Large Triangles in the d-Dimensional Unit-Cube (Extended Abstract)

Hanno Lefmann
Fakultät für Informatik, TU Chemnitz, D-09107 Chemnitz, Germany
lefmann@informatik.tu-chemnitz.de

Abstract

We consider a variant of Heilbronn's triangle problem by asking for fixed dimension $d \geq 2$ for a distribution of n points in the d-dimensional unit-cube $[0,1]^{d}$ such that the minimum (2-dimensional) area of a triangle among these n points is maximal. Denoting this maximum value by $\Delta_{d}^{\text {off-line }}(n)$ and $\Delta_{d}^{\text {on-line }}(n)$ for the off-line and the online situation, respectively, we will show that $c_{1} \cdot(\log n)^{1 /(d-1)} / n^{2 /(d-1)} \leq$ $\Delta_{d}^{\text {off-line }}(n) \leq C_{1} / n^{2 / d}$ and $c_{2} / n^{2 /(d-1)} \leq \Delta_{d}^{\text {on-line }}(n) \leq C_{2} / n^{2 / d}$ for constants $c_{1}, c_{2}, C_{1}, C_{2}>0$ which depend on d only.

1 Introduction

Given any integer $n \geq 3$, originally Heilbronn's problem asks for the maximum value $\Delta_{2}(n)$ such that there exists a configuration of n points in the twodimensional unit-square $[0,1]^{2}$ where the minimum area of a triangle formed by three of these n points is equal to $\Delta_{2}(n)$. For primes n, the points $P_{k}=$ $1 / n \cdot\left(k \bmod n, k^{2} \bmod n\right), k=0,1, \ldots, n-1$, easily show that $\Delta_{2}(n)=\Omega\left(1 / n^{2}\right)$. Komlós, Pintz and Szemerédi [11] improved this to $\Delta_{2}(n)=\Omega\left(\log n / n^{2}\right)$ and in [5] the authors provide a deterministic polynomial time algorithm achieving this lower bound, which is currently the best known. From the other side, improving earlier results of Roth [14-18] and Schmidt [19], Komlós, Pintz and Szemerédi [10] proved the upper bound $\Delta_{2}(n)=O\left(2^{c \sqrt{\log n}} / n^{8 / 7}\right)$ for some constant $c>0$. Recently, for n randomly chosen points in the unit-square $[0,1]^{2}$, the expected value of the minimum area of a triangle among these n points was determined to $\Theta\left(1 / n^{3}\right)$ by Jiang, Li and Vitany [9].
A variant of Heilbronn's problem considered by Barequet [2] asks, given a fixed integer $d \geq 2$, for the maximum value $\Delta_{d}^{*}(n)$ such that there exists a distribution of n points in the d-dimensional unit-cube $[0,1]^{d}$ where the minimum volume of a simplex formed by some $(d+1)$ of these n points is equal to $\Delta_{d}^{*}(n)$. He showed in [2] the lower bound $\Delta_{d}^{*}(n)=\Omega\left(1 / n^{d}\right)$, which was improved in [12] to $\Delta_{d}^{*}(n)=\Omega\left(\log n / n^{d}\right)$. In [13] a deterministic polynomial time algorithm was given achieving the lower bound $\Delta_{3}^{*}(n)=\Omega\left(\log n / n^{3}\right)$. Recently, Brass [6] showed the upper bound $\Delta_{d}^{*}(n)=O\left(1 / n^{(2 d+1) /(2 d)}\right)$ for odd $d \geq 3$, while for even $d \geq 4$ only $\Delta_{d}^{*}(n)=O(1 / n)$ is known. Moreover, an on-line version of this variant was investigated by Barequet [3] for dimensions $d=3$ and $d=4$, where he showed the lower bounds $\Omega\left(1 / n^{10 / 3}\right)$ and $\Omega\left(1 / n^{127 / 24}\right)$, respectively.

Here we will investigate the following extension of Heilbronn's problem to higher dimensions: for fixed integers $d \geq 2$ and any given integer $n \geq 3$ find a set of n points in the d-dimensional unit-cube $[0,1]^{d}$ such that the minimum area of a triangle determined by three of these n points is maximal. We consider the off-line as well as the on-line version of our problem. In the off-line situation the number n of points is given in advance, while in the on-line case the points are positioned in $[0,1]^{d}$ one after the other and at some time this process stops. Let the corresponding maximum values on the minimum triangle areas be denoted by $\Delta_{d}^{\text {off-line }}(n)$ and $\Delta_{d}^{\text {on-line }}(n)$, respectively.
Theorem 1. Let $d \geq 2$ be a fixed integer. Then, for constants $c_{1}, c_{2}, C_{1}, C_{2}>0$, which depend on d only, for every integer $n \geq 3$ it is

$$
\begin{align*}
c_{1} \cdot \frac{(\log n)^{1 /(d-1)}}{n^{2 /(d-1)}} & \leq \Delta_{d}^{\text {off-line }}(n) \tag{1}
\end{align*}
$$

The lower bounds (1) and (2) differ only by a factor of $\Theta\left((\log n)^{1 /(d-1)}\right)$. In contrast to this, the lower bounds in the on-line situation considered by Barequet [3], i.e. maximizing the minimum volume of simplices among n points in $[0,1]^{d}$, differ by a factor of $\Theta\left(n^{1 / 3} \cdot \log n\right)$ for dimension $d=3$ and by a factor of $\Theta\left(n^{31 / 24} \cdot \log n\right)$ for dimension $d=4$ from the currently best known lower bound $\Delta_{d}^{*}(n)=\Omega\left(\log n / n^{d}\right)$ for any fixed integer $d \geq 2$ in the off-line situation.
In the following we will split the statement of Theorem 1 into a few lemmas.

2 The Off-Line Case

A line through points $P_{i}, P_{j} \in[0,1]^{d}$ is denoted by $P_{i} P_{j}$. Let $\operatorname{dist}\left(P_{i}, P_{j}\right)$ be the Euclidean distance between the points P_{i} and P_{j}. The area of a triangle determined by three points $P_{i}, P_{j}, P_{k} \in[0,1]^{d}$ is denoted by area $\left(P_{i}, P_{j}, P_{k}\right)$, where area $\left(P_{i}, P_{j}, P_{k}\right):=\operatorname{dist}\left(P_{i}, P_{j}\right) \cdot h / 2$ and h is the Euclidean distance from point P_{k} to the line $P_{i} P_{j}$.
First we will prove the lower bound in (1) from Theorem 1, namely
Lemma 1. Let $d \geq 2$ be a fixed integer. Then, for some constant $c_{1}=c_{1}(d)>0$, for every integer $n \geq 3$ it is

$$
\begin{equation*}
\Delta_{d}^{\text {off-line }}(n) \geq c_{1} \cdot \frac{(\log n)^{1 /(d-1)}}{n^{2 /(d-1)}} \tag{3}
\end{equation*}
$$

Proof. Let $d \geq 2$ be a fixed integer. For arbitrary integers $n \geq 3$ and a constant $\alpha>0$, which will be specified later, we select uniformly at random and independently of each other $N=n^{1+\alpha}$ points $P_{1}, P_{2}, \ldots, P_{N}$ in the d-dimensional unit-cube $[0,1]^{d}$. For fixed $i<j<k$ we will estimate the probability that area $\left(P_{i}, P_{j}, P_{k}\right) \leq A$ for some value $A>0$ which will be specified later. The point P_{i} can be anywhere in $[0,1]^{d}$. Given point P_{i}, the probability, that point
$P_{j} \in[0,1]^{d}$ has a Euclidean distance from P_{i} within the infinitesimal range $[r, r+d r]$, is at most the difference of the volumes of the d-dimensional balls with center P_{i} and with radii $(r+d r)$ and r, respectively. Hence we obtain

$$
\begin{equation*}
\operatorname{Prob}\left(r \leq \operatorname{dist}\left(P_{i}, P_{j}\right) \leq r+d r\right) \leq d \cdot C_{d} \cdot r^{d-1} d r \tag{4}
\end{equation*}
$$

where throughout this paper C_{d} is equal to the volume of the d-dimensional unitball in \mathbb{R}^{d}. Given the points P_{i} and P_{j} with dist $\left(P_{i}, P_{j}\right)=r$, the third point $P_{k} \in[0,1]^{d}$ satisfies area $\left(P_{i}, P_{j}, P_{k}\right) \leq A$, if P_{k} is contained in the intersection $C_{i, j} \cap[0,1]^{d}$ with $C_{i, j}$ being a d-dimensional cylinder, centered at the line $P_{i} P_{j}$ with radius $2 \cdot A / r$ and height at most \sqrt{d}. The d-dimensional volume vol $\left(C_{i, j} \cap\right.$ $\left.[0,1]^{d}\right)$ is at most $C_{d-1} \cdot(2 A / r)^{d-1} \cdot \sqrt{d}$, and we infer for some constant $C_{d}^{\prime}>0$:

$$
\begin{align*}
& \operatorname{Prob}\left(\operatorname{area}\left(P_{i}, P_{j}, P_{k}\right) \leq A\right) \\
\leq & \int_{0}^{\sqrt{d}} \operatorname{vol}\left(C_{i, j} \cap[0,1]^{d}\right) \cdot d \cdot C_{d} \cdot r^{d-1} d r \\
\leq & \int_{0}^{\sqrt{d}} C_{d-1} \cdot\left(\frac{2 \cdot A}{r}\right)^{d-1} \cdot \sqrt{d} \cdot d \cdot C_{d} \cdot r^{d-1} d r \\
= & C_{d-1} \cdot C_{d} \cdot 2^{d-1} \cdot d^{3 / 2} \cdot A^{d-1} \cdot \int_{0}^{\sqrt{d}} d r=C_{d}^{\prime} \cdot A^{d-1} . \tag{5}
\end{align*}
$$

Definition 1. A hypergraph $\mathcal{G}=(V, \mathcal{E})$ with vertex set V and edge set \mathcal{E} is k-uniform if $|E|=k$ for all edges $E \in \mathcal{E}$.
A hypergraph $\mathcal{G}=(V, \mathcal{E})$ is linear if $\left|E \cap E^{\prime}\right| \leq 1$ for all distinct edges $E, E^{\prime} \in \mathcal{E}$. A subset $I \subseteq V$ of the vertex set is independent if I contains no edges from \mathcal{E}. The largest size $|I|$ of an independent set in \mathcal{G} is the independence number $\alpha(\mathcal{G})$.

We form a random 3-uniform hypergraph $\mathcal{G}=\left(V, \mathcal{E}_{3}\right)$ with vertex set $V=$ $\{1,2, \ldots, N\}$, where vertex i corresponds to the random point $P_{i} \in[0,1]^{d}$, and with edges $\{i, j, k\} \in \mathcal{E}_{3}$ if and only if area $\left(P_{i}, P_{j}, P_{k}\right) \leq A$. The expected number $E\left(\left|\mathcal{E}_{3}\right|\right)$ of edges satisfies by (5) for some constant $c_{d}>0$:

$$
\begin{equation*}
E\left(\left|\mathcal{E}_{3}\right|\right) \leq\binom{ N}{3} \cdot C_{d}^{\prime} \cdot A^{d-1} \leq c_{d} \cdot A^{d-1} \cdot N^{3} \tag{6}
\end{equation*}
$$

We will use the following result on the independence number of linear k-uniform hypergraphs due to Ajtai, Komlós, Pintz, Spencer and Szemerédi [1], see also [7], compare Fundia [8] and [4] for deterministic algorithmic versions of Theorem 2:

Theorem 2. [1, 7] Let $k \geq 3$ be a fixed integer. Let $\mathcal{G}=(V, \mathcal{E})$ be a k-uniform hypergraph on $|V|=n$ vertices with average degree $t^{k-1}=k \cdot|\mathcal{E}| /|V|$. If \mathcal{G} is linear, then its independence number $\alpha(\mathcal{G})$ satisfies for some constant $c_{k}^{*}>0$:

$$
\begin{equation*}
\alpha(\mathcal{G}) \geq c_{k}^{*} \cdot \frac{n}{t} \cdot(\log t)^{\frac{1}{k-1}} . \tag{7}
\end{equation*}
$$

To apply Theorem 2, we estimate in the random hypergraph $\mathcal{G}=\left(V, \mathcal{E}_{3}\right)$ the expected number $E\left(B P_{D_{0}}(\mathcal{G})\right)$ of 'bad pairs of small triangles' in \mathcal{G}, which are among the random points $P_{1}, \ldots, P_{N} \in[0,1]^{d}$ those pairs of triangles sharing an edge and both with area at most A, where all sides are of length at least D_{0}. Then we will delete one vertex from each 'pair of points with Euclidean distance at most D_{0} ' and from each 'bad pair of small triangles', which yields a linear subhypergraph $\mathcal{G}^{* *}$ of \mathcal{G} and $\mathcal{G}^{* *}$ fulfills the assumptions of Theorem 2.
Let $P_{D_{0}}(\mathcal{G})$ be a random variable counting the number of pairs of distinct points with Euclidean distance at most D_{0} among the N randomly chosen points. For fixed integers $i, j, 1 \leq i<j \leq N$, we have

$$
\text { Prob }\left(\operatorname{dist}\left(P_{i}, P_{j}\right) \leq D_{0}\right) \leq C_{d} \cdot D_{0}^{d},
$$

as point P_{i} can be anywhere in $[0,1]^{d}$ and, given point P_{i}, the probability that $\operatorname{dist}\left(P_{i}, P_{j}\right) \leq D_{0}$ is bounded from above by the volume of the d-dimensional ball with radius D_{0} and center P_{i}. For $D_{0}:=1 / N^{\beta}$, where $\beta>0$ is a constant, the expected number $E\left(P_{D_{0}}(\mathcal{G})\right)$ of pairs of distinct points with Euclidean distance at most D_{0} among the N points satisfies for some constant $c_{d}^{\prime}>0$:

$$
\begin{equation*}
E\left(P_{D_{0}}(\mathcal{G})\right) \leq\binom{ N}{2} \cdot C_{d} \cdot D_{0}^{d} \leq c_{d}^{\prime} \cdot N^{2-\beta d} \tag{8}
\end{equation*}
$$

For distinct points $P_{i}, P_{j}, P_{k}, P_{l}, 1 \leq i<j<k<l \leq N$, there are $\binom{4}{2}$ choices for the joint side of the two triangles, given by the points P_{i} and P_{j}, say. Given point P_{i}, by (4) we have Prob $\left(r \leq \operatorname{dist}\left(P_{i}, P_{j}\right) \leq r+d r\right) \leq d \cdot C_{d} \cdot r^{d-1} d r$. Given points P_{i} and P_{j} with dist $\left(P_{i}, P_{j}\right)=r$, the probability that the triangle formed by P_{i}, P_{j}, P_{k}, or by P_{i}, P_{j}, P_{l}, has area at most A, is at most the volume of the cylinder, which is centered at the line $P_{i} P_{j}$ with height \sqrt{d} and radius $2 \cdot A / r$. Thus, for $d \geq 3$ we have for some constant $C_{d}^{\prime \prime}>0$:

$$
\begin{align*}
& \text { Prob }\left(P_{i}, P_{j}, P_{k}, P_{l}\right. \text { form a bad pair of small triangles) } \\
\leq & \binom{4}{2} \cdot \int_{D_{0}}^{\sqrt{d}}\left(C_{d-1} \cdot \sqrt{d} \cdot\left(\frac{2 \cdot A}{r}\right)^{d-1}\right)^{2} \cdot d \cdot C_{d} \cdot r^{d-1} d r \\
= & C_{d}^{\prime \prime} \cdot A^{2 d-2} \cdot \int_{D_{0}}^{\sqrt{d}} \frac{d r}{r^{d-1}} \tag{9}\\
= & \frac{C_{d}^{\prime \prime}}{d-2} \cdot A^{2 d-2} \cdot\left(\frac{1}{D_{0}^{d-2}}-\frac{1}{d^{(d-2) / 2}}\right) \leq C_{d}^{\prime \prime} \cdot A^{2 d-2} \cdot N^{\beta(d-2)} .
\end{align*}
$$

For dimension $d=2$ the expression (9) is bounded from above by $C_{2}^{\prime \prime} \cdot A^{2} \cdot \log N$ for a constant $C_{2}^{\prime \prime}>0$. Thus, for each $d \geq 2$ we have

$$
\begin{aligned}
& \text { Prob }\left(P_{i}, P_{j}, P_{k}, P_{l} \text { form a bad pair of small triangles }\right) \\
\leq & C_{d}^{\prime \prime} \cdot A^{2 d-2} \cdot N^{\beta(d-2)} \cdot \log N,
\end{aligned}
$$

and we obtain for the expected number $E\left(B P_{D_{0}}(\mathcal{G})\right)$ of such bad pairs of small triangles among the N points for a constant $c_{d}^{\prime \prime}>0$ that

$$
\begin{align*}
E\left(B P_{D_{0}}(\mathcal{G})\right) & \leq\binom{ N}{4} \cdot C_{d}^{\prime \prime} \cdot A^{2 d-2} \cdot N^{\beta(d-2)} \cdot \log N \\
& \leq c_{d}^{\prime \prime} \cdot A^{2 d-2} \cdot N^{4+\beta(d-2)} \cdot \log N \tag{10}
\end{align*}
$$

Using (6), (8) and (10) and Markov's inequality there exist $N=n^{1+\alpha}$ points in the unit-cube $[0,1]^{d}$ such that the corresponding 3-uniform hypergraph $\mathcal{G}=$ $\left(V, \mathcal{E}_{3}\right)$ on $|V|=N$ vertices satisfies

$$
\begin{align*}
\left|\mathcal{E}_{3}\right| & \leq 3 \cdot c_{d} \cdot A^{d-1} \cdot N^{3} \tag{11}\\
P_{D_{0}}(\mathcal{G}) & \leq 3 \cdot c_{d}^{\prime} \cdot N^{2-\beta d} \tag{12}\\
B P_{D_{0}}(\mathcal{G}) & \leq 3 \cdot c_{d}^{\prime \prime} \cdot A^{2 d-2} \cdot N^{4+\beta(d-2)} \cdot \log N . \tag{13}
\end{align*}
$$

By (11) the average degree $t^{2}=3 \cdot\left|\mathcal{E}_{3}\right| /|V|$ of $\mathcal{G}=\left(V, \mathcal{E}_{3}\right)$ satisfies $t^{2} \leq t_{0}^{2}:=$ $9 \cdot c_{d} \cdot A^{d-1} \cdot N^{3} / N=9 \cdot c_{d} \cdot A^{d-1} \cdot N^{2}$. For a suitable constant $\varepsilon>0$, we pick with probability $p:=N^{\varepsilon} / t_{0} \leq 1$ uniformly at random and independently of each other vertices from V. Let $V^{*} \subseteq V$ be the random set of the picked vertices, and let $\mathcal{G}^{*}=\left(V^{*}, \mathcal{E}_{3}^{*}\right)$ with $\mathcal{E}_{3}^{*}=\mathcal{E}_{3} \cap\left[V^{*}\right]^{3}$ be the resulting random induced subhypergraph of \mathcal{G}. Using (11), (12), (13) we infer for the expected numbers of vertices, edges, pairs of points with Euclidean distance at most D_{0} and bad pairs of small triangles in \mathcal{G}^{*} for some constants $c_{1}, c_{2}, c_{3}, c_{4}>0$:

$$
\begin{aligned}
E\left(\left|V^{*}\right|\right) & =p \cdot N \geq c_{1} \cdot N^{\varepsilon} / A^{\frac{d-1}{2}} \\
E\left(\left|\mathcal{E}_{3}^{*}\right|\right) & =p^{3} \cdot\left|\mathcal{E}_{3}\right| \leq p^{3} \cdot 3 \cdot c_{d} \cdot A^{d-1} \cdot N^{3} \leq c_{2} \cdot N^{3 \varepsilon} / A^{\frac{d-1}{2}} \\
E\left(P_{D_{0}}\left(\mathcal{G}^{*}\right)\right) & =p^{2} \cdot P_{D_{0}}(\mathcal{G}) \leq p^{2} \cdot 3 \cdot c_{d}^{\prime} \cdot N^{2-\beta d} \leq c_{3} \cdot N^{2 \varepsilon-\beta d} / A^{d-1} \\
E\left(B P_{D_{0}}\left(\mathcal{G}^{*}\right)\right) & =p^{4} \cdot B P_{D_{0}}(\mathcal{G}) \leq p^{4} \cdot 3 \cdot c_{d}^{\prime \prime} \cdot A^{2 d-2} \cdot N^{4+\beta(d-2)} \cdot \log N \leq \\
& \leq c_{4} \cdot N^{4 \varepsilon+\beta(d-2)} \cdot \log N .
\end{aligned}
$$

By Chernoff's and Markov's inequality there exists an induced subhypergraph $\mathcal{G}^{*}=\left(V^{*}, \mathcal{E}_{3}^{*}\right)$ of \mathcal{G} such that the following hold:

$$
\begin{align*}
\left|V^{*}\right| & \geq\left(c_{1}-o(1)\right) \cdot N^{\varepsilon} / A^{\frac{d-1}{2}} \tag{14}\\
\left|\mathcal{E}_{3}^{*}\right| & \leq 4 \cdot c_{2} \cdot N^{3 \varepsilon} / A^{\frac{d-1}{2}} \tag{15}\\
P_{D_{0}}\left(\mathcal{G}^{*}\right) & \leq 4 \cdot c_{3} \cdot N^{2 \varepsilon-\beta d} / A^{d-1} \tag{16}\\
B P_{D_{0}}\left(\mathcal{G}^{*}\right) & \leq 4 \cdot c_{4} \cdot N^{4 \varepsilon+\beta(d-2)} \cdot \log N . \tag{17}
\end{align*}
$$

Now we fix $\alpha:=1 / d$ and $\beta:=1 / d$ and for some suitable constant $c^{*}>0$ we set

$$
\begin{equation*}
A:=c^{*} \cdot \frac{(\log n)^{\frac{1}{d-1}}}{n^{\frac{2}{d-1}}} \tag{18}
\end{equation*}
$$

Lemma 2. For $0<\varepsilon \leq(d+2) /(3 \cdot d \cdot(d+1))$ it is

$$
B P_{D_{0}}\left(\mathcal{G}^{*}\right)=o\left(\left|V^{*}\right|\right) .
$$

Proof. Using (14), (17), (18) and $N=n^{1+\alpha}$ we have

$$
\begin{aligned}
& B P_{D_{0}}\left(\mathcal{G}^{*}\right)=o\left(\left|V^{*}\right|\right) \\
\Longleftrightarrow & N^{4 \varepsilon+\beta(d-2)} \cdot \log N=o\left(N^{\varepsilon} / A^{\frac{d-1}{2}}\right) \\
\Longleftrightarrow & N^{3 \varepsilon+\beta(d-2)} \cdot \log N \cdot A^{\frac{d-1}{2}}=o(1) \\
\Longleftrightarrow & n^{(1+\alpha)(3 \varepsilon+\beta(d-2))-1} \cdot(\log n)^{\frac{1}{2}}=o(1) \\
\Longleftrightarrow & (1+\alpha) \cdot(3 \varepsilon+\beta(d-2))<1 \\
\Longleftrightarrow & \varepsilon<\frac{d+2}{3 \cdot d \cdot(d+1)} \quad \text { as } \alpha=\beta=1 / d .
\end{aligned}
$$

Lemma 3. For $0<\varepsilon<1 /(d+1)$ it is

$$
P_{D_{0}}\left(\mathcal{G}^{*}\right)=o\left(\left|V^{*}\right|\right) .
$$

Proof. By (14), (16), (18), using $N=n^{1+\alpha}$, we infer

$$
\begin{aligned}
& P_{D_{0}}\left(\mathcal{G}^{*}\right)=o\left(\left|V^{*}\right|\right) \\
\Longleftrightarrow & N^{2 \varepsilon-\beta d} / A^{d-1}=o\left(N^{\varepsilon} / A^{\frac{d-1}{2}}\right) \\
\Longleftrightarrow & N^{\varepsilon-\beta d} / A^{\frac{d-1}{2}}=o(1) \\
\Longleftrightarrow & n^{(\varepsilon-\beta d)(1+\alpha)+1} /(\log n)^{1 / 2}=o(1) \\
\Longleftrightarrow & (\varepsilon-\beta d)(1+\alpha)<-1 \\
\Longleftrightarrow & \varepsilon<\frac{1}{d+1} \quad \text { as } \alpha=\beta=1 / d .
\end{aligned}
$$

We fix $\varepsilon:=1 /(3 d)$, hence $p \leq 1$ for $n>n_{0}$. In the subhypergraph $\mathcal{G}^{*}=\left(V^{*}, \mathcal{E}_{3}^{*}\right)$ we delete one vertex form each bad pair of small triangles with all side-lengths at least D_{0} and from each pair of vertices where the corresponding points have Euclidean distance at most D_{0}. The resulting induced subhypergraph $\mathcal{G}^{* *}=$ $\left(V^{* *}, \mathcal{E}_{3}^{* *}\right)$ with $\mathcal{E}_{3}^{* *}=\left[V^{* *}\right]^{3} \cap \mathcal{E}_{3}^{*}$ fulfills by Lemmas 2 and 3 and by (14), (15):

$$
\begin{align*}
\left|V^{* *}\right| & \geq\left(c_{1}-o(1)\right) \cdot N^{\varepsilon} / A^{\frac{d-1}{2}} \tag{19}\\
\left|\mathcal{E}_{3}^{* *}\right| & \leq\left|\mathcal{E}_{3}^{*}\right| \leq 4 \cdot c_{2} \cdot N^{3 \varepsilon} / A^{\frac{d-1}{2}} \tag{20}
\end{align*}
$$

and the points corresponding to the vertices of the subhypergraph $\mathcal{G}^{* *}$ do not form any bad pairs of small triangles anymore, i.e. $\mathcal{G}^{* *}$ is a linear hypergraph. By (19) and (20) the hypergraph $\mathcal{G}^{* *}$ has average degree

$$
\begin{equation*}
t^{2} \leq t_{1}^{2}:=\frac{12 \cdot c_{2} \cdot N^{3 \varepsilon} / A^{\frac{d-1}{2}}}{\left(c_{1}-o(1)\right) \cdot N^{\varepsilon} / A^{\frac{d-1}{2}}}=\frac{(12+o(1)) \cdot c_{2}}{c_{1}} \cdot N^{2 \varepsilon} \tag{21}
\end{equation*}
$$

The assumptions of Theorem 2 are fulfilled by the 3-uniform subhypergraph $\mathcal{G}^{* *}$ of \mathcal{G} and we infer for $t \geq 2$ with (7), (19) and (21) for its independence number

$$
\begin{aligned}
\alpha(\mathcal{G}) & \geq \alpha\left(\mathcal{G}^{* *}\right) \geq c_{3}^{*} \cdot \frac{\left|V^{* *}\right|}{t} \cdot(\log t)^{1 / 2} \geq c_{3}^{*} \cdot \frac{\left|V^{* *}\right|}{t_{1}} \cdot\left(\log t_{1}\right)^{1 / 2} \geq \\
& \geq \frac{c_{3}^{*} \cdot\left(c_{1}^{3 / 2}-o(1)\right) \cdot N^{\varepsilon}}{\left((12+o(1)) \cdot c_{2}\right)^{1 / 2} \cdot N^{\varepsilon} \cdot A^{(d-1) / 2}} \cdot\left(\log \left(\frac{(12+o(1)) \cdot c_{2}}{c_{1}}\right)^{1 / 2} \cdot N^{\varepsilon}\right)^{1 / 2} \\
& \geq c^{\prime} \cdot(\log n)^{1 / 2} / A^{(d-1) / 2} \\
& \geq c^{\prime} \cdot\left(1 / c^{*}\right)^{\frac{d-1}{2}} \cdot \frac{n}{(\log n)^{1 / 2}} \cdot(\log n)^{1 / 2} \geq n \quad \text { as } N=n^{1+\alpha}
\end{aligned}
$$

for some sufficiently small constant $c^{*}>0$. Thus the hypergraph \mathcal{G} contains an independent set $I \subseteq V$ with $|I|=n$. These n vertices represent n points in $[0,1]^{d}$, where every triangle among these n points has area at least A, i.e. $\Delta_{d}(n)^{\text {off-line }}=\Omega\left((\log n)^{1 /(d-1)} / n^{2 /(d-1)}\right)$.

3 The On-Line Case

In this section we consider the on-line situation and we will show the lower bound in (2) from Theorem 1:

Lemma 4. Let $d \geq 2$ be a fixed integer. Then, for some constant $c_{2}=c_{2}(d)>0$, for every integer $n \geq 3$ it is

$$
\Delta_{d}^{\text {on-line }}(n) \geq \frac{c_{2}}{n^{2 /(d-1)}}
$$

Proof. Successively we will construct an arbitrary long sequence P_{1}, P_{2}, \ldots of points in the unit-cube $[0,1]^{d}$ such that for suitable constants $a, b, \alpha, \beta>0$, which will be fixed later, for every n the set $S_{n}=\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$ satisfies
(i) $\operatorname{dist}\left(P_{i}, P_{j}\right)>a / n^{\alpha}$ for all $1 \leq i<j \leq n$, and
(ii) area $\left(P_{i}, P_{j}, P_{k}\right)>b / n^{\beta}$ for all $1 \leq i<j<k \leq n$.

Assume that a set $S_{n-1}=\left\{P_{1}, P_{2}, \ldots, P_{n-1}\right\} \subset[0,1]^{d}$ of $(n-1)$ points with (i') $\operatorname{dist}\left(P_{i}, P_{j}\right)>a /(n-1)^{\alpha}$ for all $1 \leq i<j \leq n-1$, and (ii') area $\left(P_{i}, P_{j}, P_{k}\right)>$ $b /(n-1)^{\beta}$ for all $1 \leq i<j<k \leq n-1$ is already constructed.
To have some space in $[0,1]^{d}$ available for choosing a new point $P_{n} \in[0,1]^{d}$ such that (i) is fulfilled, this new point P_{n} is not allowed to lie within any of the d-dimensional balls $B_{r}\left(P_{i}\right)$ of radius $r=a / n^{\alpha}$ with center $P_{i}, i=1,2, \ldots, n-1$. Adding the volumes of these balls yields

$$
\sum_{i=1}^{n-1} \operatorname{vol}\left(B_{r}\left(P_{i}\right)\right)<n \cdot C_{d} \cdot r^{d}=a^{d} \cdot C_{d} \cdot n^{1-\alpha d}
$$

For $\alpha:=1 / d$ and $a^{d} \cdot C_{d}<1 / 2$ we have $\sum_{i=1}^{n-1} \operatorname{vol}\left(B_{r}\left(P_{i}\right)\right)<1 / 2$.

We will show next that the regions, where condition (ii) is violated, also have volume less than $1 / 2$. The regions, where (ii) is violated by points $P_{n} \in[0,1]^{d}$, are given by $C_{i, j} \cap[0,1]^{d}, 1 \leq i<j \leq n-1$, where $C_{i, j}$ is a d-dimensional cylinder centered at the line $P_{i} P_{j}$. These sets $C_{i, j} \cap[0,1]^{d}$ are contained in cylinders of height \sqrt{d} and radius $2 \cdot b /\left(n^{\beta} \cdot \operatorname{dist}\left(P_{i}, P_{j}\right)\right)$. We sum up their volumes:

$$
\begin{align*}
& \sum_{1 \leq i<j \leq n-1} \operatorname{vol}\left(C_{i, j} \cap[0,1]^{d}\right) \\
\leq & \sum_{1 \leq i<j \leq n-1} \sqrt{d} \cdot C_{d-1} \cdot\left(\frac{2 \cdot b}{n^{\beta} \cdot \operatorname{dist}\left(P_{i}, P_{j}\right)}\right)^{d-1} \\
= & \frac{(2 \cdot b)^{d-1} \cdot \sqrt{d} \cdot C_{d-1}}{2 \cdot n^{\beta(d-1)}} \cdot \sum_{i=1}^{n-1} \sum_{j=1 ; j \neq i}^{n-1}\left(\frac{1}{\operatorname{dist}\left(P_{i}, P_{j}\right)}\right)^{d-1} . \tag{22}
\end{align*}
$$

We fix some point $P_{i}, i=1,2, \ldots, n-1$. To give an upper bound on the last sum, we will use a packing argument, compare [2]. Consider the balls $B_{r_{t}}\left(P_{i}\right)$ with center P_{i} and radius $r_{t}:=a \cdot t / n^{\alpha}, t=0,1, \ldots$ with $t \leq \sqrt{d} \cdot n^{\alpha} / a$. Clearly $\operatorname{vol}\left(B_{r_{0}}\left(P_{i}\right)\right)=0$, and for some constant $C_{d}^{*}>0$ for $t=1,2, \ldots$ we have

$$
\begin{equation*}
\operatorname{vol}\left(B_{r_{t}}\left(P_{i}\right) \backslash B_{r_{t-1}}\left(P_{i}\right)\right) \leq C_{d}^{*} \cdot \frac{t^{d-1}}{n^{\alpha d}} \tag{23}
\end{equation*}
$$

Notice that for every ball $B_{r}\left(P_{j}\right)$ with radius $r=\Theta\left(n^{-\alpha}\right)$ and center $P_{j} \in$ $B_{r_{t}}\left(P_{i}\right) \backslash B_{r_{t-1}}\left(P_{i}\right)$ with $i \neq j$ we have $\operatorname{vol}\left(B_{r}\left(P_{j}\right) \cap\left(B_{r_{t}}\left(P_{i}\right) \backslash B_{r_{t-1}}\left(P_{i}\right)\right)=\right.$ $\Theta\left(n^{-\alpha d}\right)$. By inequalities (i') we have $n_{1}=1$ and by (23) each shell $B_{r_{t}}\left(P_{i}\right) \backslash$ $B_{r_{t-1}}\left(P_{i}\right), t=2,3, \ldots$, contains at most $n_{t} \leq C_{d}^{\prime} \cdot t^{d-1}$ points from the set S_{n-1} for some constant $C_{d}^{\prime}>0$. Using the inequality $1+x \leq e^{x}, x \in \mathbb{R}$, we obtain

$$
\begin{align*}
& \sum_{j=1 ; j \neq i}^{n-1}\left(\frac{1}{\operatorname{dist}\left(P_{i}, P_{j}\right)}\right)^{d-1} \leq \sum_{t=2}^{\sqrt{d} \cdot n^{\alpha} / a} n_{t} \cdot\left(\frac{1}{a \cdot(t-1) / n^{\alpha}}\right)^{d-1} \leq \\
\leq & \sum_{t=2}^{\sqrt{d} \cdot n^{\alpha} / a} C_{d}^{\prime} \cdot t^{d-1} \cdot\left(\frac{1}{a \cdot(t-1) / n^{\alpha}}\right)^{d-1} \leq \sum_{t=2}^{\sqrt{d} \cdot n^{\alpha} / a} \frac{C_{d}^{\prime}}{a^{d-1}} \cdot e^{\frac{d-1}{t-1}} \cdot n^{\alpha(d-1)} \leq \\
\leq & C_{d}^{\prime \prime} \cdot n^{\alpha d} \tag{24}
\end{align*}
$$

for some constant $C_{d}^{\prime \prime}>0$. We set $\beta:=2 /(d-1)$ and, using $\alpha=1 / d$ and (24), inequality (22) becomes for a sufficiently small constant $b>0$:

$$
\begin{aligned}
& \sum_{1 \leq i<j \leq n-1} \operatorname{vol}\left(C_{i, j} \cap[0,1]^{d}\right) \\
\leq & \frac{(2 \cdot b)^{d-1} \cdot \sqrt{d} \cdot C_{d-1}}{n^{\beta(d-1)}} \cdot \sum_{i=1}^{n-1} \sum_{j=1 ; j \neq i}^{n-1}\left(\frac{1}{\operatorname{dist}\left(P_{i}, P_{j}\right)}\right)^{d-1} \\
\leq & \frac{(2 \cdot b)^{d-1} \cdot \sqrt{d} \cdot C_{d-1}}{n^{\beta(d-1)}} \cdot \sum_{i=1}^{n-1} C_{d}^{\prime \prime} \cdot n^{\alpha d} \\
\leq & (2 \cdot b)^{d-1} \cdot \sqrt{d} \cdot C_{d-1} \cdot C_{d}^{\prime \prime} \cdot n^{1+\alpha d-\beta(d-1)}<1 / 2
\end{aligned}
$$

The forbidden regions have volume less than 1 , hence there exists a point $P_{n} \in$ $[0,1]^{d}$ such that (i) and (ii) are satisfied, thus $\Delta_{d}^{\text {on-line }}(n)=\Omega\left(1 / n^{2 /(d-1)}\right)$.

4 An Upper Bound

Here we will show the upper bound $O\left(1 / n^{2 / d}\right)$ from Theorem 1 on the smallest area of a triangle among any n points in the d-dimensional unit-cube $[0,1]^{d}$.

Lemma 5. Let $d \geq 2$ be a fixed integer. Then, for some constant $C_{1}>0$, for every integer $n \geq 3$ it is

$$
\Delta_{d}^{\text {on-line }}(n) \leq \Delta_{d}^{\text {off-line }}(n) \leq \frac{C_{1}}{n^{2 / d}}
$$

Proof. Given any n points $P_{1}, P_{2}, \ldots, P_{n} \in[0,1]^{d}$, for some value $D_{0}>0$ we form a graph $G_{D_{0}}=(V, E)$ with vertex set $V=\{1,2, \ldots, n\}$, where vertex i corresponds to point $P_{i} \in[0,1]^{d}$, and edges $\{i, j\} \in E$ if and only if dist $\left(P_{i}, P_{j}\right) \leq D_{0}$. An independent set $I \subseteq V$ in this graph $G_{D_{0}}$ yields a subset $I^{\prime} \subseteq\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$ of points with Euclidean distance between any two distinct points bigger than D_{0}. Each ball $B_{r}\left(P_{j}\right)$ with center $P_{j} \in[0,1]^{d}$ and radius $r \leq 1$ satisfies vol $\left(B_{r}\left(P_{j}\right) \cap[0,1]^{d}\right) \geq \operatorname{vol}\left(B_{r}\left(P_{j}\right)\right) / 2^{d}$. The balls with radius $D_{0} / 2$ and centers from the set I^{\prime} have pairwise empty intersection, thus

$$
\begin{equation*}
\alpha\left(G_{D_{0}}\right) \cdot 2^{-d} \cdot C_{d} \cdot\left(D_{0} / 2\right)^{d} \leq \operatorname{vol}\left([0,1]^{d}\right)=1 \tag{25}
\end{equation*}
$$

By Turán's theorem [20], for any graph $G=(V, E)$ we have the lower bound $\alpha(G) \geq n /(2 \cdot t)$ on the independence number $\alpha(G)$, where $t:=2 \cdot|E| /|V|$ is the average degree of G. This with (25) implies

$$
\frac{4^{d}}{C_{d} \cdot D_{0}^{d}} \geq \alpha\left(G_{D_{0}}\right) \geq \frac{n}{2 \cdot t} \quad \Longrightarrow \quad t \geq \frac{C_{d}}{2 \cdot 4^{d}} \cdot n \cdot D_{0}^{d}
$$

Let $D_{0}:=c / n^{1 / d}$ where $c>0$ is a constant with $c^{d}>2 \cdot 4^{d} / C_{d}$. Then $t>1$ and there exist two edges $\{i, j\},\{i, k\} \in E$ incident at vertex $i \in V$. Then the two points P_{j} and P_{k} have Euclidean distance at most D_{0} from point P_{i}, and hence area $\left(P_{i}, P_{j}, P_{k}\right) \leq D_{0}^{2} / 2=1 / 2 \cdot c^{2} / n^{2 / d}$, i.e. $\Delta_{d}^{\text {off-line }}(n)=O\left(1 / n^{2 / d}\right)$.

5 Conclusion

Certainly it is of interest to improve the bounds given in this paper. Also, for the off-line case it is desirable to get a deterministic polynomial time algorithm achieving the bound $\Delta_{d}(n)^{\text {off-line }}=\Omega\left((\log n)^{1 /(d-1)} / n^{2 /(d-1)}\right)$. In view of the results in [9] it is also of interest to determine the expected value of the minimum triangle area with respect to the uniform distribution of n points in $[0,1]^{d}$.

References

1. M. Ajtai, J. Komlós, J. Pintz, J. Spencer and E. Szemerédi, Extremal Uncrowded Hypergraphs, Journal of Combinatorial Theory Ser. A, 32, 1982, 321-335.
2. G. Barequet, A Lower Bound for Heilbronn's Triangle Problem in d Dimensions, SIAM Journal on Discrete Mathematics 14, 2001, 230-236.
3. G. Barequet, The On-Line Heilbronn's Triangle Problem in Three and Four Dimensions, Proceedings '8rd Annual International Computing and Combinatorics Conference COCOON'02', LNCS 2387, Springer, 2002, 360-369.
4. C. Bertram-Kretzberg and H. Lefmann, The Algorithmic Aspects of Uncrowded Hypergraphs, SIAM Journal on Computing 29, 1999, 201-230.
5. C. Bertram-Kretzberg, T. Hofmeister and H. Lefmann, An Algorithm for Heilbronn's Problem, SIAM Journal on Computing 30, 2000, 383-390.
6. P. Brass, An Upper Bound for the d-Dimensional Heilbronn Triangle Problem, preprint, 2003.
7. R. A. Duke, H. Lefmann and V. Rödl, On Uncrowded Hypergraphs, Random Structures \& Algorithms 6, 1995, 209-212.
8. A. Fundia, Derandomizing Chebychev's Inequality to find Independent Sets in Uncrowded Hypergraphs, Random Structures \& Algorithms, 8, 1996, 131-147.
9. T. Jiang, M. Li and P. Vitany, The Average Case Area of Heilbronn-type Triangles, Random Structures \& Algorithms 20, 2002, 206-219.
10. J. Komlós, J. Pintz and E. Szemerédi, On Heilbronn's Triangle Problem, Journal of the London Mathematical Society, 24, 1981, 385-396.
11. J. Komlós, J. Pintz and E. Szemerédi, A Lower Bound for Heilbronn's Problem, Journal of the London Mathematical Society, 25, 1982, 13-24.
12. H. Lefmann, On Heilbronn's Problem in Higher Dimension, Combinatorica 23, 2003, 669-680.
13. H. Lefmann and N. Schmitt, A Deterministic Polynomial Time Algorithm for Heilbronn's Problem in Three Dimensions, SIAM Journal on Computing 31, 2002, 1926-1947.
14. K. F. Roth, On a Problem of Heilbronn, Journal of the London Mathematical Society 26, 1951, 198-204.
15. K. F. Roth, On a Problem of Heilbronn, II, Proc. of the London Mathematical Society (3), 25, 1972, 193-212.
16. K. F. Roth, On a Problem of Heilbronn, III, Proc. of the London Mathematical Society (3), 25, 1972, 543-549.
17. K. F. Roth, Estimation of the Area of the Smallest Triangle Obtained by Selecting Three out of n Points in a Disc of Unit Area, Proc. of Symposia in Pure Mathematics, 24, 1973, AMS, Providence, 251-262.
18. K. F. Roth, Developments in Heilbronn's Triangle Problem, Advances in Mathematics, 22, 1976, 364-385.
19. W. M. Schmidt, On a Problem of Heilbronn, Journal of the London Mathematical Society (2), 4, 1972, 545-550.
20. P. Turán, On an Extremal Problem in Graph Theory, Mat. Fiz. Lapok 48, 1941, 436-452.
