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Abstract. We consider a variant of Heilbronn’s triangle problem by
asking for fixed dimension d ≥ 2 and for fixed integers k ≥ 3 with k ≤ d+
1 for a distribution of n points in the d-dimensional unit-cube [0, 1]d such
that the minimum volume of a k-point simplex among these n points is
as large as possible. Denoting by ∆k,d(n) the supremum of the minimum
volume of a k-point simplex among n points over all distributions of n
points in [0, 1]d we will show that ck · (logn)1/(d−k+2)/n(k−1)/(d−k+2) ≤
∆k,d(n) ≤ c′k/n

(k−1)/d for 3 ≤ k ≤ d + 1, and moreover ∆k,d(n) ≤
c′′k/n

(k−1)/d+(k−2)/(2d(d−1)) for k ≥ 4 even, and constants ck, c
′
k, c
′′
k > 0.

1 Introduction

For integers n ≥ 3, Heilbronn’s problem asks for the supremum ∆2(n) of the
minimum area of a triangle formed by three of n points over all distributions
of n points in the unit-square [0, 1]2. For primes n, the points Pk = 1/n ·
(k mod n, k2 mod n), k = 0, 1, . . . , n − 1, show that ∆2(n) = Ω(1/n2). Komlós,
Pintz and Szemerédi [10] improved this to ∆2(n) = Ω(log n/n2), see [5] for a
deterministic polynomial time algorithm achieving this lower bound on ∆2(n),
which is currently the best known. Upper bounds were proved in a series of pa-
pers by Roth [15–18] and Schmidt [19]. The currently best known upper bound is
due to Komlós, Pintz and Szemerédi [9], who proved ∆2(n) = O(2c

√
logn/n8/7)

for some constant c > 0. We remark that for n points chosen uniformly at ran-
dom and independently of each other from [0, 1]2, the expected value of the
minimum area of a triangle among these n points is Θ(1/n3), as was shown by
Jiang, Li and Vitany [8].
A variant of Heilbronn’s problem considered by Barequet asks, given a fixed
dimension d ≥ 2, for the supremum ∆d+1,d(n) of the minimum volume of a (d+
1)-point simplex among n points in the d-dimensional unit-cube [0, 1]d over all
distributions of n points in [0, 1]d. He showed in [2] the lower bound ∆d+1,d(n) =
Ω(1/nd), which was improved in [11] to ∆d+1,d(n) = Ω(log n/nd). In [14], a
deterministic polynomial time algorithm was given achieving this lower bound
on ∆4,3(n). Recently, Brass [6] improved the known upper bound ∆d+1,d(n) =
O(1/n) to ∆d+1,d(n) = O(1/n(2d+1)/(2d)) for odd d ≥ 3. Moreover, an on-line
version of this variant was investigated in [3] for dimensions d = 3, 4.
Here we consider the following generalization of Heilbronn’s problem: given fixed
integers d, k with 3 ≤ k ≤ d + 1, find for any integer n ≥ k a distribution of n



points in the d-dimensional unit-cube [0, 1]d such that the minimum volume of a
k-point simplex among these n points is as large as possible. Let ∆k,d(n) denote
the corresponding supremum values – over all distributions of n points in [0, 1]d

– on the minimum volume of a k-point simplex among n points in [0, 1]d.
The parameter ∆3,d(n), i.e. areas of triangles in [0, 1]d, was investigated by this
author in [12], where it was shown that c3 · (log n)1/(d−1)/n2/(d−1) ≤ ∆3,d(n) ≤
c′3/n

2/d for constants c3, c′3 > 0. Here we prove the following bounds.

Theorem 1. Let d, k be fixed integers with 3 ≤ k ≤ d+ 1. Then, for constants
ck, c

′
k, c
′′
k > 0, which depend on k, d only, for every integer n ≥ k it is

ck ·
(log n)1/(d−k+2)

n(k−1)/(d−k+2)
≤ ∆k,d(n) ≤ c′k

n(k−1)/d
for k odd (1)

ck ·
(log n)1/(d−k+2)

n(k−1)/(d−k+2)
≤ ∆k,d(n) ≤ c′′k

n(k−1)/d+(k−2)/(2d(d−1))
for k even. (2)

For d = 2 and k = 3, the lower bound (1) is just the result from [10]. For
k = d + 1, this yields the bounds from [6] and [11]. Indeed, our arguments for
proving Theorem 1 yield a randomized polynomial time algorithm, which finds
a distribution of n points in [0, 1]d achieving these lower bounds.

2 A Lower Bound on ∆k,d(n)

Fist we introduce some notation which is used throughout this paper.
Let dist (Pi, Pj) be the Euclidean distance between the points Pi and Pj . A sim-
plex given by k points P1, . . . , Pk ∈ [0, 1]d is the set of all points P1+

∑k
i=2 λi·(Pi−

P1) with λi ≥ 0, i = 2, . . . , k, and
∑k
i=2 λi ≤ 1. The (k−1)-dimensional volume of

a k-point simplex determined by the points P1, . . . , Pk ∈ [0, 1]d, 2 ≤ k ≤ d+ 1, is
defined by vol (P1, . . . , Pk) := 1/(k−1)!·

∏k
j=2 dist (Pj ;< P1, . . . , Pj−1 >), where

dist (Pj ;< P1, . . . , Pj−1 >) denotes the Euclidean distance of the point Pj from
the affine space < P1, . . . , Pj−1 > generated by P1, . . . , Pj−1 with < P1 >:= P1.
In our arguments we will use hypergraphs. A hypergraph G = (V, E) with vertex
set V and edge set E is k-uniform if |E| = k for all edges E ∈ E . A subset I ⊆ V
of the vertex set V is independent if I contains no edges from E . The largest size
|I| of an independent set in G is the independence number α(G). A hypergraph
G = (V, E) is linear if |E ∩ E′| ≤ 1 for all distinct edges E,E′ ∈ E .
First we prove the lower bound in (1), (2) from Theorem 1, namely that

∆k,d(n) ≥ ck · (log n)1/(d−k+2)/n(k−1)/(d−k+2) . (3)

Proof. Let d, k be fixed integers with 3 ≤ k ≤ d+1. For arbitrary integers n ≥ k
and a suitable constant α > 0, we select uniformly at random and independently
of each other N := n1+α points P1, P2, . . . , PN from [0, 1]d.
For certain values Dj := N−γj for some constants γj > 0, j = 2, . . . , k − 1,
and some value V0 > 0, where all these will be fixed later, we form a random
hypergraph G = G(D2, . . . , Dk−1, V0) = (V, E2 ∪ · · · ∪ Ek) with vertex set V =



{1, 2, . . . , N}, where vertex i corresponds to the random point Pi ∈ [0, 1]d, and
with j-element edges, j = 2, . . . , k. For j = 2, . . . , k−1, let {i1, . . . , ij} ∈ Ej be a
j-element edge if and only if vol (Pi1 , . . . , Pij ) ≤ Dj . Moreover, let {i1, . . . , ik} ∈
Ek be a k-element edge if and only if vol (Pi1 , . . . , Pik) ≤ V0 and {i1, . . . , ik} does
not contain any j-element edges E ∈ Ej for j = 2, . . . , k − 1. An independent
set I ⊆ V in this hypergraph G yields |I| many points in [0, 1]d such that each
k-point simplex among these |I| points has volume bigger than V0. Our aim is
to show the existence of a large independent set I ⊆ V in G. For doing so, we
will use a result on the independence number of linear k-uniform hypergraphs
due to Ajtai, Komlós, Pintz, Spencer and Szemerédi [1], see [7].

Theorem 2. [1, 7] Let k ≥ 3 be a fixed integer. Let G = (V, E) be a k-uniform
hypergraph on |V | = n vertices with average degree tk−1 = k · |E|/|V |. If G is
linear, then for some constant c∗k > 0 its independence number α(G) satisfies

α(G) ≥ c∗k ·
n

t
· log

1
k−1 t . (4)

The difficulty in our arguments is, to find a certain subhypergraph of our random
non-uniform hypergraph G to which we can apply Theorem 2. For doing so,
we will select a random induced subhypergraph G∗ of G by controling certain
parameters of G∗. For j = 2, . . . , k−1, let |BPj(G)| be a random variable counting
the number of ‘bad j-pairs of simplices’ in G, which are among the N random
points P1, . . . , PN ∈ [0, 1]d those unordered pairs of k-point simplices arising
from Ek, which share j vertices. We will show that in the random nonuniform
hypergraph G the expected numbers E(|Ei|) and E(|BPj(G)|) of i-element edges
and of ‘bad j-pairs of simplices’ arising from Ek, respectively, i, j = 2, . . . , k− 1,
are not too big. Then in a certain induced subhypergraph of G, which will be
obtained by a random selection of vertices from V , we will delete one vertex
from each i-element edge E ∈ Ei and from each ‘bad j-pair of simplices’ arising
from Ek, i, j = 2, . . . , k − 1. This yields a k-uniform linear subhypergraph G∗ =
(V ∗, E∗k ) of G, thus G∗ fulfills the assumptions of Theorem 2 and then we can
apply it.

Lemma 1. For i = 2, . . . , k with 2 ≤ k ≤ d+ 1 and random points P1, . . . , Pi ∈
[0, 1]d for constants c∗i > 0 and a real V > 0 it is

Prob (vol (P1, . . . , Pi) ≤ V ) ≤ c∗i · V d−i+2 . (5)

Proof. Let P1, . . . , Pi be i random points in [0, 1]d. We may assume that the i
points are numbered in such a way that for 2 ≤ g ≤ h ≤ i it is

dist (Pg;< P1, . . . , Pg−1 >) ≥ dist (Ph;< P1, . . . , Pg−1 >) . (6)

The point P1 can be anywhere in [0, 1]d. Given the point P1, the probability,
that its Euclidean distance from the point P2 ∈ [0, 1]d is within the infinitesimal
range [r1, r1 + dr1], is at most the difference of the volumes of the d-dimensional
balls with center P1 and with radii (r1 + dr1) and r1, respectively, hence

Prob (r1 ≤ dist (P1, P2) ≤ r1 + dr1) ≤ d · Cd · rd−1
1 dr1 ,



where throughout this paper Cd denotes the value of the volume of the d-
dimensional unit-ball in Rd with C1 := 2.
Given the points P1 and P2 with dist (P1, P2) = r1, the probability that the
distance dist (P3;< P1, P2 >) of the point P3 ∈ [0, 1]d from the line < P1, P2 >
is within the infinitesimal range [r2, r2 + dr2] is at most the difference of the
volumes of cylinders centered at the line < P1, P2 > with radii r2 + dr2 and r2,
respectively, and, by assumption (6), with height 2 · r1 = 2 · dist (P1, P2), thus

Prob (r2 ≤ dist (P3;< P1, P2 >) ≤ r2 + dr2) ≤ 2 · r1 · (d− 1) · Cd−1 · rd−2
2 dr2.

In general, by condition (6), given the points P1, . . . , Pg, g < i, with dist (Pf ;<
P1, . . . , Pf−1 >) = rf−1 for f = 2, . . . , g, the projection of the point Pg+1 onto
the affine space < P1, . . . , Pf > must lie in a shape of volume at most 2f−1 · r1 ·
. . . · rf−1. Hence for g < i− 1 we obtain

Prob (rg ≤ dist (Pg+1;< P1, . . . , Pg >) ≤ rg + drg)
≤ 2g−1 · r1 · . . . · rg−1 · (d− g + 1) · Cd−g+1 · rd−gg drg .

For g = i− 1, however, to satisfy vol (P1, . . . , Pi) ≤ V , we must have 1/(i− 1)! ·∏i
g=2 dist (Pg;< P1, . . . , Pg−1 >) ≤ V , hence the projection of the point Pi onto

the affine space < P1, . . . , Pi−1 > must lie in a shape of volume 2i−2 ·r1 · . . . ·ri−2

and the point Pi has Euclidean distance at most (i−1)!·V
r1·...·ri−2

from < P1, . . . , Pi−1 >,
which happens with probability at most

2i−2 · r1 · . . . · ri−2 · Cd−i+2 ·
(

(i− 1)! · V
r1 · . . . · ri−2

)d−i+2

.

Thus for some constants c∗i , c
∗∗
i > 0 we infer

Prob (vol (P1, . . . , Pi) ≤ V )

≤
∫ √d
ri−2=0

. . .

∫ √d
r1=0

2i−2 · Cd−i+2 ·
((i− 1)! · V )d−i+2

(r1 · . . . · ri−2)d−i+1
·

·
i−2∏
g=1

(
2g−1 · r1 · . . . · rg−1 · (d− g + 1) · Cd−g+1 · rd−gg

)
dri−2 . . . dr1 ≤

≤ c∗∗i · V d−i+2 ·
∫ √d
ri−2=0

. . .

∫ √d
r1=0

i−2∏
g=1

r2i−2g−3
g dri−2 . . . dr1

≤ c∗i · V d−i+2 as 2 · i− 2 · g − 3 > 0. ut

Corollary 1. For i = 2, . . . , k − 1 with 2 ≤ k ≤ d+ 1 and constants c′i, c
′
k > 0,

it is

E(|Ei|) ≤ c′i ·N i−γi(d−i+2) and E(|Ek|) ≤ c′k · V d−k+2
0 ·Nk . (7)

Proof. There are
(
N
i

)
possibilities to choose i out of the N random points

P1, . . . , PN ∈ [0, 1]d, and by (5) from Lemma 1 with V := N−γi for i =
2, . . . , k − 1 and V := V0 for i = k the inequalities (7) follow. ut



Lemma 2. For j = 2, . . . , k − 1 with 3 ≤ k ≤ d+ 1 and constants c′2,j > 0 it is

E(|BPj(G)|) ≤ c′2,j · V
2(d−k+2)
0 ·N2k−j+γj(d−k+2) . (8)

Proof. For j = 2, . . . , k−1, we show the upper bound O(V 2(d−k+2)
0 ·Nγj(d−k+2))

on the probability that 2k−j random points, chosen uniformly and independently
of each other in [0, 1]d, yield a ‘bad j-pair of simplices’. Since there are

(
N

2k−j
)

possibilities to choose 2k − j out of the N random points P1, . . . , PN ∈ [0, 1]d,
the upper bound (8) follows. There are

(
2k−j
k

)
choices for k out of 2k− j points

and
(
k
j

)
possibilities to choose the j common points, say the two simplices are

determined by the points P1, . . . , Pk and P1, . . . , Pj , Qj+1, . . . , Qk. By Lemma 1
we know that Prob (vol (P1, . . . , Pk) ≤ V0) ≤ c∗k · V

d−k+2
0 . If {P1, . . . , Pk} ∈ Ek,

then by construction of our hypergraph G we have vol (P1, . . . , Pj) > N−γj , and
we condition on this in the following. Given the points P1, . . . , Pj , Qj+1, . . . , Qg,
g = j, . . . , k − 1, with dist (Qf ;< P1, . . . , Pj , Qj+1, . . . , Qf−1 >) = rf , f =
j + 1, . . . , g, we infer for g ≤ k − 2:

Prob (rg ≤ dist (Qg+1;< P1, . . . , Pj , Qj+1, . . . , Qg >) ≤ rg + drg)

≤ (
√
d)g−1 · (d+ 1− g) · Cd+1−g · rd−gg drg ,

since all points Qg+1, which satisfy dist (Qg+1;< P1, . . . , Pj , Qj+1, . . . , Qg >) ≤
r, are contained in a product of a (g − 1)-dimensional shape of volume at most
(
√
d)g−1 and a (d+ 1− g)-dimensional ball of radius r.

For g = k − 1, having fixed the points P1, . . . , Pj , Qj+1, . . . , Qk−1 ∈ [0, 1]d, to
fulfill vol (P1, . . . , Pj , Qj+1, . . . , Qk) ≤ V0, we must have

(j − 1)!
(k − 1)!

·dist (Qk;< P1, . . . , Pj , Qj+1, . . . , Qk−1 >)·vol (P1, . . . , Pj)·
k−2∏
g=j

rg ≤ V0 ,

and, using vol (P1, . . . , Pj) > N−γj , this happens with probability at most

(
√
d)k−2 · Cd−k+2 ·

(
(k − 1)!
(j − 1)!

· V0 ·Nγj∏k−2
g=j rg

)d−k+2

.



Putting all these probabilities together, we obtain for constants c∗2,j , c
∗∗
2,j > 0 the

following upper bound, which finishes the proof of Lemma 2:

Prob ({P1, . . . , Pk}, {P1, . . . , Pj , Qj+1, . . . , Qk} is a ‘bad j-pair of simplices’)

≤ c∗k · V d−k+2
0 ·

∫ √d
rk−2=0

. . .

∫ √d
rj=0

d
k−2
2 · Cd+2−k ·

(k − 1)!d−k+2

(j − 1)!d−k+2
·

·

(
V0 ·Nγj∏k−2
g=j rg

)d−k+2

·
k−2∏
g=j

(
d

g−1
2 · (d+ 1− g) · Cd+1−g · rd−gg

)
drk−2 . . . drj ≤

≤ c∗∗2,j · V
2(d−k+2)
0 ·Nγj(d−k+2) ·

∫ √d
rk−2=0

. . .

∫ √d
rj=0

k−2∏
g=j

rk−g−2
g drk−2 . . . drj

≤ c∗2,j · V
2(d−k+2)
0 ·Nγj(d−k+2) as k − g − 2 ≥ 0. ut

Using (7) and (8) and Markov’s inequality, there exist N = n1+α points in the
unit-cube [0, 1]d such that the corresponding hypergraph G = (V, E2 ∪ · · · ∪ Ek)
on |V | = N vertices satisfies for i, j = 2, . . . , k − 1 and 3 ≤ k ≤ d+ 1:

|Ei| ≤ 2k · c′i ·N i−γi(d−i+2)d (9)
|Ek| ≤ 2k · c′k · V d−k+2

0 ·Nk (10)

|BPj(G)| ≤ 2k · c′2,j · V
2(d−k+2)
0 ·N2k−j+γj(d−k+2) . (11)

By (10) the average degree tk−1 := k · |Ek|/|V | of G = (V, E2∪· · ·∪Ek) among the
edges from Ek satisfies tk−1 ≤ 2k2 · c′k ·V

d−k+2
0 ·Nk−1 =: tk−1

0 . For some suitable
constant ε > 0, we pick uniformly at random and independently of each other
vertices from V with probability p := Nε/t0 ≤ 1. Let V ∗ ⊆ V be the random
set of the chosen vertices, and let G∗ = (V ∗, E∗2 ∪ · · · ∪ E∗k ) with E∗i := Ei ∩ [V ∗]i,
i = 2, . . . , k, be the resulting random induced subhypergraph of G. By (9) – (11)
we infer for the expected numbers of vertices, i-element edges and ‘bad j-pairs
of simplices’ in G∗, i, j = 2, . . . , k − 1, for constants c1, ci, c2,j , ck > 0:

E(|V ∗|) = p ·N ≥ c1 ·Nε/V
d−k+2

k−1
0

E(|E∗i |) = pi · |Ei| ≤ pi · 2k · c′i ·N i−γi(d−i+2) ≤ ci ·N iε−γi(d−i+2)/V
i(d−k+2)

k−1
0

E(|E∗k |) = pk · |Ek| ≤ pk · 2k · c′k · V d−k+2
0 ·Nk ≤ ck ·Nkε/V

d−k+2
k−1

0

E(|BPj(G∗)|) = p2k−j · |BPj(G)| ≤ c2,j · V
(j−2)(d−k+2)

k−1
0 ·N (2k−j)ε+γj(d−k+2) .



By Chernoff’s and Markov’s inequality there exists an induced subhypergraph
G∗ = (V ∗, E∗2 ∪ · · · ∪ E∗k ) of G, such that for i, j = 2, . . . , k − 1:

|V ∗| ≥ (c1 − o(1)) ·Nε/V
d−k+2

k−1
0 (12)

|E∗i | ≤ 2k · ci ·N iε−γi(d−i+2)/V
i(d−k+2)

k−1
0 (13)

|E∗k | ≤ 2k · ck ·Nkε/V
d−k+2

k−1
0 (14)

|BPj(G∗)| ≤ 2k · c2,j · V
(j−2)(d−k+2)

k−1
0 ·N (2k−j)ε+γj(d−k+2) . (15)

Now we set for some suitable constant c∗ > 0:

V0 := c∗ · (log n)
1

d−k+2 /n
k−1

d−k+2 . (16)

Lemma 3. For j = 2, . . . , k−1 and for fixed 0 < ε < (j−1)/((2k− j−1) · (1 +
α))− γj · (d− k + 2)/(2k − j − 1) it is |BPj(G∗)| = o(|V ∗|).

Proof. Using (12), (15) and (16) with N = n1+α, where α, γj > 0 are constants,
j = 2, . . . , k − 1, we have

|BPj(G∗)| = o(|V ∗|)

⇐= V
(j−2)(d−k+2)

k−1
0 ·N (2k−j)ε+γj(d−k+2) = o(Nε/V

d−k+2
k−1

0 )

⇐⇒ V
(j−1)(d−k+2)

k−1
0 ·N (2k−j−1)ε+γj(d−k+2) = o(1)

⇐⇒ n(1+α)((2k−j−1)ε+γj(d−k+2))−(j−1) · log
j−1
k−1 n = o(1)

⇐= ε <
j − 1

(2k − j − 1) · (1 + α)
− γj · (d− k + 2)

2k − j − 1
. ut

Lemma 4. For i = 2, . . . , k−1 and fixed 0 < ε ≤ γi ·(d−i+2)/(i−1)−1/(1+α)
it is |E∗i | = o(|V ∗|).

Proof. By (12), (13) and (16), using N = n1+α, we infer

|E∗i | = o(|V ∗|)

⇐= N iε−γi(d−i+2)/V
i(d−k+2)

k−1
0 = o(Nε/V

d−k+2
k−1

0 )

⇐⇒ N (i−1)ε−γi(d−i+2)/V
(i−1)(d−k+2)

k−1
0 = o(1)

⇐⇒ n(1+α)((i−1)ε−γi(d−i+2))+(i−1)/ log
i−1
k−1 n = o(1)

⇐= ε ≤ γi · (d− i+ 2)
i− 1

− 1
1 + α

. ut

The assumptions in Lemmas 3 and 4 are satisfied for γj := (j − 1)/((d − k +
5/2)(1 + α)), j = 2, . . . , k − 1, and ε := 1/(4kd(1 + α)) and α := 1/(4kd), also
p = Nε/t0 ≤ 1 holds. In the induced subhypergraph G∗ = (V ∗, E∗2 ∪ · · · ∪ E∗k )
we delete one vertex from each i-element edge and from each ‘bad j-pair of



simplices’, i, j = 2, . . . , k−1. Let V ∗∗ ⊆ V ∗ be the set of remaining vertices. The
on V ∗∗ induced subhypergraph G∗∗ of G∗ is k-uniform, hence G∗∗ = (V ∗∗, E∗∗k )
with E∗∗k := [V ∗∗]k ∩E∗k , and fulfills |V ∗∗| = (1− o(1)) · |V ∗| by Lemmas 3 and 4.
By (12) and (14) we have |V ∗∗| ≥ c1/2 ·Nε/V

(d−k+2)/(k−1)
0 and |E∗∗k | ≤ |E∗k | ≤

2k ·ck ·Nkε/V
(d−k+2)/(k−1)
0 , hence G∗∗ has average degree tk−1 = k ·|E∗∗k |/|V ∗∗| ≤

(4k2 · ck/c1) ·N (k−1)ε =: tk−1
1 . Now the assumptions of Theorem 2 are fulfilled

by the k-uniform subhypergraph G∗∗ of G, as it is linear, and with (4) we obtain
for constants c∗k, c

′, c1, ck, c
∗ > 0:

α(G) ≥ α(G∗∗) ≥ c∗k ·
|V ∗∗|
t
· log1/(k−1) t ≥ c∗k ·

|V ∗∗|
t1
· log1/(k−1) t1 ≥

≥ c∗k ·
c
k/(k−1)
1 ·Nε/V

(d−k+2)/(k−1)
0

2 · (4k2 · ck)1/(k−1) ·Nε
·

(
log
(

4k2 · ck
c1

·N (k−1)ε

) 1
k−1
) 1

k−1

≥ c′ · log1/(k−1) n/V
(d−k+2)/(k−1)
0 as N = n1+α

≥ c′ · (1/c∗)(d−k+2)/(k−1) · log1/(k−1) n · n

log1/(k−1) n
≥ n ,

where the last inequality follows by choosing in (16) a sufficiently small con-
stant c∗ > 0. Thus the hypergraph G contains an independent set I ⊆ V
with |I| = n. These n vertices yield n points in [0, 1]d, such that each k-point
simplex arising from these points has volume bigger than V0, i.e. ∆k,d(n) =
Ω((log n)1/(d−k+2)/n(k−1)/(d−k+2)), which finishes the proof of (3). ut

3 An Upper Bound on ∆k,d(n)

Here we show the upper bounds in Theorem 1, namely that for fixed 2 ≤ k ≤
d+ 1 and constants c′k, c

′′
k > 0 it is ∆k,d(n) ≤ c′k/n

(k−1)/d, moreover ∆k,d(n) ≤
c′′k/n

(k−1)/d+(k−2)/(2d(d−1)) for k even.

Proof. We prove first that ∆k,d(n) ≤ c′k/n
(k−1)/d for some constant c′k > 0 and

2 ≤ k ≤ d+ 1. Given any n points P1, P2, . . . , Pn ∈ [0, 1]d, for some value D > 0
we construct a graph G = G(D) = (V,E) with vertex set V = {1, 2, . . . , n},
where vertex i corresponds to the point Pi ∈ [0, 1]d, and edge set E with
{i, j} ∈ E being an edge if and only if dist (Pi, Pj) ≤ D. An independent
set I ⊆ V in this graph G = G(D) yields a subset I ′ ⊆ {P1, P2, . . . , Pn} of
points in [0, 1]d with Euclidean distance between any two distinct points big-
ger than D. Each ball Br(P ) with center P ∈ [0, 1]d and radius r ≤ 1 satisfies
vol (Br(P ) ∩ [0, 1]d) ≥ vol (Br(P ))/2d. The balls with radius D/2 and cen-
ters from an independent set I ′ have pairwise empty intersection. As each ball
BD/2(P ) has volume Cd ·(D/2)d, we infer |I ′|·Cd ·(D/2)d/2d ≤ vol ([0, 1]d) = 1,
and hence the independence number α(G) of G satisfies

α(G) ≤ 4d

Cd ·Dd
. (17)



For D := c/n1/d with c := (2 · (k−1) ·4d/Cd)1/d a constant, the average degree t
of G(D) satisfies t ≥ 1 for n ≥ 2d+1, hence by Turán’s theorem, α(G) ≥ n/(2 · t).
With (17) this yields

4d

Cd ·Dd
≥ α(G) ≥ n

2 · t
=⇒ t ≥ Cd

2 · 4d
· n ·Dd ≥ k − 1 . (18)

Hence there exists a vertex i1 ∈ V and k − 1 edges {i1, i2}, . . . , {i1, ik} ∈ E
incident at vertex i1. By construction, each point Pij ∈ [0, 1]d, j = 2, . . . , k,
satisfies dist (Pi1 , Pij ) ≤ D, thus dist (Pij ;< Pi1 , Pi2 , . . . , Pij−1 >) ≤ c/n1/d for
j = 2, . . . , k, which implies vol (Pi1 , . . . , Pik) ≤ (1/(k − 1)!) · ck−1/n(k−1)/d, i.e.
∆k,d(n) = O(1/n(k−1)/d).
For even k ≥ 4 we are able to prove a better upper bound. From (18) we obtain
|E| = n·t/2 ≥ Cd ·n2 ·Dd/4d+1. Now let c := (d·4d+1/Cd−1)1/d and D := 1/n1/d.
We adapt an argument of Brass [6]. Each edge {i, j} ∈ E determines a direction
(PiPj), which can be viewed as a vector of length 1. The minimum angular
distance between these directions is at most(

d · Cd
Cd−1 · |E|

)1/(d−1)

≤
(

d · 4d+1

Cd−1 · cd · n

)1/(d−1)

≤ 1
n1/(d−1)

.

Thus for some constant c(d) > 0 there exist
(
k
2

)
directions (PiPj), {i, j} ∈ E,

with pairwise angular distance at most φ := c(d)/n1/(d−1). The corresponding
set E∗ ⊆ E of edges covers a subset S ⊆ V of at least k vertices G. Consider a
minimum subset E∗∗ ⊆ E∗ of edges, which covers a subset S∗ ⊆ S of exactly k
vertices. This set E∗∗ contains only independent edges and stars. We pick one
vertex from each independent edge E ∈ E∗∗ and the center of each star. Let
S∗∗ ⊆ S∗ be the set of chosen vertices with |S∗∗| = s ≤ k/2.
For each vertex v ∈ S∗ \ S∗∗ there exists an edge {v, w} ∈ E∗∗ for some vertex
w ∈ S∗∗, hence dist (Pv, Pw) ≤ D. Thus for each vertex u ∈ S∗\(S∗∗∪{v}) there
is some vertex t ∈ S∗∗∪{w} such that the angular distance between the directions
(PuPt) and (PwPv) is at most φ. Thus, the Euclidean distance between the point
Pu and the affine space generated by the points Pr, r ∈ S∗∗ ∪{v}, is at most D.
With D = c/n1/d and sinφ ≤ φ for φ ≥ 0, and (s− 1)! · vol (S∗∗) ≤ (

√
d)s−1 we

obtain for the volume of the simplex determined by the k points Ps, s ∈ S∗, the
following upper bound, which finishes the proof of Theorem 1:

vol (Ps∗ ; s∗ ∈ S∗) ≤ 1
(k − 1)!

· (
√
d)s−1 ·D · (D · sinφ)k−s−1 ≤

≤ 1
(k − 1)!

· d(k−2)/4 ·D · (D · c(d)/n1/(d−1))k/2−1 =
d(k−2)/4 · c(k)k/2−1

(k − 1)! · n
k−1

d + k−2
2d(d−1)

. ut

4 Concluding Remarks

Our arguments together with an algorithmic version of Theorem 2, see [4], yield
a randomized polynomial time algorithm for obtaining a distribution of n points



in [0, 1]d, which shows ∆k,d(n) = Ω((log n)1/(k−1)/n(k−1)/(d−k+2)) for fixed 3 ≤
k ≤ d + 1. It might be of interest to have a deterministic polynomial time
algorithm achieving this lower bound, as well as investigating the case k > d+1,
compare [13] for the case of dimension d = 2.
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