Kneser Colorings of Uniform Hypergraphs

C. Hoppen ${ }^{\text {a,1,2 }}$ Y. Kohayakawa ${ }^{\text {a,1,3 }}$ H. Lefmann ${ }^{\text {b,4 }}$
${ }^{\text {a }}$ Instituto de Matemática e Estatística, Universidade de São Paulo Rua do Matão, 1010, CEP 05508-090, São Paulo, Brazil.
${ }^{\mathrm{b}}$ Fakultät für Informatik, Technische Universität Chemnitz Straße der Nationen 62, D-09107 Chemnitz, Germany

Abstract

For fixed positive integers r, k and ℓ with $\ell<r$, and an r-uniform hypergraph H, let $\kappa(H, k, \ell)$ denote the number of k-colorings of the set of hyperedges of H for which any two hyperedges in the same color class intersect in at least ℓ vertices. Consider the function $\mathrm{KC}(n, r, k, \ell)=\max _{H \in \mathcal{H}_{n}} \kappa(H, k, \ell)$, where the maximum runs over the family \mathcal{H}_{n} of all r-uniform hypergraphs on n vertices. In this paper, we determine the asymptotic behavior of the function $\mathrm{KC}(n, r, k, \ell)$ and describe the extremal hypergraphs. This variant of a problem of Erdős and Rothschild, who considered colorings of graphs without a monochromatic triangle, is related to the Erdős-Ko-Rado Theorem [3] on intersecting systems of sets.

Keywords: Extremal Combinatorics, Turán Number, Intersecting Systems of Sets.

[^0]
1 Introduction

A hypergraph $H=(V, E)$ is given by its vertex set V and its set E of hyperedges, where $e \subseteq V$ for each hyperedge $e \in E$, and $H=(V, E)$ is said to be r-uniform if each $e \in E$ has cardinality r. For a fixed r-uniform hypergraph F, an r-uniform host-hypergraph H and an integer k, let $c_{k, F}(H)$ be the number of k-colorings of the set of hyperedges of H with no monochromatic copy of F and let $c_{k, F}(n)=\max _{H \in \mathcal{H}_{n}} c_{k, F}(H)$, where \mathcal{H}_{n} is the family of all r-uniform hypergraphs on n vertices. Given an r-uniform hypergraph F, let ex (n, F) be the usual Turán number of F, i.e., the maximum number of hyperedges in an r-uniform n-vertex hypergraph that contains no copy of F. A hypergraph for which maximality is achieved is said to be an extremal hypergraph for F.

Every coloring of the set of hyperedges of any extremal hypergraph H for F trivially contains no monochromatic copy of F and, hence, $c_{k, F}(n) \geq k^{\operatorname{ex}(n, F)}$ for all $k \geq 2$. On the other hand, if $\operatorname{Forb}_{F}(n)$ denotes the family of all hypergraphs with vertex set $[n]=\{1, \ldots, n\}$ that contain no copy of F, every 2-coloring of the set of hyperedges of a hypergraph H on [n] containing no monochromatic copy of F gives rise to a member of $\operatorname{Forb}_{F}(n)$; thus $c_{2, F}(n) \leq$ $\left|\operatorname{Forb}_{F}(n)\right|$. The size of $\operatorname{Forb}_{F}(n)$ was first studied by Erdôs, Kleitman, and Rothschild [2] for $F=K_{3}$, the triangle. This has been extended since to several other classes of graphs. For r-uniform hypergraphs, Nagle, Rödl, and Schacht [5] proved that $\left|\operatorname{Forb}_{F}(n)\right| \leq 2^{\operatorname{ex}(n, F)+o\left(n^{r}\right)}$. Thus, for 2-colorings of the set of hyperedges and any fixed r-uniform hypergraph F we have

$$
\begin{equation*}
2^{\operatorname{ex}(n, F)} \leq c_{2, F}(n) \leq 2^{\operatorname{ex}(n, F)+o\left(n^{r}\right)} . \tag{1}
\end{equation*}
$$

For $r=2$ and cliques $F=K_{\ell}$, Alon, Balogh, Keevash, and Sudakov [1] showed that the lower bound in (1) is the correct value of $c_{2, K_{\ell}}(n)$ for $n \geq n_{0}$. Moreover, for 3-colorings, they proved that $c_{3, K_{\ell}}(n)=3^{\operatorname{ex}\left(n, K_{\ell}\right)}$ for $n \geq n_{0}$. In both cases, $k=2$ and $k=3$, equality is achieved only by the $(\ell-1)$-partite Turán graph on n vertices. However, it was observed in [1] that $c_{k, K_{\ell}}(n) \gg$ $k^{\operatorname{ex}\left(n, K_{\ell}\right)}$ for any fixed $k \geq 4$ and $n \geq n_{0}$.

An extension of these results to hypergraphs has been given recently in [4] for the Fano plane F. There it was shown in the case of k-colorings, $k \in\{2,3\}$, that every 3 -uniform hypergraph H on $n \geq n_{0}$ vertices satisfies $c_{k, F}(H) \leq$ $k^{\mathrm{ex}(n, F)}$, with equality being attained by a unique extremal hypergraph.

Here, we investigate a variant of this problem, where we forbid pairs of hyperedges of the same color that share fewer than ℓ vertices, thus forcing every color class to be ℓ-intersecting. Formally, for fixed integers r, ℓ with $1 \leq \ell<r$, and $i \in[\ell]$, let $F_{r, i}$ be the r-uniform hypergraph on $2 r-i+1$ vertices with two
hyperedges sharing exactly $i-1$ vertices, and let $\mathcal{B}_{r, \ell}=\left\{F_{r, i}: i \in[\ell]\right\}$. Following the notation above, let $c_{k, \mathcal{B}_{r, \ell}}(H)$ be the number of k-colorings of the set of hyperedges of a hypergraph H with no monochromatic copy of any $F \in \mathcal{B}_{r, \ell}$, which we call (k, ℓ)-Kneser colorings, and let $c_{k, \mathcal{B}_{r, \ell}}(n)=\max _{H \in \mathcal{H}_{n}} c_{k, \mathcal{B}_{r, \ell}}(H)$. We set $\mathrm{KC}(n, r, k, \ell)=c_{k, \mathcal{B}_{r, \ell}}(n)$ and $\kappa(H, k, \ell)=c_{k, \mathcal{B}_{r, \ell}}(H)$.

In the spirit of [1] and [4], we show that the extremal hypergraphs H on n vertices, i.e., those for which $\kappa(H, k, \ell)=\mathrm{KC}(n, r, k, \ell)$, for colorings with $k=2$ or $k=3$ colors are essentially determined by the well-known Erdős-Ko-Rado Theorem [3], while this does not hold for $k \geq 4$ colors.

2 Kneser Colorings with Two or Three Colors

The following result is a direct application of the Erdôs-Ko-Rado Theorem and its generalizations.

Theorem 2.1 Let $n \geq r>\ell$ be positive integers. Then it is $\mathrm{KC}(n, r, 2, \ell)=$ $2^{\operatorname{ex}\left(\mathcal{B}_{r, \ell}\right)}$. Moreover, equality is achieved by every r-uniform hypergraph H on $[n]$ whose hyperedges are given by an extremal configuration for $\mathcal{B}_{r, \ell}$. Conversely, unless $\ell=1$ and $n=2 r$, all the extremal hypergraphs have this form.

When looking at Kneser colorings with at least three colors, the following result plays an important role.

Lemma 2.2 Let $k \geq 2$ be an integer. All optimal solutions $s=\left(s_{1}, \ldots, s_{c}\right)$ to the maximization problem

$$
\begin{equation*}
\max \prod_{i=1}^{c} s_{c} \tag{2}
\end{equation*}
$$

where $c, s_{1}, \ldots, s_{c} \in\{1,2, \ldots\}$ and $s_{1}+\cdots+s_{c} \leq k$, have the following form:
(a) If $k \equiv 0(\bmod 3)$, then $c=k / 3$ and all the components of s are equal to 3 .
(b) If $k \equiv 1(\bmod 3)$, then either $c=\lceil k / 3\rceil$, with exactly two components equal to 2 and all remaining components equal to 3 , or $c=\lfloor k / 3\rfloor$, with exactly one component equal to 4 and all remaining components equal to 3 .
(c) If $k \equiv 2(\bmod 3)$, then $c=\lceil k / 3\rceil$ with exactly one component equal to 2 and all remaining components equal to 3.
As a consequence, the optimal value of (2) is $3^{k / 3}$ if $k \equiv 0(\bmod 3), 4 \cdot 3^{\lfloor k / 3\rfloor-1}$ if $k \equiv 1(\bmod 3)$, and $2 \cdot 3^{\lfloor k / 3\rfloor}$ if $k \equiv 2(\bmod 3)$.

Aiming towards finding upper bounds on the function $\mathrm{KC}(n, r, k, \ell)$, we introduce a generalization of the concept of a vertex cover of a graph. For
a positive integer ℓ, an ℓ-cover of a hypergraph H is a set C of ℓ-subsets of vertices of H such that every hyperedge of H contains an element of C. It may be shown that, for n sufficiently large, if $H^{*}=(V, E)$ is an r-uniform extremal hypergraph on $[n]$ with minimum ℓ-cover C, then the cardinality of C is equal to the number of components c of an optimal solution to the maximization problem (2). Moreover, H^{*} is complete with respect to the cover C, i.e., every r-subset of $[n]$ containing some set $t \in C$ is a hyperedge of H^{*}. If $k=3$, this leads directly to the extremal hypergraph H^{*} : it has an ℓ-cover of size 1 , since the single optimal solution to (2) is $s_{1}=3$, and it must be complete.
Theorem 2.3 Let $r>\ell \geq 1$ be integers. Then, for every $n \geq n_{0}$, we have $\mathrm{KC}(n, r, 3, \ell)=3_{\binom{n-\ell}{r-\ell}}$. Moreover, for $n \geq n_{0}$ equality is achieved only by the (n, r, ℓ)-star $S_{n, r, \ell}$.

3 Colorings with at Least Four Colors

For $k \geq 4$, two additional questions arise. On the one hand, the structural result of the previous section does not determine precisely the size of a minimum ℓ-cover of the extremal hypergraph when $k \equiv 1(\bmod 3)$, since there are two types of optimal solutions to (2). On the other hand, for $k \geq 5$, all optimal solutions to (2) have more than one component, which suggests that the way in which the cover elements intersect may play a role.

For positive integers $k, r \geq 2, \ell<r, c$ and $n \geq \max \{r, c \ell\}$, let C be a set of cardinality c whose elements are ℓ-subsets of $[n]$. The (C, r)-complete hypergraph $H_{C, r}(n)$ has vertex set $[n]$ and the set of hyperedges is given by all r-subsets of $[n]$ containing some element of C as a subset. If C consists of exactly $\lceil k / 3\rceil$ mutually disjoint ℓ-subsets of $[n]$, then we denote the hypergraph $H_{C, r}(n)$ by $H_{n, r, k, \ell}$.

For $k=4$ colors, we show that $\mathrm{KC}(n, r, k, \ell)$ is achieved only by hypergraphs with minimum ℓ-cover of size two. This leads to the following characterization.

Theorem 3.1 Let $r>\ell \geq 1$ be integers. Given a positive integer n, let H^{*} be an r-uniform hypergraph on $[n]$ satisfying $\kappa\left(H^{*}, 4, \ell\right)=\mathrm{KC}(n, r, 4, \ell)$. Then, for $n \geq n_{0}, H^{*}$ is isomorphic to $H_{C, r}(n)$ for some $\ell-\operatorname{cover} C=\left\{t_{1}, t_{2}\right\}$.

If we have $k \geq 5$ colors available, the way in which the cover elements intersect affects the number of Kneser colorings significantly.

Theorem 3.2 Let $r>\ell \geq 1$ and $k \geq 5$. Let H^{*} be an r-uniform hypergraph on $[n]$ with $\kappa\left(H^{*}, k, \ell\right)=\mathrm{KC}(n, r, k, \ell)$. Then, for $n \geq n_{0}$, the following holds.
(a) If $r \geq 2 \ell$, then H^{*} is isomorphic to $H_{n, r, k, \ell}$.
(b) If $r<2 \ell$, then H^{*} is isomorphic to $H_{C, r}(n)$ for a set $C=\left\{t_{1}, \ldots, t_{c(k)}\right\}$ of ℓ-subsets of $[n]$ with $c(k)=\lceil k / 3\rceil$, and $\left|t_{i} \cup t_{j}\right|>r$ for all $i, j \in[c(k)], i \neq j$.

For the case of arbitrary $k \geq 4$, we may derive the asymptotic behavior of $\mathrm{KC}(n, r, k, \ell)$ from a careful estimate on the number $\alpha(n, r, k, \ell)$ of a special class of Kneser colorings of the hypergraph $H_{n, r, k, \ell}$.
Theorem 3.3 Let $r>\ell \geq 1$ and $k \geq 4$ be fixed integers. Then $\operatorname{KC}(n, r, k, \ell)=$ $(1+f(n)) \alpha(n, r, k, \ell)$, where $f(n)$ is a function that tends to 0 as n tends to infinity, and
(i) $\alpha(n, r, k, \ell)=N(k) D(k)\left(\begin{array}{c}\binom{n-\ell}{r-\ell}\end{array}\right.$ if $k=4$ or $r<2 \ell$,
(ii) $\alpha(n, r, k, \ell) \leq N(k) k^{\binom{(c(k)}{\ell+1}}\binom{n-\ell-1}{r-\ell-1} D(k)^{\binom{n-\ell}{r-\ell}}$ if $k \geq 5$ and $r \geq 2 \ell$, where

$$
\begin{cases}\text { if } k \equiv 0(\bmod 3), N(k)=\frac{k!}{\left(3!\frac{k}{3}\right.} \text { and } & D(k)=3^{\frac{k}{3}} \\ \text { if } k \equiv 1(\bmod 3), N(k)=\left(\sum^{\left\lfloor\frac{k}{3}\right\rfloor} \frac{2}{2}\right) \frac{k!}{4 \cdot(3!)\left\lfloor\frac{k}{3}-1\right\rfloor} \text { and } & D(k)=4 \cdot 3^{\left\lfloor\frac{k}{3}\right\rfloor-1} \\ \text { if } k \equiv 2(\bmod 3), N(k)=\left(\left\lfloor\frac{k}{3}\right\rfloor+1\right) \frac{k!}{2 \cdot(3!)^{\left\lfloor\frac{k}{3}\right\rfloor}} \text { and } & D(k)=2 \cdot 3^{\left\lfloor\frac{k}{3}\right\rfloor .}\end{cases}
$$

References

[1] Alon, N., J. Balogh, P. Keevash, and B. Sudakov, The Number of Edge Colorings With No Monochromatic Cliques, Journal of the London Mathematical Society (2) 70(2) (2004), 273-288.
[2] Erdős, P., D. J. Kleitman, and B. L. Rothschild, "Asymptotic Enumeration of K_{n}-free Graphs", Colloquio Internationale sulle Teorie Combinatorie, Tomo II, Accad. Naz. Lincei, Rome, Atti dei Convegni Lincei 17 (1976), 19-27.
[3] Erdôs, P., C. Ko, and R. Rado, Intersection theorems for systems of finite sets, Quarterly Journal of Mathematics, Oxford Series, series 2, 12 (1961), 313-320.
[4] Lefmann, H., Y. Person, V. Rödl, and M. Schacht, On Colorings of Hypergraphs Without Monochromatic Fano Planes, Combinatorics, Probability \& Computing, to appear.
[5] Nagle, B., V. Rödl, and M. Schacht, "Extremal Hypergraph Problems and the Regularity Method", Topics in Discrete Mathematics, Algorithms and Combinatorics, vol. 26, Springer, Berlin (2006), 247-278.

[^0]: ${ }^{1}$ The first author was supported by FAPESP (Proc. FAPESP 2007/56496-3). The second author was partially supported by FAPESP and CNPq through a Temático-ProNEx project (Proc. FAPESP 2003/09925-5) and by CNPq (Proc. 308509/2007-2, 485671/2007-7 and 486124/2007-0)
 ${ }^{2}$ Email: choppen@ime.usp.br
 ${ }^{3}$ Email: yoshi@ime.usp.br
 ${ }^{4}$ Email: Lefmann@Informatik.TU-Chemnitz.de

