Kneser Colorings of Uniform Hypergraphs

C. Hoppen^{a,1,2} Y. Kohayakawa^{a,1,3} H. Lefmann^{b,4}

^a Instituto de Matemática e Estatística, Universidade de São Paulo Rua do Matão, 1010, CEP 05508-090, São Paulo, Brazil.

^b Fakultät für Informatik, Technische Universität Chemnitz Straße der Nationen 62, D-09107 Chemnitz, Germany

Abstract

For fixed positive integers r, k and ℓ with $\ell < r$, and an r-uniform hypergraph H, let $\kappa(H, k, \ell)$ denote the number of k-colorings of the set of hyperedges of H for which any two hyperedges in the same color class intersect in at least ℓ vertices. Consider the function $\operatorname{KC}(n, r, k, \ell) = \max_{H \in \mathcal{H}_n} \kappa(H, k, \ell)$, where the maximum runs over the family \mathcal{H}_n of all r-uniform hypergraphs on n vertices. In this paper, we determine the asymptotic behavior of the function $\operatorname{KC}(n, r, k, \ell)$ and describe the extremal hypergraphs. This variant of a problem of Erdős and Rothschild, who considered colorings of graphs without a monochromatic triangle, is related to the Erdős–Ko–Rado Theorem [3] on intersecting systems of sets.

Keywords: Extremal Combinatorics, Turán Number, Intersecting Systems of Sets.

 $^{^1\,}$ The first author was supported by FAPESP (Proc. FAPESP 2007/56496-3). The second author was partially supported by FAPESP and CNPq through a Temático-ProNEx project (Proc. FAPESP 2003/09925-5) and by CNPq (Proc. 308509/2007-2, 485671/2007-7 and 486124/2007-0)

 $^{^2}$ Email: choppen@ime.usp.br

³ Email: yoshi@ime.usp.br

⁴ Email: Lefmann@Informatik.TU-Chemnitz.de

1 Introduction

A hypergraph H = (V, E) is given by its vertex set V and its set E of hyperedges, where $e \subseteq V$ for each hyperedge $e \in E$, and H = (V, E) is said to be r-uniform if each $e \in E$ has cardinality r. For a fixed r-uniform hypergraph F, an r-uniform host-hypergraph H and an integer k, let $c_{k,F}(H)$ be the number of k-colorings of the set of hyperedges of H with no monochromatic copy of F and let $c_{k,F}(n) = \max_{H \in \mathcal{H}_n} c_{k,F}(H)$, where \mathcal{H}_n is the family of all r-uniform hypergraphs on n vertices. Given an r-uniform hypergraph F, let ex(n, F) be the usual Turán number of F, i.e., the maximum number of hyperedges in an r-uniform n-vertex hypergraph that contains no copy of F. A hypergraph for which maximality is achieved is said to be an extremal hypergraph for F.

Every coloring of the set of hyperedges of any extremal hypergraph H for F trivially contains no monochromatic copy of F and, hence, $c_{k,F}(n) \ge k^{\exp(n,F)}$ for all $k \ge 2$. On the other hand, if $\operatorname{Forb}_F(n)$ denotes the family of all hypergraphs with vertex set $[n] = \{1, \ldots, n\}$ that contain no copy of F, every 2-coloring of the set of hyperedges of a hypergraph H on [n] containing no monochromatic copy of F gives rise to a member of $\operatorname{Forb}_F(n)$; thus $c_{2,F}(n) \le |\operatorname{Forb}_F(n)|$. The size of $\operatorname{Forb}_F(n)$ was first studied by $\operatorname{Erd}\tilde{o}$ s, Kleitman, and Rothschild [2] for $F = K_3$, the triangle. This has been extended since to several other classes of graphs. For r-uniform hypergraphs, Nagle, Rödl, and Schacht [5] proved that $|\operatorname{Forb}_F(n)| \le 2^{\exp(n,F)+o(n^r)}$. Thus, for 2-colorings of the set of hyperedges and any fixed r-uniform hypergraph F we have

$$2^{\exp(n,F)} \le c_{2,F}(n) \le 2^{\exp(n,F) + o(n^r)}.$$
(1)

For r = 2 and cliques $F = K_{\ell}$, Alon, Balogh, Keevash, and Sudakov [1] showed that the lower bound in (1) is the correct value of $c_{2,K_{\ell}}(n)$ for $n \ge n_0$. Moreover, for 3-colorings, they proved that $c_{3,K_{\ell}}(n) = 3^{\exp(n,K_{\ell})}$ for $n \ge n_0$. In both cases, k = 2 and k = 3, equality is achieved only by the $(\ell - 1)$ -partite Turán graph on n vertices. However, it was observed in [1] that $c_{k,K_{\ell}}(n) \gg k^{\exp(n,K_{\ell})}$ for any fixed $k \ge 4$ and $n \ge n_0$.

An extension of these results to hypergraphs has been given recently in [4] for the Fano plane F. There it was shown in the case of k-colorings, $k \in \{2, 3\}$, that every 3-uniform hypergraph H on $n \geq n_0$ vertices satisfies $c_{k,F}(H) \leq k^{\exp(n,F)}$, with equality being attained by a unique extremal hypergraph.

Here, we investigate a variant of this problem, where we forbid pairs of hyperedges of the same color that share fewer than ℓ vertices, thus forcing every color class to be ℓ -intersecting. Formally, for fixed integers r, ℓ with $1 \leq \ell < r$, and $i \in [\ell]$, let $F_{r,i}$ be the r-uniform hypergraph on 2r - i + 1 vertices with two

hyperedges sharing exactly i-1 vertices, and let $\mathcal{B}_{r,\ell} = \{F_{r,i} : i \in [\ell]\}$. Following the notation above, let $c_{k,\mathcal{B}_{r,\ell}}(H)$ be the number of k-colorings of the set of hyperedges of a hypergraph H with no monochromatic copy of any $F \in \mathcal{B}_{r,\ell}$, which we call (k,ℓ) -Kneser colorings, and let $c_{k,\mathcal{B}_{r,\ell}}(n) = \max_{H \in \mathcal{H}_n} c_{k,\mathcal{B}_{r,\ell}}(H)$. We set $\mathrm{KC}(n,r,k,\ell) = c_{k,\mathcal{B}_{r,\ell}}(n)$ and $\kappa(H,k,\ell) = c_{k,\mathcal{B}_{r,\ell}}(H)$.

In the spirit of [1] and [4], we show that the *extremal* hypergraphs H on n vertices, i.e., those for which $\kappa(H, k, \ell) = \text{KC}(n, r, k, \ell)$, for colorings with k = 2 or k = 3 colors are essentially determined by the well-known Erdős–Ko–Rado Theorem [3], while this does not hold for $k \ge 4$ colors.

2 Kneser Colorings with Two or Three Colors

The following result is a direct application of the Erdős–Ko–Rado Theorem and its generalizations.

Theorem 2.1 Let $n \ge r > \ell$ be positive integers. Then it is $\mathrm{KC}(n, r, 2, \ell) = 2^{\mathrm{ex}(\mathcal{B}_{r,\ell})}$. Moreover, equality is achieved by every *r*-uniform hypergraph *H* on [n] whose hyperedges are given by an extremal configuration for $\mathcal{B}_{r,\ell}$. Conversely, unless $\ell = 1$ and n = 2r, all the extremal hypergraphs have this form.

When looking at Kneser colorings with at least three colors, the following result plays an important role.

Lemma 2.2 Let $k \ge 2$ be an integer. All optimal solutions $s = (s_1, \ldots, s_c)$ to the maximization problem

$$\max \prod_{i=1}^{c} s_c, \tag{2}$$

where $c, s_1, \ldots, s_c \in \{1, 2, \ldots\}$ and $s_1 + \cdots + s_c \leq k$, have the following form:

(a) If $k \equiv 0 \pmod{3}$, then c = k/3 and all the components of s are equal to 3.

- (b) If $k \equiv 1 \pmod{3}$, then either $c = \lceil k/3 \rceil$, with exactly two components equal to 2 and all remaining components equal to 3, or $c = \lfloor k/3 \rfloor$, with exactly one component equal to 4 and all remaining components equal to 3.
- (c) If $k \equiv 2 \pmod{3}$, then $c = \lceil k/3 \rceil$ with exactly one component equal to 2 and all remaining components equal to 3.

As a consequence, the optimal value of (2) is $3^{k/3}$ if $k \equiv 0 \pmod{3}$, $4 \cdot 3^{\lfloor k/3 \rfloor - 1}$ if $k \equiv 1 \pmod{3}$, and $2 \cdot 3^{\lfloor k/3 \rfloor}$ if $k \equiv 2 \pmod{3}$.

Aiming towards finding upper bounds on the function $\text{KC}(n, r, k, \ell)$, we introduce a generalization of the concept of a vertex cover of a graph. For

a positive integer ℓ , an ℓ -cover of a hypergraph H is a set C of ℓ -subsets of vertices of H such that every hyperedge of H contains an element of C. It may be shown that, for n sufficiently large, if $H^* = (V, E)$ is an r-uniform extremal hypergraph on [n] with minimum ℓ -cover C, then the cardinality of C is equal to the number of components c of an optimal solution to the maximization problem (2). Moreover, H^* is complete with respect to the cover C, i.e., every r-subset of [n] containing some set $t \in C$ is a hyperedge of H^* . If k = 3, this leads directly to the extremal hypergraph H^* : it has an ℓ -cover of size 1, since the single optimal solution to (2) is $s_1 = 3$, and it must be complete.

Theorem 2.3 Let $r > \ell \ge 1$ be integers. Then, for every $n \ge n_0$, we have $\operatorname{KC}(n, r, 3, \ell) = 3^{\binom{n-\ell}{r-\ell}}$. Moreover, for $n \ge n_0$ equality is achieved only by the (n, r, ℓ) -star $S_{n, r, \ell}$.

3 Colorings with at Least Four Colors

For $k \ge 4$, two additional questions arise. On the one hand, the structural result of the previous section does not determine precisely the size of a minimum ℓ -cover of the extremal hypergraph when $k \equiv 1 \pmod{3}$, since there are two types of optimal solutions to (2). On the other hand, for $k \ge 5$, all optimal solutions to (2) have more than one component, which suggests that the way in which the cover elements intersect may play a role.

For positive integers $k, r \geq 2, \ell < r, c$ and $n \geq \max\{r, c\ell\}$, let C be a set of cardinality c whose elements are ℓ -subsets of [n]. The (C, r)-complete hypergraph $H_{C,r}(n)$ has vertex set [n] and the set of hyperedges is given by all r-subsets of [n] containing some element of C as a subset. If C consists of exactly $\lceil k/3 \rceil$ mutually disjoint ℓ -subsets of [n], then we denote the hypergraph $H_{C,r}(n)$ by $H_{n,r,k,\ell}$.

For k = 4 colors, we show that $\text{KC}(n, r, k, \ell)$ is achieved only by hypergraphs with minimum ℓ -cover of size two. This leads to the following characterization.

Theorem 3.1 Let $r > \ell \ge 1$ be integers. Given a positive integer n, let H^* be an r-uniform hypergraph on [n] satisfying $\kappa(H^*, 4, \ell) = \text{KC}(n, r, 4, \ell)$. Then, for $n \ge n_0$, H^* is isomorphic to $H_{C,r}(n)$ for some ℓ -cover $C = \{t_1, t_2\}$.

If we have $k \geq 5$ colors available, the way in which the cover elements intersect affects the number of Kneser colorings significantly.

Theorem 3.2 Let $r > \ell \ge 1$ and $k \ge 5$. Let H^* be an r-uniform hypergraph on [n] with $\kappa(H^*, k, \ell) = \mathrm{KC}(n, r, k, \ell)$. Then, for $n \ge n_0$, the following holds.

- (a) If $r \geq 2\ell$, then H^* is isomorphic to $H_{n,r,k,\ell}$.
- (b) If $r < 2\ell$, then H^* is isomorphic to $H_{C,r}(n)$ for a set $C = \{t_1, \ldots, t_{c(k)}\}$ of ℓ -subsets of [n] with $c(k) = \lceil k/3 \rceil$, and $|t_i \cup t_j| > r$ for all $i, j \in [c(k)], i \neq j$.

For the case of arbitrary $k \geq 4$, we may derive the asymptotic behavior of $\operatorname{KC}(n, r, k, \ell)$ from a careful estimate on the number $\alpha(n, r, k, \ell)$ of a special class of Kneser colorings of the hypergraph $H_{n,r,k,\ell}$.

Theorem 3.3 Let $r > \ell \ge 1$ and $k \ge 4$ be fixed integers. Then $\text{KC}(n, r, k, \ell) = (1 + f(n)) \alpha(n, r, k, \ell)$, where f(n) is a function that tends to 0 as n tends to infinity, and

$$\begin{array}{l} (i) \ \alpha(n,r,k,\ell) = N(k)D(k)^{\binom{n-\ell}{r-\ell}} \ if \ k = 4 \ or \ r < 2\ell, \\ (ii) \ \alpha(n,r,k,\ell) \le N(k)k^{\binom{\ell c(k)}{\ell+1}\binom{n-\ell-1}{r-\ell-1}}D(k)^{\binom{n-\ell}{r-\ell}} \ if \ k \ge 5 \ and \ r \ge 2\ell, \ where \\ \begin{cases} if \ k \equiv 0 \ (\text{mod } 3), \ N(k) = \frac{k!}{(3!)^{\frac{k}{3}}} \ and \\ if \ k \equiv 1 \ (\text{mod } 3), \ N(k) = \binom{\lfloor \frac{k}{3} \rfloor + 1}{4 \cdot (3!)^{\lfloor \frac{k}{3} \rfloor}} \ and \\ D(k) = 4 \cdot 3^{\lfloor \frac{k}{3} \rfloor - 1} \\ if \ k \equiv 2 \ (\text{mod } 3), \ N(k) = (\lfloor \frac{k}{3} \rfloor + 1) \frac{k!}{2 \cdot (3!)^{\lfloor \frac{k}{3} \rfloor}} \ and \\ D(k) = 2 \cdot 3^{\lfloor \frac{k}{3} \rfloor}. \end{cases} \end{array}$$

 $(n-\ell)$

References

- Alon, N., J. Balogh, P. Keevash, and B. Sudakov, *The Number of Edge Colorings With No Monochromatic Cliques*, Journal of the London Mathematical Society (2) 70(2) (2004), 273–288.
- [2] Erdős, P., D. J. Kleitman, and B. L. Rothschild, "Asymptotic Enumeration of K_n -free Graphs", Colloquio Internationale sulle Teorie Combinatorie, Tomo II, Accad. Naz. Lincei, Rome, Atti dei Convegni Lincei **17** (1976), 19–27.
- [3] Erdős, P., C. Ko, and R. Rado, Intersection theorems for systems of finite sets, Quarterly Journal of Mathematics, Oxford Series, series 2, 12 (1961), 313–320.
- [4] Lefmann, H., Y. Person, V. Rödl, and M. Schacht, On Colorings of Hypergraphs Without Monochromatic Fano Planes, Combinatorics, Probability & Computing, to appear.
- [5] Nagle, B., V. Rödl, and M. Schacht, "Extremal Hypergraph Problems and the Regularity Method", Topics in Discrete Mathematics, Algorithms and Combinatorics, vol. 26, Springer, Berlin (2006), 247–278.