Distributions of Points in d Dimensions and Large \boldsymbol{k}-Point Simplices (Extended Abstract)

Hanno Lefmann
Fakultät für Informatik, TU Chemnitz, D-09107 Chemnitz, Germany
lefmann@informatik.tu-chemnitz.de

Abstract

We consider a variant of Heilbronn's triangle problem by asking for fixed dimension $d \geq 2$ and for fixed integers $k \geq 3$ with $k \leq d+$ 1 for a distribution of n points in the d-dimensional unit-cube $[0,1]^{d}$ such that the minimum volume of a k-point simplex among these n points is as large as possible. Denoting by $\Delta_{k, d}(n)$ the supremum of the minimum volume of a k-point simplex among n points over all distributions of n points in $[0,1]^{d}$ we will show that $c_{k} \cdot(\log n)^{1 /(d-k+2)} / n^{(k-1) /(d-k+2)} \leq$ $\Delta_{k, d}(n) \leq c_{k}^{\prime} / n^{(k-1) / d}$ for $3 \leq k \leq d+1$, and moreover $\Delta_{k, d}(n) \leq$ $c_{k}^{\prime \prime} / n^{(k-1) / d+(k-2) /(2 d(d-1))}$ for $k \geq 4$ even, and constants $c_{k}, c_{k}^{\prime}, c_{k}^{\prime \prime}>0$.

1 Introduction

For integers $n \geq 3$, Heilbronn's problem asks for the supremum $\Delta_{2}(n)$ of the minimum area of a triangle formed by three of n points over all distributions of n points in the unit-square $[0,1]^{2}$. For primes n, the points $P_{k}=1 / n$. $\left(k \bmod n, k^{2} \bmod n\right), k=0,1, \ldots, n-1$, show that $\Delta_{2}(n)=\Omega\left(1 / n^{2}\right)$. Komlós, Pintz and Szemerédi [10] improved this to $\Delta_{2}(n)=\Omega\left(\log n / n^{2}\right)$, see [5] for a deterministic polynomial time algorithm achieving this lower bound on $\Delta_{2}(n)$, which is currently the best known. Upper bounds were proved in a series of papers by Roth [15-18] and Schmidt [19]. The currently best known upper bound is due to Komlós, Pintz and Szemerédi [9], who proved $\Delta_{2}(n)=O\left(2^{c \sqrt{\log n}} / n^{8 / 7}\right)$ for some constant $c>0$. We remark that for n points chosen uniformly at random and independently of each other from $[0,1]^{2}$, the expected value of the minimum area of a triangle among these n points is $\Theta\left(1 / n^{3}\right)$, as was shown by Jiang, Li and Vitany [8].
A variant of Heilbronn's problem considered by Barequet asks, given a fixed dimension $d \geq 2$, for the supremum $\Delta_{d+1, d}(n)$ of the minimum volume of a $(d+$ 1)-point simplex among n points in the d-dimensional unit-cube $[0,1]^{d}$ over all distributions of n points in $[0,1]^{d}$. He showed in [2] the lower bound $\Delta_{d+1, d}(n)=$ $\Omega\left(1 / n^{d}\right)$, which was improved in [11] to $\Delta_{d+1, d}(n)=\Omega\left(\log n / n^{d}\right)$. In [14], a deterministic polynomial time algorithm was given achieving this lower bound on $\Delta_{4,3}(n)$. Recently, Brass [6] improved the known upper bound $\Delta_{d+1, d}(n)=$ $O(1 / n)$ to $\Delta_{d+1, d}(n)=O\left(1 / n^{(2 d+1) /(2 d)}\right)$ for odd $d \geq 3$. Moreover, an on-line version of this variant was investigated in [3] for dimensions $d=3,4$.
Here we consider the following generalization of Heilbronn's problem: given fixed integers d, k with $3 \leq k \leq d+1$, find for any integer $n \geq k$ a distribution of n
points in the d-dimensional unit-cube $[0,1]^{d}$ such that the minimum volume of a k-point simplex among these n points is as large as possible. Let $\Delta_{k, d}(n)$ denote the corresponding supremum values - over all distributions of n points in $[0,1]^{d}$ - on the minimum volume of a k-point simplex among n points in $[0,1]^{d}$. The parameter $\Delta_{3, d}(n)$, i.e. areas of triangles in $[0,1]^{d}$, was investigated by this author in [12], where it was shown that $c_{3} \cdot(\log n)^{1 /(d-1)} / n^{2 /(d-1)} \leq \Delta_{3, d}(n) \leq$ $c_{3}^{\prime} / n^{2 / d}$ for constants $c_{3}, c_{3}^{\prime}>0$. Here we prove the following bounds.

Theorem 1. Let d, k be fixed integers with $3 \leq k \leq d+1$. Then, for constants $c_{k}, c_{k}^{\prime}, c_{k}^{\prime \prime}>0$, which depend on k, d only, for every integer $n \geq k$ it is

$$
\begin{array}{ll}
c_{k} \cdot \frac{(\log n)^{1 /(d-k+2)}}{n^{(k-1) /(d-k+2)}} \leq \Delta_{k, d}(n) \leq \frac{c_{k}^{\prime}}{n^{(k-1) / d}} & \text { for } k \text { odd } \\
c_{k} \cdot \frac{(\log n)^{1 /(d-k+2)}}{n^{(k-1) /(d-k+2)}} \leq \Delta_{k, d}(n) \leq \frac{c_{k}^{\prime \prime}}{n^{(k-1) / d+(k-2) /(2 d(d-1))}} & \text { for } k \text { even } \tag{2}
\end{array}
$$

For $d=2$ and $k=3$, the lower bound (1) is just the result from [10]. For $k=d+1$, this yields the bounds from [6] and [11]. Indeed, our arguments for proving Theorem 1 yield a randomized polynomial time algorithm, which finds a distribution of n points in $[0,1]^{d}$ achieving these lower bounds.

2 A Lower Bound on $\boldsymbol{\Delta}_{k, d}(n)$

Fist we introduce some notation which is used throughout this paper.
Let dist $\left(P_{i}, P_{j}\right)$ be the Euclidean distance between the points P_{i} and P_{j}. A simplex given by k points $P_{1}, \ldots, P_{k} \in[0,1]^{d}$ is the set of all points $P_{1}+\sum_{i=2}^{k} \lambda_{i} \cdot\left(P_{i}-\right.$ P_{1}) with $\lambda_{i} \geq 0, i=2, \ldots, k$, and $\sum_{i=2}^{k} \lambda_{i} \leq 1$. The ($k-1$)-dimensional volume of a k-point simplex determined by the points $P_{1}, \ldots, P_{k} \in[0,1]^{d}, 2 \leq k \leq d+1$, is defined by vol $\left(P_{1}, \ldots, P_{k}\right):=1 /(k-1)!\cdot \prod_{j=2}^{k} \operatorname{dist}\left(P_{j} ;<P_{1}, \ldots, P_{j-1}>\right)$, where dist $\left(P_{j} ;<P_{1}, \ldots, P_{j-1}>\right)$ denotes the Euclidean distance of the point P_{j} from the affine space $<P_{1}, \ldots, P_{j-1}>$ generated by P_{1}, \ldots, P_{j-1} with $<P_{1}>:=P_{1}$. In our arguments we will use hypergraphs. A hypergraph $\mathcal{G}=(V, \mathcal{E})$ with vertex set V and edge set \mathcal{E} is k-uniform if $|E|=k$ for all edges $E \in \mathcal{E}$. A subset $I \subseteq V$ of the vertex set V is independent if I contains no edges from \mathcal{E}. The largest size $|I|$ of an independent set in \mathcal{G} is the independence number $\alpha(\mathcal{G})$. A hypergraph $\mathcal{G}=(V, \mathcal{E})$ is linear if $\left|E \cap E^{\prime}\right| \leq 1$ for all distinct edges $E, E^{\prime} \in \mathcal{E}$.
First we prove the lower bound in (1), (2) from Theorem 1, namely that

$$
\begin{equation*}
\Delta_{k, d}(n) \geq c_{k} \cdot(\log n)^{1 /(d-k+2)} / n^{(k-1) /(d-k+2)} \tag{3}
\end{equation*}
$$

Proof. Let d, k be fixed integers with $3 \leq k \leq d+1$. For arbitrary integers $n \geq k$ and a suitable constant $\alpha>0$, we select uniformly at random and independently of each other $N:=n^{1+\alpha}$ points $P_{1}, P_{2}, \ldots, P_{N}$ from $[0,1]^{d}$.
For certain values $D_{j}:=N^{-\gamma_{j}}$ for some constants $\gamma_{j}>0, j=2, \ldots, k-1$, and some value $V_{0}>0$, where all these will be fixed later, we form a random hypergraph $\mathcal{G}=\mathcal{G}\left(D_{2}, \ldots, D_{k-1}, V_{0}\right)=\left(V, \mathcal{E}_{2} \cup \cdots \cup \mathcal{E}_{k}\right)$ with vertex set $V=$
$\{1,2, \ldots, N\}$, where vertex i corresponds to the random point $P_{i} \in[0,1]^{d}$, and with j-element edges, $j=2, \ldots, k$. For $j=2, \ldots, k-1$, let $\left\{i_{1}, \ldots, i_{j}\right\} \in \mathcal{E}_{j}$ be a j-element edge if and only if vol $\left(P_{i_{1}}, \ldots, P_{i_{j}}\right) \leq D_{j}$. Moreover, let $\left\{i_{1}, \ldots, i_{k}\right\} \in$ \mathcal{E}_{k} be a k-element edge if and only if $\operatorname{vol}\left(P_{i_{1}}, \ldots, P_{i_{k}}\right) \leq V_{0}$ and $\left\{i_{1}, \ldots, i_{k}\right\}$ does not contain any j-element edges $E \in \mathcal{E}_{j}$ for $j=2, \ldots, k-1$. An independent set $I \subseteq V$ in this hypergraph \mathcal{G} yields $|I|$ many points in $[0,1]^{d}$ such that each k-point simplex among these $|I|$ points has volume bigger than V_{0}. Our aim is to show the existence of a large independent set $I \subseteq V$ in \mathcal{G}. For doing so, we will use a result on the independence number of linear k-uniform hypergraphs due to Ajtai, Komlós, Pintz, Spencer and Szemerédi [1], see [7].

Theorem 2. [1, 7] Let $k \geq 3$ be a fixed integer. Let $\mathcal{G}=(V, \mathcal{E})$ be a k-uniform hypergraph on $|V|=n$ vertices with average degree $t^{k-1}=k \cdot|\mathcal{E}| /|V|$. If \mathcal{G} is linear, then for some constant $c_{k}^{*}>0$ its independence number $\alpha(\mathcal{G})$ satisfies

$$
\begin{equation*}
\alpha(\mathcal{G}) \geq c_{k}^{*} \cdot \frac{n}{t} \cdot \log ^{\frac{1}{k-1}} t \tag{4}
\end{equation*}
$$

The difficulty in our arguments is, to find a certain subhypergraph of our random non-uniform hypergraph \mathcal{G} to which we can apply Theorem 2 . For doing so, we will select a random induced subhypergraph \mathcal{G}^{*} of \mathcal{G} by controling certain parameters of \mathcal{G}^{*}. For $j=2, \ldots, k-1$, let $\left|B P_{j}(\mathcal{G})\right|$ be a random variable counting the number of 'bad j-pairs of simplices' in \mathcal{G}, which are among the N random points $P_{1}, \ldots, P_{N} \in[0,1]^{d}$ those unordered pairs of k-point simplices arising from \mathcal{E}_{k}, which share j vertices. We will show that in the random nonuniform hypergraph \mathcal{G} the expected numbers $E\left(\left|\mathcal{E}_{i}\right|\right)$ and $E\left(\left|B P_{j}(\mathcal{G})\right|\right)$ of i-element edges and of 'bad j-pairs of simplices' arising from \mathcal{E}_{k}, respectively, $i, j=2, \ldots, k-1$, are not too big. Then in a certain induced subhypergraph of \mathcal{G}, which will be obtained by a random selection of vertices from V, we will delete one vertex from each i-element edge $E \in \mathcal{E}_{i}$ and from each 'bad j-pair of simplices' arising from $\mathcal{E}_{k}, i, j=2, \ldots, k-1$. This yields a k-uniform linear subhypergraph $\mathcal{G}^{*}=$ $\left(V^{*}, \mathcal{E}_{k}^{*}\right)$ of \mathcal{G}, thus \mathcal{G}^{*} fulfills the assumptions of Theorem 2 and then we can apply it.

Lemma 1. For $i=2, \ldots, k$ with $2 \leq k \leq d+1$ and random points $P_{1}, \ldots, P_{i} \in$ $[0,1]^{d}$ for constants $c_{i}^{*}>0$ and a real $V>0$ it is

$$
\begin{equation*}
\operatorname{Prob}\left(\operatorname{vol}\left(P_{1}, \ldots, P_{i}\right) \leq V\right) \leq c_{i}^{*} \cdot V^{d-i+2} \tag{5}
\end{equation*}
$$

Proof. Let P_{1}, \ldots, P_{i} be i random points in $[0,1]^{d}$. We may assume that the i points are numbered in such a way that for $2 \leq g \leq h \leq i$ it is

$$
\begin{equation*}
\operatorname{dist}\left(P_{g} ;<P_{1}, \ldots, P_{g-1}>\right) \geq \operatorname{dist}\left(P_{h} ;<P_{1}, \ldots, P_{g-1}>\right) . \tag{6}
\end{equation*}
$$

The point P_{1} can be anywhere in $[0,1]^{d}$. Given the point P_{1}, the probability, that its Euclidean distance from the point $P_{2} \in[0,1]^{d}$ is within the infinitesimal range $\left[r_{1}, r_{1}+d r_{1}\right]$, is at most the difference of the volumes of the d-dimensional balls with center P_{1} and with radii $\left(r_{1}+d r_{1}\right)$ and r_{1}, respectively, hence

$$
\operatorname{Prob}\left(r_{1} \leq \operatorname{dist}\left(P_{1}, P_{2}\right) \leq r_{1}+d r_{1}\right) \leq d \cdot C_{d} \cdot r_{1}^{d-1} d r_{1},
$$

where throughout this paper C_{d} denotes the value of the volume of the d dimensional unit-ball in \mathbb{R}^{d} with $C_{1}:=2$.
Given the points P_{1} and P_{2} with dist $\left(P_{1}, P_{2}\right)=r_{1}$, the probability that the distance dist $\left(P_{3} ;<P_{1}, P_{2}>\right)$ of the point $P_{3} \in[0,1]^{d}$ from the line $<P_{1}, P_{2}>$ is within the infinitesimal range $\left[r_{2}, r_{2}+d r_{2}\right]$ is at most the difference of the volumes of cylinders centered at the line $<P_{1}, P_{2}>$ with radii $r_{2}+d r_{2}$ and r_{2}, respectively, and, by assumption (6), with height $2 \cdot r_{1}=2 \cdot \operatorname{dist}\left(P_{1}, P_{2}\right)$, thus
$\operatorname{Prob}\left(r_{2} \leq \operatorname{dist}\left(P_{3} ;<P_{1}, P_{2}>\right) \leq r_{2}+d r_{2}\right) \leq 2 \cdot r_{1} \cdot(d-1) \cdot C_{d-1} \cdot r_{2}^{d-2} d r_{2}$.
In general, by condition (6), given the points $P_{1}, \ldots, P_{g}, g<i$, with $\operatorname{dist}\left(P_{f} ;<\right.$ $\left.P_{1}, \ldots, P_{f-1}>\right)=r_{f-1}$ for $f=2, \ldots, g$, the projection of the point P_{g+1} onto the affine space $<P_{1}, \ldots, P_{f}>$ must lie in a shape of volume at most $2^{f-1} \cdot r_{1}$. $\ldots \cdot r_{f-1}$. Hence for $g<i-1$ we obtain

$$
\begin{array}{r}
\quad \operatorname{Prob}\left(r_{g} \leq \operatorname{dist}\left(P_{g+1} ;<P_{1}, \ldots, P_{g}>\right) \leq r_{g}+d r_{g}\right) \\
\leq 2^{g-1} \cdot r_{1} \cdot \ldots \cdot r_{g-1} \cdot(d-g+1) \cdot C_{d-g+1} \cdot r_{g}^{d-g} d r_{g}
\end{array} .
$$

For $g=i-1$, however, to satisfy vol $\left(P_{1}, \ldots, P_{i}\right) \leq V$, we must have $1 /(i-1)$!. $\prod_{g=2}^{i} \operatorname{dist}\left(P_{g} ;<P_{1}, \ldots, P_{g-1}>\right) \leq V$, hence the projection of the point P_{i} onto the affine space $<P_{1}, \ldots, P_{i-1}>$ must lie in a shape of volume $2^{i-2} \cdot r_{1} \cdot \ldots \cdot r_{i-2}$ and the point P_{i} has Euclidean distance at most $\frac{(i-1)!\cdot V}{r_{1} \ldots \cdot r_{i-2}}$ from $\left\langle P_{1}, \ldots, P_{i-1}\right\rangle$, which happens with probability at most

$$
2^{i-2} \cdot r_{1} \cdot \ldots \cdot r_{i-2} \cdot C_{d-i+2} \cdot\left(\frac{(i-1)!\cdot V}{r_{1} \cdot \ldots \cdot r_{i-2}}\right)^{d-i+2}
$$

Thus for some constants $c_{i}^{*}, c_{i}^{* *}>0$ we infer

$$
\begin{aligned}
& \operatorname{Prob}\left(\operatorname{vol}\left(P_{1}, \ldots, P_{i}\right) \leq V\right) \\
\leq & \int_{r_{i-2}=0}^{\sqrt{d}} \ldots \int_{r_{1}=0}^{\sqrt{d}} 2^{i-2} \cdot C_{d-i+2} \cdot \frac{((i-1)!\cdot V)^{d-i+2}}{\left(r_{1} \cdot \ldots \cdot r_{i-2}\right)^{d-i+1}} . \\
& \cdot \prod_{g=1}^{i-2}\left(2^{g-1} \cdot r_{1} \cdot \ldots \cdot r_{g-1} \cdot(d-g+1) \cdot C_{d-g+1} \cdot r_{g}^{d-g}\right) d r_{i-2} \ldots d r_{1} \leq \\
\leq & c_{i}^{* *} \cdot V^{d-i+2} \cdot \int_{r_{i-2}=0}^{\sqrt{d}} \ldots \int_{r_{1}=0}^{\sqrt{d}} \prod_{g=1}^{i-2} r_{g}^{2 i-2 g-3} d r_{i-2} \ldots d r_{1} \\
\leq & c_{i}^{*} \cdot V^{d-i+2} \quad \text { as } 2 \cdot i-2 \cdot g-3>0 .
\end{aligned}
$$

Corollary 1. For $i=2, \ldots, k-1$ with $2 \leq k \leq d+1$ and constants $c_{i}^{\prime}, c_{k}^{\prime}>0$, it is

$$
\begin{equation*}
E\left(\left|\mathcal{E}_{i}\right|\right) \leq c_{i}^{\prime} \cdot N^{i-\gamma_{i}(d-i+2)} \quad \text { and } \quad E\left(\left|\mathcal{E}_{k}\right|\right) \leq c_{k}^{\prime} \cdot V_{0}^{d-k+2} \cdot N^{k} \tag{7}
\end{equation*}
$$

Proof. There are $\binom{N}{i}$ possibilities to choose i out of the N random points $P_{1}, \ldots, P_{N} \in[0,1]^{d}$, and by (5) from Lemma 1 with $V:=N^{-\gamma_{i}}$ for $i=$ $2, \ldots, k-1$ and $V:=V_{0}$ for $i=k$ the inequalities (7) follow.

Lemma 2. For $j=2, \ldots, k-1$ with $3 \leq k \leq d+1$ and constants $c_{2, j}^{\prime}>0$ it is

$$
\begin{equation*}
E\left(\left|B P_{j}(\mathcal{G})\right|\right) \leq c_{2, j}^{\prime} \cdot V_{0}^{2(d-k+2)} \cdot N^{2 k-j+\gamma_{j}(d-k+2)} \tag{8}
\end{equation*}
$$

Proof. For $j=2, \ldots, k-1$, we show the upper bound $O\left(V_{0}^{2(d-k+2)} \cdot N^{\gamma_{j}(d-k+2)}\right)$ on the probability that $2 k-j$ random points, chosen uniformly and independently of each other in $[0,1]^{d}$, yield a 'bad j-pair of simplices'. Since there are $\binom{N}{2 k-j}$ possibilities to choose $2 k-j$ out of the N random points $P_{1}, \ldots, P_{N} \in[0,1]^{d}$, the upper bound (8) follows. There are $\binom{2 k-j}{k}$ choices for k out of $2 k-j$ points and $\binom{k}{j}$ possibilities to choose the j common points, say the two simplices are determined by the points P_{1}, \ldots, P_{k} and $P_{1}, \ldots, P_{j}, Q_{j+1}, \ldots, Q_{k}$. By Lemma 1 we know that Prob $\left(\operatorname{vol}\left(P_{1}, \ldots, P_{k}\right) \leq V_{0}\right) \leq c_{k}^{*} \cdot V_{0}^{d-k+2}$. If $\left\{P_{1}, \ldots, P_{k}\right\} \in \mathcal{E}_{k}$, then by construction of our hypergraph \mathcal{G} we have $\operatorname{vol}\left(P_{1}, \ldots, P_{j}\right)>N^{-\gamma_{j}}$, and we condition on this in the following. Given the points $P_{1}, \ldots, P_{j}, Q_{j+1}, \ldots, Q_{g}$, $g=j, \ldots, k-1$, with $\operatorname{dist}\left(Q_{f} ;<P_{1}, \ldots, P_{j}, Q_{j+1}, \ldots, Q_{f-1}>\right)=r_{f}, f=$ $j+1, \ldots, g$, we infer for $g \leq k-2$:

$$
\begin{aligned}
& \operatorname{Prob}\left(r_{g} \leq \operatorname{dist}\left(Q_{g+1} ;<P_{1}, \ldots, P_{j}, Q_{j+1}, \ldots, Q_{g}>\right) \leq r_{g}+d r_{g}\right) \\
\leq & (\sqrt{d})^{g-1} \cdot(d+1-g) \cdot C_{d+1-g} \cdot r_{g}^{d-g} d r_{g}
\end{aligned}
$$

since all points Q_{g+1}, which satisfy dist $\left(Q_{g+1} ;<P_{1}, \ldots, P_{j}, Q_{j+1}, \ldots, Q_{g}>\right) \leq$ r, are contained in a product of a $(g-1)$-dimensional shape of volume at most $(\sqrt{d})^{g-1}$ and a $(d+1-g)$-dimensional ball of radius r.

For $g=k-1$, having fixed the points $P_{1}, \ldots, P_{j}, Q_{j+1}, \ldots, Q_{k-1} \in[0,1]^{d}$, to fulfill vol $\left(P_{1}, \ldots, P_{j}, Q_{j+1}, \ldots, Q_{k}\right) \leq V_{0}$, we must have
$\frac{(j-1)!}{(k-1)!} \cdot \operatorname{dist}\left(Q_{k} ;<P_{1}, \ldots, P_{j}, Q_{j+1}, \ldots, Q_{k-1}>\right) \cdot \operatorname{vol}\left(P_{1}, \ldots, P_{j}\right) \cdot \prod_{g=j}^{k-2} r_{g} \leq V_{0}$,
and, using vol $\left(P_{1}, \ldots, P_{j}\right)>N^{-\gamma_{j}}$, this happens with probability at most

$$
(\sqrt{d})^{k-2} \cdot C_{d-k+2} \cdot\left(\frac{(k-1)!}{(j-1)!} \cdot \frac{V_{0} \cdot N^{\gamma_{j}}}{\prod_{g=j}^{k-2} r_{g}}\right)^{d-k+2}
$$

Putting all these probabilities together, we obtain for constants $c_{2, j}^{*}, c_{2, j}^{* *}>0$ the following upper bound, which finishes the proof of Lemma 2:

$$
\begin{aligned}
& \operatorname{Prob}\left(\left\{P_{1}, \ldots, P_{k}\right\},\left\{P_{1}, \ldots, P_{j}, Q_{j+1}, \ldots, Q_{k}\right\} \text { is a 'bad } j\right. \text {-pair of simplices') } \\
\leq & c_{k}^{*} \cdot V_{0}^{d-k+2} \cdot \int_{r_{k-2}=0}^{\sqrt{d}} \ldots \int_{r_{j}=0}^{\sqrt{d}} d^{\frac{k-2}{2}} \cdot C_{d+2-k} \cdot \frac{(k-1)!^{d-k+2}}{(j-1)!^{d-k+2}} \cdot \\
& \cdot\left(\frac{V_{0} \cdot N^{\gamma_{j}}}{\prod_{g=j}^{k-2} r_{g}}\right)^{d-k+2} \cdot \prod_{g=j}^{k-2}\left(d^{\frac{g-1}{2}} \cdot(d+1-g) \cdot C_{d+1-g} \cdot r_{g}^{d-g}\right) d r_{k-2} \ldots d r_{j} \leq \\
\leq & c_{2, j}^{* *} \cdot V_{0}^{2(d-k+2)} \cdot N^{\gamma_{j}(d-k+2)} \cdot \int_{r_{k-2}=0}^{\sqrt{d}} \ldots \int_{r_{j}=0}^{\sqrt{d}} \prod_{g=j}^{k-2} r_{g}^{k-g-2} d r_{k-2} \ldots d r_{j} \\
\leq & c_{2, j}^{*} \cdot V_{0}^{2(d-k+2)} \cdot N^{\gamma_{j}(d-k+2)} \quad \text { as } k-g-2 \geq 0 .
\end{aligned}
$$

Using (7) and (8) and Markov's inequality, there exist $N=n^{1+\alpha}$ points in the unit-cube $[0,1]^{d}$ such that the corresponding hypergraph $\mathcal{G}=\left(V, \mathcal{E}_{2} \cup \cdots \cup \mathcal{E}_{k}\right)$ on $|V|=N$ vertices satisfies for $i, j=2, \ldots, k-1$ and $3 \leq k \leq d+1$:

$$
\begin{align*}
\left|\mathcal{E}_{i}\right| & \leq 2 k \cdot c_{i}^{\prime} \cdot N^{i-\gamma_{i}(d-i+2) d} \tag{9}\\
\left|\mathcal{E}_{k}\right| & \leq 2 k \cdot c_{k}^{\prime} \cdot V_{0}^{d-k+2} \cdot N^{k} \tag{10}\\
\left|B P_{j}(\mathcal{G})\right| & \leq 2 k \cdot c_{2, j}^{\prime} \cdot V_{0}^{2(d-k+2)} \cdot N^{2 k-j+\gamma_{j}(d-k+2)} . \tag{11}
\end{align*}
$$

By (10) the average degree $t^{k-1}:=k \cdot\left|\mathcal{E}_{k}\right| /|V|$ of $\mathcal{G}=\left(V, \mathcal{E}_{2} \cup \cdots \cup \mathcal{E}_{k}\right)$ among the edges from \mathcal{E}_{k} satisfies $t^{k-1} \leq 2 k^{2} \cdot c_{k}^{\prime} \cdot V_{0}^{d-k+2} \cdot N^{k-1}=: t_{0}^{k-1}$. For some suitable constant $\varepsilon>0$, we pick uniformly at random and independently of each other vertices from V with probability $p:=N^{\varepsilon} / t_{0} \leq 1$. Let $V^{*} \subseteq V$ be the random set of the chosen vertices, and let $\mathcal{G}^{*}=\left(V^{*}, \mathcal{E}_{2}^{*} \cup \cdots \cup \mathcal{E}_{k}^{*}\right)$ with $\mathcal{E}_{i}^{*}:=\mathcal{E}_{i} \cap\left[V^{*}\right]^{i}$, $i=2, \ldots, k$, be the resulting random induced subhypergraph of \mathcal{G}. By $(9)-(11)$ we infer for the expected numbers of vertices, i-element edges and 'bad j-pairs of simplices' in $\mathcal{G}^{*}, i, j=2, \ldots, k-1$, for constants $c_{1}, c_{i}, c_{2, j}, c_{k}>0$:

$$
\begin{aligned}
E\left(\left|V^{*}\right|\right) & =p \cdot N \geq c_{1} \cdot N^{\varepsilon} / V_{0}^{\frac{d-k+2}{k-1}} \\
E\left(\left|\mathcal{E}_{i}^{*}\right|\right) & =p^{i} \cdot\left|\mathcal{E}_{i}\right| \leq p^{i} \cdot 2 k \cdot c_{i}^{\prime} \cdot N^{i-\gamma_{i}(d-i+2)} \leq c_{i} \cdot N^{i \varepsilon-\gamma_{i}(d-i+2)} / V_{0}^{\frac{i(d-k+2)}{k-1}} \\
E\left(\left|\mathcal{E}_{k}^{*}\right|\right) & =p^{k} \cdot\left|\mathcal{E}_{k}\right| \leq p^{k} \cdot 2 k \cdot c_{k}^{\prime} \cdot V_{0}^{d-k+2} \cdot N^{k} \leq c_{k} \cdot N^{k \varepsilon} / V_{0}^{\frac{d-k+2}{k-1}} \\
E\left(\left|B P_{j}\left(\mathcal{G}^{*}\right)\right|\right) & =p^{2 k-j} \cdot\left|B P_{j}(\mathcal{G})\right| \leq c_{2, j} \cdot V_{0}^{\frac{(j-2)(d-k+2)}{k-1}} \cdot N^{(2 k-j) \varepsilon+\gamma_{j}(d-k+2)} .
\end{aligned}
$$

By Chernoff's and Markov's inequality there exists an induced subhypergraph $\mathcal{G}^{*}=\left(V^{*}, \mathcal{E}_{2}^{*} \cup \cdots \cup \mathcal{E}_{k}^{*}\right)$ of \mathcal{G}, such that for $i, j=2, \ldots, k-1$:

$$
\begin{align*}
\left|V^{*}\right| & \geq\left(c_{1}-o(1)\right) \cdot N^{\varepsilon} / V_{0}^{\frac{d-k+2}{k-1}} \tag{12}\\
\left|\mathcal{E}_{i}^{*}\right| & \leq 2 k \cdot c_{i} \cdot N^{i \varepsilon-\gamma_{i}(d-i+2)} / V_{0}^{\frac{i(d-k+2)}{k-1}} \tag{13}\\
\left|\mathcal{E}_{k}^{*}\right| & \leq 2 k \cdot c_{k} \cdot N^{k \varepsilon} / V_{0}^{\frac{d-k+2}{k-1}} \tag{14}\\
\left|B P_{j}\left(\mathcal{G}^{*}\right)\right| & \leq 2 k \cdot c_{2, j} \cdot V_{0}^{\frac{(j-2)(d-k+2)}{k-1}} \cdot N^{(2 k-j) \varepsilon+\gamma_{j}(d-k+2)} . \tag{15}
\end{align*}
$$

Now we set for some suitable constant $c^{*}>0$:

$$
\begin{equation*}
V_{0}:=c^{*} \cdot(\log n)^{\frac{1}{d^{-k+2}}} / n^{\frac{k-1}{d-k+2}} . \tag{16}
\end{equation*}
$$

Lemma 3. For $j=2, \ldots, k-1$ and for fixed $0<\varepsilon<(j-1) /((2 k-j-1) \cdot(1+$ $\alpha))-\gamma_{j} \cdot(d-k+2) /(2 k-j-1)$ it is $\left|B P_{j}\left(\mathcal{G}^{*}\right)\right|=o\left(\left|V^{*}\right|\right)$.

Proof. Using (12), (15) and (16) with $N=n^{1+\alpha}$, where $\alpha, \gamma_{j}>0$ are constants, $j=2, \ldots, k-1$, we have

$$
\begin{aligned}
& \left|B P_{j}\left(\mathcal{G}^{*}\right)\right|=o\left(\left|V^{*}\right|\right) \\
\Longleftarrow & V_{0}^{\frac{(j-2)(d-k+2)}{k-1}} \cdot N^{(2 k-j) \varepsilon+\gamma_{j}(d-k+2)}=o\left(N^{\varepsilon} / V_{0}^{\frac{d-k+2}{k-1}}\right) \\
\Longleftrightarrow & V_{0}^{\frac{(j-1)(d-k+2)}{k-1}} \cdot N^{(2 k-j-1) \varepsilon+\gamma_{j}(d-k+2)}=o(1) \\
\Longleftrightarrow & n^{(1+\alpha)\left((2 k-j-1) \varepsilon+\gamma_{j}(d-k+2)\right)-(j-1)} \cdot \log ^{\frac{j-1}{k-1}} n=o(1) \\
\Longleftarrow & \varepsilon<\frac{j-1}{(2 k-j-1) \cdot(1+\alpha)}-\frac{\gamma_{j} \cdot(d-k+2)}{2 k-j-1} .
\end{aligned}
$$

Lemma 4. For $i=2, \ldots, k-1$ and fixed $0<\varepsilon \leq \gamma_{i} \cdot(d-i+2) /(i-1)-1 /(1+\alpha)$ it is $\left|\mathcal{E}_{i}^{*}\right|=o\left(\left|V^{*}\right|\right)$.

Proof. By (12), (13) and (16), using $N=n^{1+\alpha}$, we infer

$$
\begin{aligned}
& \left|\mathcal{E}_{i}^{*}\right|=o\left(\left|V^{*}\right|\right) \\
\Longleftarrow & N^{i \varepsilon-\gamma_{i}(d-i+2)} / V_{0}^{\frac{i(d-k+2)}{k-1}}=o\left(N^{\varepsilon} / V_{0}^{\frac{d-k+2}{k-1}}\right) \\
\Longleftrightarrow & N^{(i-1) \varepsilon-\gamma_{i}(d-i+2)} / V_{0}^{\frac{(i-1)(d-k+2)}{k-1}}=o(1) \\
\Longleftrightarrow & n^{(1+\alpha)\left((i-1) \varepsilon-\gamma_{i}(d-i+2)\right)+(i-1)} / \log ^{\frac{i-1}{k-1}} n=o(1) \\
\Longleftarrow & \varepsilon \leq \frac{\gamma_{i} \cdot(d-i+2)}{i-1}-\frac{1}{1+\alpha} .
\end{aligned}
$$

The assumptions in Lemmas 3 and 4 are satisfied for $\gamma_{j}:=(j-1) /((d-k+$ $5 / 2)(1+\alpha)), j=2, \ldots, k-1$, and $\varepsilon:=1 /(4 k d(1+\alpha))$ and $\alpha:=1 /(4 k d)$, also $p=N^{\varepsilon} / t_{0} \leq 1$ holds. In the induced subhypergraph $\mathcal{G}^{*}=\left(V^{*}, \mathcal{E}_{2}^{*} \cup \cdots \cup \mathcal{E}_{k}^{*}\right)$ we delete one vertex from each i-element edge and from each 'bad j-pair of
simplices', $i, j=2, \ldots, k-1$. Let $V^{* *} \subseteq V^{*}$ be the set of remaining vertices. The on $V^{* *}$ induced subhypergraph $\mathcal{G}^{* *}$ of \mathcal{G}^{*} is k-uniform, hence $\mathcal{G}^{* *}=\left(V^{* *}, \mathcal{E}_{k}^{* *}\right)$ with $\mathcal{E}_{k}^{* *}:=\left[V^{* *}\right]^{k} \cap \mathcal{E}_{k}^{*}$, and fulfills $\left|V^{* *}\right|=(1-o(1)) \cdot\left|V^{*}\right|$ by Lemmas 3 and 4 . By (12) and (14) we have $\left|V^{* *}\right| \geq c_{1} / 2 \cdot N^{\varepsilon} / V_{0}^{(d-k+2) /(k-1)}$ and $\left|\mathcal{E}_{k}^{* *}\right| \leq\left|\mathcal{E}_{k}^{*}\right| \leq$ $2 k \cdot c_{k} \cdot N^{k \varepsilon} / V_{0}^{(d-k+2) /(k-1)}$, hence $\mathcal{G}^{* *}$ has average degree $t^{k-1}=k \cdot\left|\mathcal{E}_{k}^{* *}\right| /\left|V^{* *}\right| \leq$ $\left(4 k^{2} \cdot c_{k} / c_{1}\right) \cdot N^{(k-1) \varepsilon}=: t_{1}^{k-1}$. Now the assumptions of Theorem 2 are fulfilled by the k-uniform subhypergraph $\mathcal{G}^{* *}$ of \mathcal{G}, as it is linear, and with (4) we obtain for constants $c_{k}^{*}, c^{\prime}, c_{1}, c_{k}, c^{*}>0$:

$$
\begin{aligned}
& \alpha(\mathcal{G}) \geq \alpha\left(\mathcal{G}^{* *}\right) \geq c_{k}^{*} \cdot \frac{\left|V^{* *}\right|}{t} \cdot \log ^{1 /(k-1)} t \geq c_{k}^{*} \cdot \frac{\left|V^{* *}\right|}{t_{1}} \cdot \log ^{1 /(k-1)} t_{1} \geq \\
\geq & c_{k}^{*} \cdot \frac{c_{1}^{k /(k-1)} \cdot N^{\varepsilon} / V_{0}^{(d-k+2) /(k-1)}}{2 \cdot\left(4 k^{2} \cdot c_{k}\right)^{1 /(k-1)} \cdot N^{\varepsilon}} \cdot\left(\log \left(\frac{4 k^{2} \cdot c_{k}}{c_{1}} \cdot N^{(k-1) \varepsilon}\right)^{\frac{1}{k-1}}\right)^{\frac{1}{k-1}} \\
\geq & c^{\prime} \cdot \log ^{1 /(k-1)} n / V_{0}^{(d-k+2) /(k-1)} \\
\geq & c^{\prime} \cdot\left(1 / c^{*}\right)^{(d-k+2) /(k-1)} \cdot \log ^{1 /(k-1)} n \cdot \frac{n}{\log ^{1 /(k-1)} n} \geq n, \quad \text { as } N=n^{1+\alpha}
\end{aligned}
$$

where the last inequality follows by choosing in (16) a sufficiently small constant $c^{*}>0$. Thus the hypergraph \mathcal{G} contains an independent set $I \subseteq V$ with $|I|=n$. These n vertices yield n points in $[0,1]^{d}$, such that each k-point simplex arising from these points has volume bigger than V_{0}, i.e. $\Delta_{k, d}(n)=$ $\Omega\left((\log n)^{1 /(d-k+2)} / n^{(k-1) /(d-k+2)}\right)$, which finishes the proof of (3).

3 An Upper Bound on $\Delta_{k, d}(n)$

Here we show the upper bounds in Theorem 1, namely that for fixed $2 \leq k \leq$ $d+1$ and constants $c_{k}^{\prime}, c_{k}^{\prime \prime}>0$ it is $\Delta_{k, d}(n) \leq c_{k}^{\prime} / n^{(k-1) / d}$, moreover $\Delta_{k, d}(n) \leq$ $c_{k}^{\prime \prime} / n^{(k-1) / d+(k-2) /(2 d(d-1))}$ for k even.

Proof. We prove first that $\Delta_{k, d}(n) \leq c_{k}^{\prime} / n^{(k-1) / d}$ for some constant $c_{k}^{\prime}>0$ and $2 \leq k \leq d+1$. Given any n points $P_{1}, P_{2}, \ldots, P_{n} \in[0,1]^{d}$, for some value $D>0$ we construct a graph $G=G(D)=(V, E)$ with vertex set $V=\{1,2, \ldots, n\}$, where vertex i corresponds to the point $P_{i} \in[0,1]^{d}$, and edge set E with $\{i, j\} \in E$ being an edge if and only if $\operatorname{dist}\left(P_{i}, P_{j}\right) \leq D$. An independent set $I \subseteq V$ in this graph $G=G(D)$ yields a subset $I^{\prime} \subseteq\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$ of points in $[0,1]^{d}$ with Euclidean distance between any two distinct points bigger than D. Each ball $B_{r}(P)$ with center $P \in[0,1]^{d}$ and radius $r \leq 1$ satisfies $\operatorname{vol}\left(B_{r}(P) \cap[0,1]^{d}\right) \geq \operatorname{vol}\left(B_{r}(P)\right) / 2^{d}$. The balls with radius $D / 2$ and centers from an independent set I^{\prime} have pairwise empty intersection. As each ball $B_{D / 2}(P)$ has volume $C_{d} \cdot(D / 2)^{d}$, we infer $\left|I^{\prime}\right| \cdot C_{d} \cdot(D / 2)^{d} / 2^{d} \leq \operatorname{vol}\left([0,1]^{d}\right)=1$, and hence the independence number $\alpha(G)$ of G satisfies

$$
\begin{equation*}
\alpha(G) \leq \frac{4^{d}}{C_{d} \cdot D^{d}} \tag{17}
\end{equation*}
$$

For $D:=c / n^{1 / d}$ with $c:=\left(2 \cdot(k-1) \cdot 4^{d} / C_{d}\right)^{1 / d}$ a constant, the average degree t of $G(D)$ satisfies $t \geq 1$ for $n \geq 2^{d+1}$, hence by Turán's theorem, $\alpha(G) \geq n /(2 \cdot t)$. With (17) this yields

$$
\begin{equation*}
\frac{4^{d}}{C_{d} \cdot D^{d}} \geq \alpha(G) \geq \frac{n}{2 \cdot t} \quad \Longrightarrow \quad t \geq \frac{C_{d}}{2 \cdot 4^{d}} \cdot n \cdot D^{d} \geq k-1 \tag{18}
\end{equation*}
$$

Hence there exists a vertex $i_{1} \in V$ and $k-1$ edges $\left\{i_{1}, i_{2}\right\}, \ldots,\left\{i_{1}, i_{k}\right\} \in E$ incident at vertex i_{1}. By construction, each point $P_{i_{j}} \in[0,1]^{d}, j=2, \ldots, k$, satisfies dist $\left(P_{i_{1}}, P_{i_{j}}\right) \leq D$, thus dist $\left(P_{i_{j}} ;<P_{i_{1}}, P_{i_{2}}, \ldots, P_{i_{j-1}}>\right) \leq c / n^{1 / d}$ for $j=2, \ldots, k$, which implies vol $\left(P_{i_{1}}, \ldots, P_{i_{k}}\right) \leq(1 /(k-1)!) \cdot c^{k-1} / n^{(k-1) / d}$, i.e. $\Delta_{k, d}(n)=O\left(1 / n^{(k-1) / d}\right)$.
For even $k \geq 4$ we are able to prove a better upper bound. From (18) we obtain $|E|=n \cdot t / 2 \geq C_{d} \cdot n^{2} \cdot D^{d} / 4^{d+1}$. Now let $c:=\left(d \cdot 4^{d+1} / C_{d-1}\right)^{1 / d}$ and $D:=1 / n^{1 / d}$. We adapt an argument of Brass [6]. Each edge $\{i, j\} \in E$ determines a direction $\left(P_{i} P_{j}\right)$, which can be viewed as a vector of length 1 . The minimum angular distance between these directions is at most

$$
\left(\frac{d \cdot C_{d}}{C_{d-1} \cdot|E|}\right)^{1 /(d-1)} \leq\left(\frac{d \cdot 4^{d+1}}{C_{d-1} \cdot c^{d} \cdot n}\right)^{1 /(d-1)} \leq \frac{1}{n^{1 /(d-1)}}
$$

Thus for some constant $c(d)>0$ there exist $\binom{k}{2}$ directions $\left(P_{i} P_{j}\right),\{i, j\} \in E$, with pairwise angular distance at most $\phi:=c(d) / n^{1 /(d-1)}$. The corresponding set $E^{*} \subseteq E$ of edges covers a subset $S \subseteq V$ of at least k vertices G. Consider a minimum subset $E^{* *} \subseteq E^{*}$ of edges, which covers a subset $S^{*} \subseteq S$ of exactly k vertices. This set $E^{* *}$ contains only independent edges and stars. We pick one vertex from each independent edge $E \in E^{* *}$ and the center of each star. Let $S^{* *} \subseteq S^{*}$ be the set of chosen vertices with $\left|S^{* *}\right|=s \leq k / 2$.
For each vertex $v \in S^{*} \backslash S^{* *}$ there exists an edge $\{v, w\} \in E^{* *}$ for some vertex $w \in S^{* *}$, hence dist $\left(P_{v}, P_{w}\right) \leq D$. Thus for each vertex $u \in S^{*} \backslash\left(S^{* *} \cup\{v\}\right)$ there is some vertex $t \in S^{* *} \cup\{w\}$ such that the angular distance between the directions $\left(P_{u} P_{t}\right)$ and $\left(P_{w} P_{v}\right)$ is at most ϕ. Thus, the Euclidean distance between the point P_{u} and the affine space generated by the points $P_{r}, r \in S^{* *} \cup\{v\}$, is at most D. With $D=c / n^{1 / d}$ and $\sin \phi \leq \phi$ for $\phi \geq 0$, and $(s-1)!\cdot \operatorname{vol}\left(S^{* *}\right) \leq(\sqrt{d})^{s-1}$ we obtain for the volume of the simplex determined by the k points $P_{s}, s \in S^{*}$, the following upper bound, which finishes the proof of Theorem 1:

$$
\begin{aligned}
& \operatorname{vol}\left(P_{s^{*}} ; s^{*} \in S^{*}\right) \leq \frac{1}{(k-1)!} \cdot(\sqrt{d})^{s-1} \cdot D \cdot(D \cdot \sin \phi)^{k-s-1} \leq \\
\leq & \frac{1}{(k-1)!} \cdot d^{(k-2) / 4} \cdot D \cdot\left(D \cdot c(d) / n^{1 /(d-1)}\right)^{k / 2-1}=\frac{d^{(k-2) / 4} \cdot c(k)^{k / 2-1}}{(k-1)!\cdot n^{\frac{k-1}{d}+\frac{k-2}{2 d(d-1)}}} \cdot
\end{aligned}
$$

4 Concluding Remarks

Our arguments together with an algorithmic version of Theorem 2, see [4], yield a randomized polynomial time algorithm for obtaining a distribution of n points
in $[0,1]^{d}$, which shows $\Delta_{k, d}(n)=\Omega\left((\log n)^{1 /(k-1)} / n^{(k-1) /(d-k+2)}\right)$ for fixed $3 \leq$ $k \leq d+1$. It might be of interest to have a deterministic polynomial time algorithm achieving this lower bound, as well as investigating the case $k>d+1$, compare [13] for the case of dimension $d=2$.

References

1. M. Ajtai, J. Komlós, J. Pintz, J. Spencer and E. Szemerédi, Extremal Uncrowded Hypergraphs, Journal of Combinatorial Theory Ser. A, 32, 1982, 321-335.
2. G. Barequet, A Lower Bound for Heilbronn's Triangle Problem in d Dimensions, SIAM Journal on Discrete Mathematics 14, 2001, 230-236.
3. G. Barequet, The On-Line Heilbronn's Triangle Problem in Three and Four Dimensions, Proc. 8rd Annual International Computing and Combinatorics Conference COCOON'2002, LNCS 2387, Springer, 2002, 360-369.
4. C. Bertram-Kretzberg and H. Lefmann, The Algorithmic Aspects of Uncrowded Hypergraphs, SIAM Journal on Computing 29, 1999, 201-230.
5. C. Bertram-Kretzberg, T. Hofmeister and H. Lefmann, An Algorithm for Heilbronn's Problem, SIAM Journal on Computing 30, 2000, 383-390.
6. P. Brass, An Upper Bound for the d-Dimensional Heilbronn Triangle Problem, SIAM Journal on Discrete Mathenmatics, to appear.
7. R. A. Duke, H. Lefmann and V. Rödl, On Uncrowded Hypergraphs, Random Structures \& Algorithms 6, 1995, 209-212.
8. T. Jiang, M. Li and P. Vitany, The Average Case Area of Heilbronn-type Triangles, Random Structures \& Algorithms 20, 2002, 206-219.
9. J. Komlós, J. Pintz and E. Szemerédi, On Heilbronn's Triangle Problem, Journal of the London Mathematical Society, 24, 1981, 385-396.
10. J. Komlós, J. Pintz and E. Szemerédi, A Lower Bound for Heilbronn's Problem, Journal of the London Mathematical Society, 25, 1982, 13-24.
11. H. Lefmann, On Heilbronn's Problem in Higher Dimension, Combinatorica 23, 2003, 669-680.
12. H. Lefmann, Large Triangles in the d-Dimensional Unit-Cube, Proc. 10th Annual International Conference Computing and Combinatorics COCOON'2004, eds. K.Y. Chwa and J. I. Munro, LNCS 3106, Springer, 2004, 43-52.
13. H. Lefmann, Distributions of Points in the Unit-Square and Large k-Gons, Proc. 16th Symposium on Discrete Algorithms SODA'2005, ACM and SIAM, 241-250.
14. H. Lefmann and N. Schmitt, A Deterministic Polynomial Time Algorithm for Heilbronn's Problem in Three Dimensions, SIAM Journal on Computing 31, 2002, 1926-1947.
15. K. F. Roth, On a Problem of Heilbronn, Journal of the London Mathematical Society 26, 1951, 198-204.
16. K. F. Roth, On a Problem of Heilbronn, II and III, Proc. of the London Mathematical Society (3), 25, 1972, 193-212 and 543-549.
17. K. F. Roth, Estimation of the Area of the Smallest Triangle Obtained by Selecting Three out of n Points in a Disc of Unit Area, Proc. of Symposia in Pure Mathematics, 24, 1973, AMS, Providence, 251-262.
18. K. F. Roth, Developments in Heilbronn's Triangle Problem, Advances in Mathematics, 22, 1976, 364-385.
19. W. M. Schmidt, On a Problem of Heilbronn, Journal of the London Mathematical Society (2), 4, 1972, 545-550.
