r4 distinct KR
3 -free

colorings. By Corollary 4.3, if G is a 4-vertex graph containing a triangle, there are at most
(15r3 − 14r2) distinct KR

3 -free r-colorings, which is less than r4 for r ≥ 15.
By (16), for any 5-vertex graph containing a triangle the number of KR

3 -free r-colorings is
at most

((3r2 − 3r)(5r − 2)2 + r(7r − 6)2) · r = (75r3 − 86r2 − 12r + 24) · r2
(r≥2)
≤ (75r3 − 86r2) · r2

(r≥74)
< r6 = rex(5,K3).
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In the case n = 6, inequality (16) implies that the number of KR
3 -free r-colorings of any

6-vertex graph containing K3 is at most

((3r2 − 3r)(5r − 2)3 + r(7r − 6)3) · (3r2 − 2r) < 9 · 125r7 + 3 · 73r6

< 2154r7
(r≥47)
< r9 = rex(6,K3).

To conclude the induction, let G be an n-vertex graph with n ≥ 7. If G is triangle-free,
then G has at most ex(n,K3) edges and we are done, so assume that G contains a triangle
with vertex set T . By the induction hypothesis, the number of KR

3 -free r-colorings of G− T
is at most rex(n−3,K3). By (16), the total number of KR

3 -free r-colorings of G is at most(
(3r2 − 3r)(5r − 2)n−3 + r(7r − 6)n−3

)
· rex(n−3,K3)

<
(
3r · 5n−3 + 7n−3

)
· rex(n−3,K3)+n−2

(r≥10,n≥7)
< r · 7n−3 · rex(n−3,K3)+n−2

(r≥49)
≤ r

n−1
2 · rex(n−3,K3)+n−2 ≤ rex(n,K3).

This concludes the induction. �

Note that the above argument already has a bottleneck at the base of induction (see the
case n = 5), which suggests that the number of KR

3 -free r-colorings of small graphs should
be computed more precisely. As it turns out, to get our result for all r ≥ 10, we will need
the following two results, whose proofs require some careful case analysis and are therefore
postponed to the appendix.

Lemma 4.5. The number of KR
3 -free r-edge-colorings of K5 is

105r4 − 120r3 + 136r2 − 120r. (17)

Lemma 4.6. The following statements hold.

(a) The number of ways to extend any KR
3 -free r -coloring of a complete graph K4 to a

KR
3 -free r-coloring of a complete graph K5 is at most 15r − 14.

(b) The number of ways to extend any KR
3 -free r-coloring of K5 to a KR

3 -free r-coloring
of the K6 is at most 31r − 18.

To prove that the Turán graph admits the largest number of KR
3 -free r-colorings whenever

r ≥ 10 and n ≥ 5, we first need to understand what happens for smaller values of n.

Lemma 4.7. The following statements hold for r ≥ 10.

(a) For a 3-vertex graph G, we have |Cr,KR
3

(G)| ≤ 3r2 − 2r, where equality is achieved if

and only if G = K3.
(b) For any 4-vertex graph G, we have

|Cr,KR
3

(G)| ≤ max{r4, 15r3 − 14r2}.

Equality is achieved only by the Turán graph T2(4) for r ≥ 15 and by the complete
graph K4 for r ≤ 13. For r = 14, equality is achieved if and only if G ∈ {T2(4),K4}.
If we restrict to G 6= K4, the maximum is achieved by T2(4) for all r ≥ 10.

Proof. For (a), any other 3-vertex graph G 6= K3 has at most two edges and r2 < 3r2− 2r for
all r ≥ 10.

For (b), observe that Corollary 4.3 implies that K4 admits the largest number of KR
3 -free

colorings among all 4-vertex graphs that contain a triangle, followed by K4 − e. It is obvious
that T2(4) admits the largest number of such colorings for triangle-free graphs, so that the
first statement follows from comparing r4 with 15r3−14r2. The second statement comes from
comparing r4 with r(3r − 2)2. �
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Proof of Theorem 1.2. The result is trivially true if we restrict to triangle-free graphs, so let
G be a graph that contains a triangle. By induction, we shall show that G admits fewer
than rex(n,K3) distinct KR

3 -free r-colorings. We distinguish three cases according to the clique
number ω(G) of G (as usual ω(G) is the size of a largest clique in G).
Case 1: First assume that ω(G) = 3, so that G is K4-free. Let W = {w1, w2, w3} induce a
triangle in G and let X = V (G)−W = {x1, . . . , xn−3}. The fact that G is K4-free implies that
each vertex xi has at most two neighbors in W , so that the number e(W,X) of edges between
W and X satisfies e(W,X) ≤ 2(n− 3). By Lemma 4.2(a), the number of ways to color the at
most two edges connecting xi to the triangle W is bounded above by max{r, 3r−2} = 3r−2.

First assume that e(W,X) < 2(n − 3). Our comments in the previous paragraph imply
that, starting with a KR

3 -free r-coloring of the triangle W , there are at most r(3r − 2)n−4

ways to color the edges in e(W,X) without creating a rainbow triangle. The edges in G[X]
may be colored in at most r and (3r2− 2r), respectively, for n = 5 and n = 6. For n = 5, the
desired result follows from

(3r2 − 2r)(3r − 2)r2 < 9r5
(r≥9)
≤ r6 = rex(5,K3),

while for n = 6 we have

(3r2 − 2r)2r(3r − 2)2 < 81r7
(r≥9)
≤ r9 = rex(6,K3). (18)

For n ≥ 7, since G is K4-free, the edges in G[X] can be colored in at most rex(n−3,K3) ways
(this uses the induction hypothesis for n ≥ 8 and Lemma 4.7(b) for n = 7). We conclude that
the number of KR

3 -free r-colorings of G is at most

(3r2 − 2r) · r · (3r − 2)n−4 · rex(n−3,K3) < 3n−3 · rn−1 · rex(n−3,K3)

(r≥9)
≤ r

n−3
2 · rn−1 · r

(n−3)2

4 = r
(n−1)(n+1)

4 ≤ rex(n,K3). (19)

When e(W,X) = 2(n− 3), we need to look at colorings more carefully. We start with the
case n ≥ 5 and n 6= 6, as some of our remarks in this case will be enough to handle the case
n = 6. The arguments from the previous paragraph lead to an upper bound of

(3r2 − 2r)(3r − 2)n−3rex(n−3,K3) < 3n−2 · rn−1 · rex(n−3,K3) < rex(n,K3). (20)

The inequality above holds for all even values of n ≥ 8, and for n = 13, which will be sufficient
for further considerations. We will consider the cases n = 5, n = 7, n = 9, n = 11 and n ≥ 14
separately.

For n ∈ {5, 7, 9, 11}, we analyse the situation more carefully. If X induces an independent

set, the number of colorings is bounded above by (3r2−2r)(3r−2)n−3 < 3n−2rn−1 < rex(n,K3)

for r ≥ 3, so assume that {xi, xj} is an edge of G. Without loss of generality, assume that xi
is adjacent to w1 and w2, while xj is adjacent to w2 and w3 (the absence of K4 implies that
they cannot have the same neighbors). Again assume that we have colored all edges incident
with vertices in W . If ei = {xi, w2} and ej = {xj , w2} are assigned the same color, the number

of extensions to G[X] is at most rex(n−3,K3), while, if ei and ej have different colors, the edge
{xi, xj} must be assigned one of these two colors and the number of extensions is at most

2 · rex(n−3,K3)−1. This is due to the fact that, for every choice of color c for the edge {xi, xj},
the number of extensions to a coloring of G[X] is the same, and summing these numbers over

all possible colors c, we get at most rex(n−3,K3). To conclude the proof of this part, we will use
the fact that the number of ways to extend a coloring of W to the edges connecting xi and xj
to W in such a way that ei and ej have the same color is at most (r2+4r−4). To see why this
is true, let a be the color of ei and ej and first assume that the edges {w1, w2} and {w2, w3}
have the same color b. If b 6= a, each of the remaining two edges {w1, xi} and {w3, xj} can
only be assigned b or a. If b = a, the remaining two edges may be colored arbitrarily. Thus
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we have 22(r − 1) + r2 = r2 + 4r − 4 extensions in this case. Next assume that the colors of
{w1, w2} and {w2, w3} are different, say b and c. There are (r − 2) ways to choose a color
a /∈ {b, c} for ei and ej . Then each of the remaining two edges can only be colored in two
ways. If a = b, the edge {w1, xi} can be colored in r ways, while {w3, xj} can only be assigned
b or c. The case a = c is analogous. Thus we have 4(r − 2) + 2r + 2r = 8r − 8 ≤ r2 + 4r − 4
extensions in this case, which establishes our claim.

There are (3r2 − 2r) ways to color the triangle W . Once we extend this coloring to the
edges between W and X, we know that the number of ways to color G[X] is larger when
the edges ei and ej are assigned the same color. With the upper bounds obtained above, we
deduce that the total number of colorings of G is bounded above by

(3r2 − 2r)(3r − 2)n−5
(
rb

(n−3)2

4
c(r2 + 4r − 4) + 2rb

(n−3)2

4
c−1[(3r − 2)2 − (r2 + 4r − 4)]

)
, (21)

which is less than rex(n,K3) for n ∈ {5, 7, 9, 11} and r ≥ 9.
In the case n = 6 we may proceed similarly. If X is an independent set, the inequality (18)

becomes

(3r2 − 2r)(3r − 2)3 < 34 · r5
(r≥9)
≤ r9 = rex(6,K3),

while, if there is an edge {xi, xj}, it may be replaced by

(3r2 − 2r)(3r − 2)
[
(3r2 − 2r)(r2 + 4r − 4) + 2(3r − 2)[(3r − 2)2 − (r2 + 4r − 4)]

]
, (22)

which is less than rex(6,K3) = r9 for r ≥ 8.
To conclude the proof of this case, we will use the upper bound (20) and show that

rex(n,K3) > (3r2 − 2r)(3r − 2)n−3rex(n−3,K3) (23)

for all n ≥ 14. This will be done by induction on n, where the base is given by n ∈ {12, 13},
for which this inequality has already been verified. Also recall that rex(n,K3) is the maximum
number of colorings of any K4-free graph G on n ∈ {9, . . . , 13} vertices.

For n ≥ 14, we have, by the induction hypothesis,

rex(n,K3) = rn−1+ex(n−2,K3) > rn−1(3r2 − 2r)(3r − 2)n−5rex(n−5,K3)

= r3(3r2 − 2r)(3r − 2)n−5rex(n−3,K3) > (3r2 − 2r)(3r − 2)n−3rex(n−3,K3),

as required. In the last inequality, we used that r3 > (3r− 2)2 for r ≥ 10. This concludes the
proof of our theorem in Case 1.

Case 2: Assume that ω(G) = 4, where a 4-clique is induced by W = {w1, w2, w3, w4}. Let
X = V (G) −W = {x1, . . . , xn−4}. As G is K5-free, each vertex from X has at most three
neighbors in W . Combining this with Lemma 4.2, we deduce that the number of ways to color
the edges connecting some xi to W is bounded above by max{r, 3r−2, 5r−2, 7r−6} = 7r−6.
Thus, once the edges of G[W ] are colored, the edges connecting W with X can be colored in
at most (7r − 6)n−4 ways.

For n ∈ {5, 6}, we may first color G[W ] ∼= K4 in (15r3 − 14r2) ways (see Lemma 4.7(b)),
extend any such coloring to the edges between W and X in at most (7r − 6)n−4 ways, while
(for n = 6) the edge {x1, x2}, if present, may be colored in r ways. With these arguments,
for n = 5 and r ≥ 10 we have at most

(15r3 − 14r2)(7r − 6) < r6 = rex(5,K3)

colorings while for n = 6 our result follows from the fact that

(15r3 − 14r2)(7r − 6)2r < 15 · 49 · r6
(r≥10)
< r9.
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For n = 7, we use parts (a) and (b) of Lemma 4.7 to deduce that G[X] and G[W ] may be
colored in at most (3r2 − 2r) and (15r3 − 14r2), respectively. The edges between X and W
may be colored in at most (7r − 6)3 ways. Our result follows from

(15r3 − 14r2)(7r − 6)3(3r2 − 2r) < r12

for r ≥ 10. This inequality may be verified directly for r ∈ {10, 11}, while for r ≥ 12 the
left-hand side is bounded above by

15 · 73 · 3 · r8 < 124r8 ≤ r12. (24)

For n = 8 and 10 ≤ r ≤ 13, by Lemma 4.7(b), the subgraph G[X] has at most 15r3 − 14r2

distinct KR
3 -free r-colorings, so that the number of such colorings in G is at most

(15r3 − 14r2)(7r − 6)4(15r3 − 14r2),

which is less than r16 for 10 ≤ r ≤ 13.
For all other cases where n ≥ 8 and r ≥ 10, the induced subgraph G[X] has at most

rex(n−4,K3) distinct KR
3 -free r-colorings, either by Lemma 4.7(b) or by the induction hypoth-

esis. Hence the number of KR
3 -free r-colorings of G is at most

(15r3 − 14r2)(7r − 6)n−4rex(n−4,K3)
(r≥10,n≥8)

< rex(n,K3).

To see the inequality above, note that ex(n,K3)− ex(n− 4,K3) = 2n− 4, while

(15r3 − 14r2)(7r − 6)n−4 ≤ 15r3 ·
(

7

r

)n−4
· r2n−8

(r≥10)
≤ 15 ·

(
7

10

)4

· r2n−5 < 10 · r2n−5
(r≥10)
≤ r2n−4.

Case 3: Finally, assume that ω(G) ≥ 5 where a 5-clique is induced byW = {w1, w2, w3, w4, w5}.
Let X = V (G)−W = {x1, . . . , xn−5}. By Lemma 4.5 the graph G[W ] admits (105r4−120r3+
136r2 − 120r) distinct KR

3 -free r-colorings. Each vertex from X has at most five neighbors
in W . Combining this with Lemmas 4.2 and 4.6 we deduce that the number of ways to color
the edges connecting some xi to W is bounded above by max{r, 3r − 2, 5r − 2, 7r − 6, 15r −
14, 31r − 18} = 31r − 18 Thus, once the edges of G[W ] are colored, the edges connecting W
to X can be colored in at most (31r − 18)n−5 ways.

In the case n = 5 the graph G is a K5, and we have

|Cr,KR
3

(K5)| = 105r4 − 120r3 + 136r2 − 120r ≤ 105r4 − 106r3
(r≥10)
< r6 = rex(5,K3).

For n = 8, by Lemma 4.7(a), G[X] has at most (3r2−2r) distinct KR
3 -free r-colorings. The

number of KR
3 -free r-colorings of G is at most

(105r4 − 120r3 + 136r2 − 120r)(31r − 18)3(3r2 − 2r) < 315 · 313 · r9
(r≥10)
< r16.

For n = 9 and 10 ≤ r ≤ 13, by Lemma 4.7(b), G[X] has at most 15r3 − 14r2 distinct
KR

3 -free r-colorings. The number of KR
3 -free r-colorings of G is at most

(105r4 − 120r3 + 136r2 − 120r)(31r − 18)4(15r3 − 14r2),

which is less than r20 for 10 ≤ r ≤ 13.
For all other cases where n ≥ 6, the induced subgraph G[X] has at most rex(n−5,K3) distinct

KR
3 -free r-colorings, either by Lemma 4.7 or by the induction hypothesis. Hence the number

of KR
3 -free r-colorings of G is at most

(105r4 − 120r3 + 136r2 − 120r)(31r − 18)n−5rex(n−5,K3) < rex(n,K3).
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To see why the last inequality holds, note that ex(n,K3)− ex(n− 5,K3) ≥ (5/2)n− (13/2),
while

(105r4 − 120r3 + 136r2 − 120r)(31r − 18)n−5 ≤ 105r4 ·
(

31

r3/2

)n−5
· r

5
2
n− 25

2

(n≥6)
≤ 105 ·

(
31

103/2

)
· r

5
2
n− 17

2

(r≥10)
< 100 · r

5
2
n− 17

2 ≤ r
5
2
n− 13

2 .

In conclusion, for r ≥ 10 and n ≥ 5, the Turán graph T2(n) for K3 on n vertices allows the
maximum number of KR

3 -free r-edge colorings among all graphs on n vertices, and it is the
only extremal graph in these cases. �

Remark 4.8. Theorem 1.2 cannot be improved to smaller values of n or r without affecting
the other parameter, as K4 admits more KR

3 -free r-colorings than T2(4) for all r ≤ 13 and K5

admits more KR
3 -free 9-colorings than T2(5).

Moreover, there are several steps in our proof of Theorem 4.8 where the bound r ≥ 10 is
needed. For instance, several inequalities in Case 3 do not hold for smaller values of r, which
suggests that the case when the graph G satisfies ω(G) = 5 should be treated separately from
graphs with larger clique number.

Hence, using the current approach to obtain similar results for smaller values of r and
n ≥ n0, where n0 > 5 (but much smaller than in Theorem 1.1) would require more precise
calculations (for instance, the exact number of colorings of graphs with five and six vertices)
and tighter bounds, probably leading to long and tedious arguments.
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4. P. Erdős, Some new applications of probability methods to combinatorial analysis and graph theory,
Proc. of the Fifth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida
Atlantic Univ., Boca Raton, Fla., 1974), 39–51. Congressus Numerantium, No. X, Utilitas Math. (1974),
39–51.
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5. Appendix

In this appendix, we prove the two technical lemmas whose proofs have been omitted from
Section 4. At first we restate Lemma 4.5.

Lemma 4.5. The number of KR
3 -free r-edge-colorings of K5 is

105r4 − 120r3 + 136r2 − 120r.

Proof. Let V (K5) = {v1, v2, v3, v4, w}. We distinguish three cases, depending on the number
of colors used for the K4-subgraph {v1, v2, v3, v4}.
Case 1: Given one of the r monochromatic colorings of the complete graph on {v1, v2, v3, v4},
say in color a, by Lemma 4.1 only one of the remaining (r − 1) colors can additionally be
used for any coloring of the edges {vi, w}, i = 1, 2, 3, 4. There is exactly one way to color the
K5 = {v1, v2, v3, v4, w} with one color a. Let b 6= a be another color. Then there are 24 − 1
ways to assign colors a or b to the edges {vi, w} such that color b occurs at least once, which
so far altogether gives a number of KR

3 -free r-colorings of

r + 15r(r − 1). (25)

In particular, when K4 = {v1, v2, v3, v4} has a monochromatic edge coloring using color a,
there are

1 + 15(r − 1) = 15r − 14 (26)

ways to extend it to an edge coloring of K5 = {v1, v2, v3, v4, w} using only a and a color b 6= a.

Case 2: The number of colorings of K4 where exactly two different colors a and b are used
is (26 − 2). Assume that we are given an a, b-coloring of the edges of the complete graph
{v1, v2, v3, v4}. There are 24 = 16 ways to color the edges {vi, w}, i = 1, 2, 3, 4, using only the
colors a and b. By Lemma 4.1 only one of the remaining (r − 2) colors can additionally be
used for any coloring of the edges {vi, w}, i = 1, 2, 3, 4. Therefore, given a specific a, b-coloring
of the edges of the complete graph {v1, v2, v3, v4}, we will count the number of a, b, c-colorings
of the edges {vi, w}, i = 1, 2, 3, 4, where the color c /∈ {a, b}, is used at least once. There are

five non-isomorphic color patterns K(1), . . . ,K(5) for coloring the edges of the complete graph
{v1, v2, v3, v4} using exactly two colors a and b. They are represented in Figure 1.

K(1)

v1 v2

v3v4

a

bb bb

b
K(2)

v1 v2

v3v4

a

ba bb

b
K(3)

v1 v2

v3v4

a

bb bb

a
K(4)

v1 v2

v3v4

a

ba ba

b
K(5)

v1 v2

v3v4

a

ab ba

b

Figure 1. Five non-isomorphic patterns

Since the roles of the colors a and b can be interchanged in the color patterns, there are
twelve ways to apply color pattern K(1) to the K4, 24 ways for pattern K(2), six ways for
K(3), eight ways for K(4) and twelve ways for K(5), which amounts to 26 − 2 color patterns
for the K4 where the colors a and b occur at least once.
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Case 2.1 -K(1): Let {v1, v2} be colored a and all other edges of the complete graph {v1, v2, v3, v4}
be colored b. Let exactly one of the edges {vi, w}, i = 1, 2, 3, 4, be colored c 6= a, b, say, edge
{v1, w}. Since all triangles in the K5 that contain the edge {v1, w} now already have two
edges with two different colors, for every such triangle there is exactly one way to assign one
of the colors a or b to the remaining third edge. Since there are four ways to assign color c to
one of the edges {vi, w}, we end up with four different colorings. Clearly this holds also for

the patterns K(2), . . . ,K(5). Now let exactly two of the edges {vi, w}, i = 1, 2, 3, 4, be colored
c. When {v1, w} and {v2, w} are colored c, both edges {v3, w} and {v4, w} have to be colored
b. When {v3, w} and {v4, w} are colored c, both edges {v1, w} and {v2, w} have to be colored
b. If any other pair of edges {vi, w} is colored c, this coloring cannot be extended to a KR

3 -free
r-coloring using only the colors a and b. Thus there are two different colorings in this case.
Now let exactly three of the edges {vi, w}, i = 1, 2, 3, 4, be colored c. If {v1, w}, {v2, w} and
{v3, w} are colored c, edge {v4, w} has to be colored b. If {v1, w}, {v2, w} and {v4, w} are
colored c, edge {v3, w} has to be colored b. These two are the only KR

3 -free r-colorings in
this case. If we color all the four edges {vi, w}, i = 1, 2, 3, 4, with color c, simultaneously, we
never end up with a rainbow triangle, for any of the five patterns. Hence there are 16 ways to
extend K(1) to a KR

3 -free r-coloring of K5 using only the colors a and b and, after choosing
one color c /∈ {a, b} out of the remaining (r − 2) colors, there are 4 + 2 + 2 + 1 = 9 ways to

extend K(1) to a KR
3 -free r-coloring of K5 using only the colors a, b and c in such a way that

color c is assigned to at least one edge.
Case 2.2 - K(2): Let the edges {v1, v2} and {v2, v4} be colored a and all other edges of the
complete graph {v1, v2, v3, v4} be colored b. If the edges {v1, w} and {v4, w} are colored c,
then {v2, w} has to be colored a and {v3, w} has to be colored b. This is the only way to

extend K(2) to a coloring of the K5 = {v1, v2, v3, v4, w} where exactly two of the edges {vi, w},
i = 1, 2, 3, 4, are colored c. If we assign color c to exactly three of the edges {vi, w}, the only
way that results in a KR

3 -free r-coloring of the K5 is using color c on {v1, w}, {v2, w} and

{v4, w} and using color b on edge {v3, w}. Hence there are 16 ways to extend K(2) to a KR
3 -

free r-coloring of K5 using only the colors a and b and, after choosing one color c /∈ {a, b} out

of the remaining (r − 2) colors, there are 4 + 1 + 1 + 1 = 7 ways to extend K(2) to a KR
3 -free

r-coloring of K5 using only the colors a, b and c in such a way that color c is assigned to at
least one edge.
Case 2.3 - K(3): Let the edges {v1, v2} and {v3, v4} be colored a and all other edges of the
complete graph {v1, v2, v3, v4} be colored b. A KR

3 -free r-coloring where we color exactly two
of the edges {vi, w}, i = 1, 2, 3, 4, with color c can be achieved in only two ways. Either
we assign color c to {v1, w} and {v2, w}, which results in assigning color b to {v3, w} and to
{v4, w}, or we color {v3, w} and {v4, w} with c, which results in assigning color b to {v1, w}
and {v2, w}. There is no KR

3 -free r-coloring where exactly three of the edges {vi, w} are

colored c. Hence there are 16 ways to extend K(3) to a KR
3 -free r-coloring of K5 using only

the colors a and b and, after choosing one color c /∈ {a, b} out of the remaining (r− 2) colors,

there are 4 + 2 + 0 + 1 = 7 ways to extend K(3) to a KR
3 -free r-coloring of K5 using only the

colors a, b and c in such a way that color c is assigned to at least one edge.
Case 2.4 - K(4): Let the edges {v1, v2}, {v1, v4} and {v2, v4} be colored a and all other
edges of the complete graph {v1, v2, v3, v4} be colored b. A KR

3 -free r-coloring where we color
exactly two of the edges {vi, w}, i = 1, 2, 3, 4, with color c can be achieved only by either
assigning color c to the edges {v1, w} and {v4, w}, to the edges {v1, w} and {v2, w} or to the
edges {v2, w} and {v4, w}. In each of these equivalent cases there is only one way to color
the remaining edges. There is only one way to assign color c to three of the edges {vi, w},
namely, the case where {v1, w}, {v2, w} and {v4, w} are colored c and {v4, w} is colored b.

Hence there are 16 ways to extend K(4) to a KR
3 -free r-coloring of K5 using only the colors
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a and b and, after choosing one color c /∈ {a, b} out of the remaining (r − 2) colors, there are

4 + 3 + 1 + 1 = 9 ways to extend K(4) to a KR
3 -free r-coloring of K5 using only the colors a,

b and c in such a way that color c is assigned to at least one edge.
Case 2.5 - K(5): Let the edges {v3, v1}, {v1, v2} and {v2, v4} be colored a and all other edges
of the complete graph {v1, v2, v3, v4} be colored b. For this color pattern there are no KR

3 -free
r-colorings of the K5 = {v1, v2, v3, v4, w} using only colors a, b and c where exactly two or
three of the edges {vi, w}, i = 1, 2, 3, 4, are colored c. Therefore, there are 16 ways to extend

K(5) to a a KR
3 -free r-coloring of K5 using only the colors a and b and, after choosing one

color c /∈ {a, b} out of the remaining (r− 2) colors, there are 4 + 0 + 0 + 1 = 5 ways to extend

K(5) to a KR
3 -free r-coloring of K5 using only the colors a, b and c in such a way that color c

is assigned to at least one edge.
Note that from the five cases above it follows that when K4 = {v1, v2, v3, v4} has an edge-

coloring using the two colors a and b, there are at most

16 + 9(r − 2) = 9r − 2 (27)

ways to extend it to a KR
3 -free edge coloring of K5 = {v1, v2, v3, v4, w} using only colors from

{a, b} or a color c /∈ {a, b}. In case the color c has also been fixed before and cannot be chosen,
this expression becomes

16 + 9 = 25. (28)

Given r colors, there are
(
r
2

)
ways to choose colors a and b and we have additional (r − 2)

choices for color c. Thus, the total number of KR
3 -free r-colorings of the K5 = {v1, v2, v3, v4, w}

where the induced K4 on {v1, v2, v3, v4} is colored with one of the patterns K(1), . . . ,K(5) is(
r

2

)
(12 · 16 + 24 · 16 + 6 · 16 + 8 · 16 + 12 · 16)

+

(
r

2

)
(r − 2)(12 · 9 + 24 · 7 + 6 · 7 + 8 · 9 + 12 · 5)

= 225r3 − 179r2 − 46r. (29)

Case 3: Assume that we are given an a, b, c-coloring of the edges of the complete graph
{v1, v2, v3, v4} that does not contain a rainbow triangle. There are only two color patterns of

this kind. Pattern K(1) consists of an a-colored star S3, a b-colored star S2 and the remaining
edge is colored c. Pattern K(2) has an edge-monochromatic C4 while each of the remaining
two colors is assigned to one of the remaining two edges. By interchanging the roles of colors
a, b and c, there are 72 ways to apply pattern K(1) to {v1, v2, v3, v4} and 18 ways for K(2). By
Lemma 4.1 only one of the remaining (r− 3) colors can additionally be used for any coloring
of the edges {vi, w}, i = 1, 2, 3, 4. Let d be a color different from a, b and c.

Case 3.1 - K(1): Let the edges {v1, v2}, {v1, v3} and {v1, v4} be colored a, let {v2, v3} and
{v3, v4} be colored b and let {v2, v4} be colored c. There are eight ways to color the edges
{vi, w} using only the colors a and b, since two of the edges are incident with {v2, v4} and
therefore must be both colored a or b. Now we count the colorings of the edges {vi, w} with
colors a, b or c where color c occurs exactly once. If {v2, w} or {v4, w} are colored c, there are
in both cases two ways to extend the coloring to a KR

3 -free r-coloring for the K5 with vertex
set {v1, v2, v3, v4, w}. If {v1, w} or {v3, w} are colored c, then there is only one way to color the
three remaining edges. Thus we have six KR

3 -free r-colorings of the K5 where exactly one of
the edges {vi, w} is colored c. When exactly two of the edges {vi, w} are assigned color c, we
can extend it to a coloring of the K5 only when the two c-edges form a triangle with one of the
b-colored edges or with the only c-colored edge of the K4 = {v1, v2, v3, v4}. The extension is in
each case unique, which gives us three KR

3 -free r-colorings. Assigning c to the edges {v2, w},
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{v3, w} and {v4, w} leads to {v1, w} being colored a and there is no other way to assign c to
three of the edges {vi, w}, i = 1, 2, 3, 4. Once again, coloring all edges incident with vertex w
with color c gives also a KR

3 -free r-coloring of the K5. Hence there are 8 + 6 + 3 + 1 + 1 = 19

ways to extend K(1) to a KR
3 -free r-coloring of the K5 using only the colors a, b and c. Now

we count the a, b, c, d-colorings where at least one of the edges {vi, w} is colored d. If exactly
one of those edges is colored d, there is exactly one way to extend that coloring to a KR

3 -free
r-coloring of the K5. A KR

3 -free r-coloring where we color exactly two of the edges {vi, w},
i = 1, 2, 3, 4, with color d can be achieved only by assigning color d to the edges {v2, w} and
{v4, w} and in this case there is only one way to color {v1, w} and {v3}. Assigning color d
to three of the edges {vi, w} leads to a coloring of the K5 only when we use d for {v2, w},
{v3, w} and {v4, w}. The remaining edge {v1, w} has to be colored a. We also may use color
d on all four edges {vi, w} simultaneously. Thus the number of a, b, c, d-colorings of the edges

{vi, w} for a given pattern K(1) for K4 = {v1, v2, v3, v4} where color d is used at least once
amounts to 4 + 1 + 1 + 1 = 7. Hence the pattern can be extended to a KR

3 -free r-coloring of
K5 in 19 ways using only colors a, b and c, and after choosing one color d /∈ {a, b, c} out of the

remaining (r − 3) colors, there are 7 ways to extend pattern K(1) to a KR
3 -free r-coloring of

K5 using only colors a, b, c and d in such a way that color d is assigned to at least one edge.
Case 3.2 - K(2): Assign color b to edge {v1, v4}, assign color c to edge {v2, v3} and let all

the remaining edges be colored a. Similar to pattern K(1), there are eight ways of coloring
the edges {vi, w} using only the colors a and b. Again we consider the number of a, b, c-
colorings of the edges {vi, w} where the color c appears at least once. If the edge {v2, w}
(resp. {v3, w}) is the only edge assigned color c, the edge {v3, w} (resp. {v2, w}) can be
colored a or b while the remaining two edges must be colored a. If {v1, w} or {v4, w} is
colored c, there is only one way to color the remaining edges. Thus we have six colorings if
c appears exactly once. When exactly two of the edges {vi, w} must have color c, we end up
with one KR

3 -free r-coloring for c-colored edges {v2, w} and {v3, w} and with another one for
c-colored edges {v1, w} and {v4, w}, and there is no KR

3 -free r-coloring for all other selections
of pairs from {vi, w}. Coloring exactly three of the edges {vi, w} with color c leads to two
KR

3 -free r-colorings, namely one for assigning c to {v1, w}, {v2, w} and {v4, w} and one for
using c on {v1, w}, {v3, w} and {v4, w}. Together with the case where all the edges incident
with vertex w are colored c, so far we have 8 + 6 + 2 + 2 + 1 = 19 KR

3 -free r-colorings of the
K5. Counting a, b, c, d-colorings of the edges incident with w, when coloring one of these edges
with color d, there is exactly one way to color the remaining edges using only the colors a, b
and c. When using d exactly twice, we end up only with KR

3 -free r-colorings when d is either
assigned to {v2, w} and {v3, w} or to the edges {v1, w} and {v4, w}. There are no colorings
where d is used three times, but it certainly can be assigned to all the four edges {vi, w}.
Thus the number of such a, b, c, d-colorings of the edges incident with w is 4 + 2 + 0 + 1 = 7.
Therefore, the pattern can be extended to a KR

3 -free r-coloring of K5 in 19 ways using only
colors a, b and c, and after choosing one color d /∈ {a, b, c} out of the remaining (r− 3) colors,

there are 7 ways to extend pattern K(2) to a KR
3 -free r-coloring of K5 using only colors a, b,

c and d in such a way that color d is assigned to at least one edge.
Note that from the discussion above it follows that when K4 = {v1, v2, v3, v4} has an edge-

coloring using the three colors a, b and c, there are at most

19 + 7(r − 3) = 7r − 2 (30)

ways to extend it to a KR
3 -free edge coloring of K5 = {v1, v2, v3, v4, w} using only colors from

{a, b, c} or a color d /∈ {a, b, c}. In case the color d has also been fixed before and cannot be
chosen, this expression becomes

19 + 7 = 26. (31)
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Given r colors, there are
(
r
3

)
ways to choose colors a, b and c and we have additional (r−3)

choices for color d. Thus, the total number ofKR
3 -free r-colorings of theK5 = {v1, v2, v3, v4, w}

where the induced K4 on {v1, v2, v3, v4} is colored with one of the patterns K(1) or K(2) is(
r

3

)
(72 · 19 + 18 · 19) +

(
r

3

)
(r − 3)(72 · 7 + 18 · 7) (32)

= 105r4 − 345r3 + 300r2 − 60r. (33)

We obtain the total number of KR
3 -free r-colorings of K5 by summing (25), (29) and (33),

which is 105r4 − 120r3 + 136r2 − 120r. �

From the proof of Lemma 4.5, we may derive a proof of Lemma 4.6, which is restated for
convenience.

Lemma 4.6. The following statements hold.

(a) The number of ways to extend any KR
3 -free r-coloring of a complete graph K4 to a

KR
3 -free r-coloring of a complete graph K5 is at most 15r − 14.

(b) The number of ways to extend any KR
3 -free r-coloring of K5 to a KR

3 -free r-coloring
of the K6 is at most 31r − 18.

Proof. Part (a) may be derived from the proof of Lemma 4.5 by looking at the number of
extensions of a coloring of K4 to K5 in each case. It turns out that any monochromatic coloring
of K4 may be extended in 15r− 14 ways, which is more than the number of extensions in any
other case.

For part (b), let {v1, v2, v3, v4, v5} and {v1, v2, v3, v4, v5, w} be vertex sets of complete graphs
K5 and K6, respectively. Assume we are given some KR

3 -free r-coloring of K5. When we know
that at least one of the edges incident with w will be colored by a new color ĉ that is not
assigned to any of the edges of K5, the total number of extensions of this kind for the coloring
of K5 is at most 25−1 = 31, regardless of the color pattern for K5. The reason for this is that
for every edge {vi, w} its color is either ĉ or, if it is not colored ĉ itself, some other ĉ-colored
edge {vj , w} forces the color of {vi, w} to be the same color that is already assigned to the
edge {vi, vj} in K5. The number of extensions of this type is at most 31(r− `), where ` is the
number of colors occurring in K5. We distinguish according to the coloring of K5.

Given a monochromatic coloring of K5 by color a, there is one way to assign color a to
all edges incident with vertex w. If we use one of the (r − 1) colors b 6= a for at least one
of the edges incident with w and assign color a to all remaining edges, there are 31 ways to
a, b-color the edges {vi, w}, i = 1, . . . , 5. By Lemma 4.1 there are no other ways to extend the
coloring of K5. Therefore, the number of ways to extend the monochromatic coloring of K5

to a KR
3 -free r-coloring of K6 is

1 + 31(r − 1) = 31r − 30. (34)

Given a coloring of K5 where two different colors a and b occur. The number of ways to
extend it to an a, b-coloring of K6 is 25 = 32. By our discussion at the beginning of this proof,
choosing a color c /∈ {a, b} and using it on at least one of the edges {vi, w} gives at most
31(r− 2) extensions. Thus the number of ways to extend any a, b-coloring of K5 to a KR

3 -free
r-coloring of K6 is at most

32 + 31(r − 2) = 31r − 30. (35)

Given a KR
3 -free r-coloring of K5 where three different colors a, b and c occur. Consider first

the number of ways to extend it to a KR
3 -free r-coloring of K6 using only the colors a, b and

c. Note, however, that by Lemma 4.1 in every K4-subgraph of K5 at least two different colors
must occur. Selecting a K4-subgraph of K5, say, the one induced on {v1, v2, v3, v4}, by (28)
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and (30) its coloring can be extended to a KR
3 -free r-coloring for the K5 on {v1, v2, v3, v4, w}

in at most max{19, 25} = 25 ways using only the colors a, b or c. Then there are at most 3
ways to color the remaining edge {v5, w} by assigning to it one of the colors a, b or c. This
gives at most 25 · 3 = 75 colorings. By our discussion at the beginning of this proof, choosing
a color d /∈ {a, b, c} and using it on at least one of the edges {vi, w} gives at most 31(r − 3)
extensions. Thus the number of ways to extend any KR

3 -free coloring of K5 using exactly
three colors a, b and c to a KR

3 -free r-coloring of K6 is at most

75 + 31(r − 3) = 31r − 18. (36)

Given an KR
3 -free r-coloring of K5 where four different colors a, b, c and d occur. Again,

consider first the number of ways to extend it to a KR
3 -free r-coloring of K6 using only the

colors a, b, c and d. By Lemma 4.1 in every K4-subgraph of K5 three different colors must
occur. Selecting a K4-subgraph, say, the one induced on {v1, v2, v3, v4}, by (31) its coloring
can be extended to a KR

3 -free r-coloring for the K5 on {v1, v2, v3, v4, w} in at most 26 ways.
Then there are at most 4 ways to color the remaining edge {v5, w}. This gives at most
26 · 4 = 104 colorings. By our discussion above, choosing a color e /∈ {a, b, c, d} and using it
on at least one of the edges {vi, w} gives at most 31(r − 4) extensions. Thus the number of
ways to extend any KR

3 -free coloring of K5 using exactly four colors to a KR
3 -free r-coloring

of K6 is at most

104 + 31(r − 4) = 31r − 20. (37)

The maximum of (34), (35), (36), (37) is 31r − 18, as desired. �
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