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Abstract. In this paper generalizations of Heilbronn’s triangle prob-
lem to convex hulls of j points in the unit square [0, 1]2 are considered.
By using results on the independence number of linear hypergraphs, for
fixed integers k ≥ 3 and any integers n ≥ k a deterministic o(n6k−4)
time algorithm is given, which finds distributions of n points in [0, 1]2

such that, simultaneously for j = 3, . . . , k, the areas of the convex hulls
determined by any j of these n points are Ω((log n)1/(j−2)/n(j−1)/(j−2)).

1 Introduction

Distributions of n points in the unit square [0, 1]2, where the minimum area of
a triangle determined by three of these n points is large, have been investigated
by Heilbronn. Let ∆3(n) denote the supremum – over all distributions of n
points in [0, 1]2 – of the minimum area of a triangle among n points. Since no
three of the points (1/n) · (i mod n, i2 mod n), i = 0, . . . , n − 1, are collinear,
we infer ∆3(n) = Ω(1/n2), provided n is prime, as has been observed by Erdős.
For quite a while this lower bound was believed to be also the upper bound.
However, Komlós, Pintz and Szemerédi [13] proved that ∆3(n) = Ω(log n/n2).
In [6] a deterministic polynomial in n time algorithm has been given, which
achieves this lower bound. Upper bounds on ∆3(n) were given by Roth [18]–[21]
and Schmidt [23] and, improving these earlier results, the currently best upper
bound ∆3(n) = O(2c

√
log n/n8/7) for a constant c > 0, has been obtained by

Komlós, Pintz and Szemerédi [12]. We remark that, if n points are uniformly at
random and independently of each other distributed in [0, 1]2, then the expected
value of the minimum area of a triangle formed by three of n points has been
shown in [11] to be equal to Θ(1/n3).
Variants of Heilbronn’s triangle problem in higher dimensions have been inves-
tigated by Barequet [2, 3], who considered the minimum volumes of simplices
among n points in the d-dimensional unit cube [0, 1]d, see also [14] and Brass [7].
Recently, Barequet and Shaikhet [4, 22] considered the on-line situation, where
the points have to be positioned one after the other and suddenly this process
stops. For this situation they showed by a packing argument the existence of con-
figurations of n points in [0, 1]d, where the volume of any (d + 1)-point simplex
among these n points is Ω(1/n(d+1) ln(d−2)−0.265d+2.269) for fixed d ≥ 5.
In generalizing Heilbronn’s triangle problem to k-gons, see Schmidt [23], asks,
given an integer k ≥ 3, to maximize the minimum area of the convex hull of any



k distinct points in a distribution of n points in [0, 1]2. In particular, let ∆k(n)
be the supremum – over all distributions of n points in [0, 1]2 – of the minimum
area of the convex hull determined by some k of n points. For k = 4, Schmidt [23]
proved the lower bound ∆4(n) = Ω(1/n3/2). In [6] a deterministic algorithm has
been given, which shows the lower bound ∆k(n) = Ω(1/n(k−1)/(k−2)) has been
shown for fixed integers k ≥ 3. Also in [6] a deterministic polynomial in n time
algorithm was given which achieves this lower bound. This has been improved
in [15] to ∆k(n) = Ω((log n)1/(k−2)/n(k−1)/(k−2)) for fixed k ≥ 3.
We remark that for k a function of n, Chazelle proved in [8] in connection with
range searching problems that ∆k(n) = Θ(k/n) for log n ≤ k ≤ n.
In [16] a deterministic algorithm has been given, which finds for fixed integers
k ≥ 2 and any integers n ≥ k in time polynomial in n a distribution of n
points in the unit square [0, 1]2 such that, simultaneously for j = 2, . . . , k, the
areas of the convex hulls of any j among the n points are Ω(1/n(j−1)/(j−2)).
In [17] these simultaneously achievable lower bounds on the minimum areas
of the convex hull of any j among n points in [0, 1]2 have been improved by
using non-discrete probabilistic existence arguments by a logarithmic factor to
Ω((log n)1/(j−2)/n(j−1)/(j−2)) for j = 3, . . . , k. (Note that ∆2(n) = Θ(1/n1/2).)
Here we give a constructive argument, which provides deterministically such
configurations of points in [0, 1]2:

Theorem 1. Let k ≥ 3 be a fixed integer. For each integer n ≥ k one can
find deterministically in time o(n6k−4) some n points in the unit square [0, 1]2

such that, simultaneously for j = 3, . . . , k, the minimum area of the convex hull
determined by some j of these n points is Ω((log n)1/(j−2)/n(j−1)/(j−2)).

Concerning upper bounds, we remark that for fixed j ≥ 4 only the simple bounds
∆j(n) = O(1/n) are known, compare [23].

2 The Independence Number of a Linear Hypergraph

In our considerations we transform the geometric problem into a problem on
hypergraphs. Before doing so, we take a closer look at hypergraphs and their
independence numbers.

Definition 1. A hypergraph is a pair G = (V, E) with vertex-set V and edge-
set E, where E ⊆ V for each edge E ∈ E. For a hypergraph G the notation
G = (V, E2 ∪ · · · ∪ Ek) means that Ei is the set of all i-element edges in G,
i = 2, . . . , k. A hypergraph G = (V, E) is called k-uniform if |E| = k for each
edge E ∈ E. The independence number α(G) of G = (V, E) is the largest size of
a subset I ⊆ V which contains no edges from E.

For hypergraphs G a lower bound on the independence number α(G) is given by
Turán’s theorem for arbitrary hypergraphs, see [24]:

Theorem 2. Let G = (V, E2 ∪ · · · ∪ Ek) be a hypergraph on |V | = N vertices
with average degrees ti−1

i := i · |Ei|/N for the i-element edges, i = 2, . . . , k. Let
ti0 := max {ti | 2 ≤ i ≤ k} ≥ 1/2.
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Then, the independence nunber α(G) of G satisfies

α(G) ≥ N/(4 · ti0). (1)

An independent set I ⊆ V in G with |I| ≥ N/(4 · ti0) can be found deterministi-
cally in time O(|V |+ |E2|+ · · ·+ |Ek|).

For convenience we include the short proof, as a related strategy is used in the
proof of Theorem 1.

Proof. Choose uniformly at random and independently of each other vertices
from the vertex-set V with probability p := 1/(2 · ti0). Let V ∗ ⊆ V be the
random set of chosen vertices and let E∗i := Ei∩ [V ∗]i, i = 2, . . . , k, be the sets of
induced i-element edges. Then, the difference of the expected numbers E[|V ∗|]
and E[|E∗2 |+· · ·+|E∗k |] of chosen vertices and induced edges, respectively, satisfies

E

[
|V ∗| −

k∑
i=2

|E∗i |

]
= E[|V ∗|]−

k∑
i=2

E[|E∗i |] = p ·N −
k∑

i=2

pi ·N · ti−1
i /i ≥

≥ p ·N −
k∑

i=2

pi ·N · ti−1
i0

/i ≥ N

2 · ti0
−

k∑
i=2

1
i · 2i

· N

ti0
≥ N

4 · ti0
.

Thus there exists a subset V ∗ ⊆ V such that |V ∗| −
∑k

i=2 |E∗i | ≥ N/(4 · ti0).
Delete one vertex from each edge E ∈ E∗i , i = 2, . . . , k, hence all edges have been
destroyed, and we obtain an independent set V ∗∗ ⊆ V ∗ with |V ∗∗| ≥ N/(4 · ti0).
This probabilistic argument can be turned into a deterministic algorithm with
running time O(|V |+

∑k
i=2 |Ei|) by using the method of conditional probabilities,

compare [5] for example. ut

For fixed integers k ≥ 2, one can show by Theorem 2, Proposition 2 and Lemma 2
below, that one can find deterministically n points in the unit square [0, 1]2 such
that the areas of the convex hulls of any j of these n points are Ω(1/n(j−1)/(j−2)),
simultaneously for j = 2, . . . , k. However, we are aiming for better lower bounds.
To achieve these, we consider the independence number of hypergraphs, which
do not contain cycles of small lengths.

Definition 2. A j-cycle in a hypergraph G = (V, E) is given by a sequence
E1, . . . , Ej of distinct edges E1, . . . , Ej ∈ E, such that Ei ∩ Ei+1 6= ∅ for i =
1, . . . , j − 1, and Ej ∩E1 6= ∅, and a sequence v1, . . . , vj of distinct vertices with
vi+1 ∈ Ei∩Ei+1 for i = 1, . . . , j−1, and v1 ∈ E1∩Ej. An unordered pair {E,E′}
of distinct edges E,E′ ∈ E with |E ∩ E′| ≥ 2 is called a 2-cycle.
A hypergraph G = (V, E) is called linear if it does not contain any 2-cycles, and
it is called uncrowded if it does not contain any 2-, 3- or 4-cycles.

For uncrowded, uniform hypergraphs the next lower bound on the independence
number, which has been proved by Ajtai, Komlós, Pintz, Spencer and Szemerédi
[1], is better than the one in (1), compare [5] and [10] for a deterministic poly-
nomial time algorithm.
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Theorem 3. Let k ≥ 3 be a fixed integer. Let G = (V, Ek) be an uncrowded, k-
uniform hypergraph with |V | = N vertices and average degree tk−1 := k · |Ek|/N .
Then, for some constant Ck > 0, the independence number α(G) of G satisfies

α(G) ≥ Ck · (N/t) · (log t)
1

k−1 . (2)

Hence, for fixed k ≥ 3 and uncrowded, k-uniform hypergraphs with average
degree tk−1 the lower bound (2) improves on (1) by a factor of Θ((log t)1/(k−1)).
In [9] it has been shown that it suffices in Theorem 3 to relax the assumption of
having an uncrowded hypergraph to having a linear hypergraph.
We use the following extension of Theorem 3 to non-uniform hypergraphs –
moreover, instead of an uncrowded hypergraph we require only a linear one –,
see [17].

Theorem 4. Let k ≥ 3 be a fixed integer. Let G = (V, E3 ∪ · · · ∪ Ek) be a linear
hypergraph on |V | = N vertices, where the average degrees ti−1

i := i · |Ei|/N for
the i-element edges satisfy ti−1

i ≤ Si−1 · (log S)(k−i)/(k−1) for some number S.
Then, for some constant Ck > 0, the independence number α(G) of G satisfies

α(G) ≥ Ck ·
N

S
· (log S)

1
k−1 . (3)

An independent set of size Ω((N/S) · (log S)1/(k−1)) can be found deterministi-
cally in time O(N · S4k−2).

Both Theorems 3 and 4 are provable best possible for a certain range of the
parameters k < T < N as can be seen by a random hypergraph argument.
Here we use Theorem 4 in our arguments to prove Theorem 1.

3 A Deterministic Algorithm

To give an algorithm, which for fixed integers k ≥ 3 and any integers n ≥ k finds
deterministically n points in the unit square [0, 1]2 such that, simultaneously
for j = 3, . . . , k, the areas of the convex hulls of any j of these n points are
Ω((log n)1/(j−2)/n(j−1)/(j−2)), we discretize [0, 1]2 by considering the standard
T ×T -grid, i.e., the set {(i, j) ∈ Z2 | 0 ≤ i, j ≤ T − 1}, where T = n1+β for some
constant β > 0, which will be specified later.
For distinct grid-points P,Q in the T × T -grid let PQ denote the line through
P and Q, and let [P,Q] be the segment between P and Q. Let dist (P,Q) :=
((px−qx)2+(py−qy)2)1/2 denote the Euclidean distance between the grid-points
P = (px, py) and Q = (qx, qy). For grid-points P1, . . . , Pl in the T × T -grid let
area (P1, . . . , Pl) be the area of the convex hull of the points P1, . . . , Pl. A strip
centered at the line PQ of width w is the set of all points in R2, which are at
Euclidean distance at most w/2 from the line PQ. Let ≤l be a total order on
the T ×T -grid, which is defined as follows: for grid-points P = (px, py) and Q =
(qx, qy) in the T × T -grid let P ≤l Q :⇐⇒ (px < qx) or (px = qx and py < qy).
First notice the following simple observation, which is used in our arguments.
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Proposition 1. Let P1, . . . , Pl be grid-points in the T × T -grid, l ≥ 3.

(i) Then, it is area (P1, . . . , Pl) ≥ area (P1, . . . , Pl−1).
(ii) If area (P1, . . . , Pl) ≤ A, then for any distinct grid-points Pi, Pj every grid-

point Pk, k = 1, . . . , l, is contained in a strip centered at the line PiPj of
width (4 ·A)/dist (Pi, Pj).

Next we prove Theorem 1.

Proof. For suitable constants c∗j > 0, j = 3, . . . , k, which are fixed later in
connection with inequality (29), we set

Aj :=
c∗j · T 2 · (log n)1/(j−2)

n(j−1)/(j−2)
> 1. (4)

Then, it is 0 < A3 ≤ · · · ≤ Ak for n ≥ n0.
We form a non-uniform hypergraph G = G(A3, . . . , Ak) = (V, E0

3 ∪ E3 ∪ E4 ∪
· · · ∪ Ek), which contains two types of 3-element edges, and (one type of) j-
element edges, j = 4, . . . , k. The vertex-set V of G consists of all T 2 grid-points
in the T × T -grid. The edge-sets are defined as follows. For distinct grid-points
P,Q,R ∈ V in the T × T -grid let {P,Q,R} ∈ E0

3 if and only if P,Q,R are
collinear. Moreover, for j = 3, . . . , k, and distinct grid-points P1, . . . , Pj ∈ V in
the T × T -grid let {P1, . . . , Pj} ∈ Ej if and only if area (P1, . . . , Pj) ≤ Aj and
no three of the grid-points P1, . . . , Pj are collinear.
We want to find a large independent set in the hypergraph G = (V, E0

3 ∪ E3 ∪
E4 ∪ · · · ∪ Ek), as an independent set I ⊆ V in G corresponds to |I| many
grid-points in the T × T -grid, such that the areas of the convex hulls of any
j of these |I| grid-points are bigger than Aj , j = 3, . . . , k. To find a suitable,
induced subhypergraph of G to which Theorem 4 may be applied, in a first
step we estimate the numbers |E0

3 | and |Ej |, j = 3, . . . , k, of 3- and j-element
edges, respectively, and the numbers of 2-cycles in G. Then, in a certain induced
subhypergraph G∗ of G we destroy all 3-element edges in E0

3 and all 2-cycles. The
resulting induced subhypergraph G∗∗ is linear, and then we may apply Theorem 4
to G∗∗.

3.1 The Numbers of Edges in G

The next estimate is quite crude but it suffices for our purposes.

Proposition 2. The number |E0
3 | of unordered collinear triples of grid-points in

the T × T -grid satisfies

|E0
3 | ≤ T 5. (5)

Proof. Each line is determined by two distinct grid-points in the T ×T -grid, for
which there are at most T 4 choices. Each line contains at most T grid-points
from the T × T -grid, and the upper bound |E0

3 | ≤ T 5 on the number of collinear
triples follows. ut
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To estimate |Ej |, j = 3, . . . , k, we use the following observation from [6], compare
Proposition 1.

Lemma 1. For distinct grid-points P = (px, py) and R = (rx, ry) with P ≤l R
from the T × T -grid, where s := rx − px ≥ 0 and h := ry − py, it holds:

(a) There are at most 4 ·A grid-points Q in the T × T -grid such that
(i) P ≤l Q ≤l R, and
(ii) P,Q,R are not collinear, and area (P,Q,R) ≤ A.

(b) The number of grid-points Q in the T × T -grid which fulfill only (ii) from
(a) is at most (12 ·A ·T )/s for s > 0, and at most (12 ·A ·T )/|h| for |h| > s.

Lemma 2. For j = 3, . . . , k, the numbers |Ej | of unordered j-tuples P1, . . . , Pj

of pairwise distinct grid-points in the T × T -grid with area (P1, . . . , Pj) ≤ Aj,
where no three of P1, . . . , Pj are collinear, satisfy for some constants cj > 0:

|Ej | ≤ cj ·Aj−2
j · T 4. (6)

Proof. Let P1, . . . , Pj be pairwise distinct grid-points in the T ×T -grid, no three
on a line and with area (P1, . . . , Pj) ≤ Aj . We may assume that P1 ≤l · · · ≤l Pj .
For P1 = (p1,x, p1,y) and Pj = (pj,x, pj,y) let s := pj,x − p1,x ≥ 0 and h :=
pj,y − p1,y. Then s > 0, as otherwise P1, . . . , Pj are collinear.
There are T 2 choices for the grid-point P1. Given P1, any grid-point Pj with
P1 ≤l Pj is determined by a pair (s, h) 6= (0, 0) of integers with 1 ≤ s ≤
T and −T ≤ h ≤ T . By Proposition 1(i) we have area (P1, Pi, Pj) ≤ Aj for
i = 2, . . . , j − 1. Given the grid-points P1 and Pj , since P1 ≤l Pi ≤l Pj for
i = 2, . . . , j − 1, by Lemma 1(a) there are at most 4 · Aj choices for each grid-
point Pi, hence for j = 3, . . . , k and constants cj > 0 we obtain

|Ej | ≤ T 2 ·
T∑

s=1

T∑
h=−T

(4 ·Aj)j−2 ≤ cj ·Aj−2
j · T 4. ut

For later use, observe that by (6) the average degrees tj−1
j for the j-element

edges E ∈ Ej , j = 3, . . . , k, of G satisfy

tj−1
j = j · |Ej |/|V | ≤ j · cj ·Aj−2

j · T 2 =: (tj(0))j−1. (7)

3.2 The Numbers of 2-Cycles in the Hypergraph G

Here we take care of the number of 2-cycles in the hypergraph G. Let s2;(g,i,j)(G)
denote the number of (2; (g, i, j))-cycles in G, i.e., the number of unordered pairs
{E,E′} of edges with E ∈ Ei and E′ ∈ Ej and |E ∩ E′| = g, 2 ≤ g ≤ i ≤ j ≤ k
and g < j. Note that we do not take into account the edges from E0

3 , i.e., collinear
triples of grid-points, as these are treated separately.
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Lemma 3. For 2 ≤ g ≤ i ≤ j ≤ k with g < j, the numbers s2;(g,i,j)(G) of
(2; (g, i, j))-cycles in the hypergraph G = (V, E3 ∪ E4 ∪ · · · ∪ Ek) fulfill for some
constants c2;(g,i,j) > 0:

s2;(g,i,j)(G) ≤ c2;(g,i,j) ·Ai−2
i ·Aj−g

j · T 4 · log3 T. (8)

Proof. For 2 ≤ g ≤ i ≤ j ≤ k with g < j, let {E,E′} be a (2; (g, i, j))-cycle in G,
where E ∈ Ei and E′ ∈ Ej . Let the grid-points, which correspond to the vertices
in E and E′, respectively, be P1, . . . , Pi and P1, . . . , Pg, Qg+1, . . . , Qj with P1 ≤l

· · · ≤l Pg. By definition of the edge-set of G no three of the grid-points P1, . . . , Pi

and of P1, . . . , Pg, Qg+1, . . . , Qj are collinear, and area (P1, . . . , Pi) ≤ Ai as well
as area (P1, . . . , Pg, Qg+1, . . . , Qj) ≤ Aj .
There are T 2 choices for the grid-point P1. Given P1 := (p1,x, p1,y), any pair
(s, h) 6= (0, 0) of integers determines at most one grid-point Pg := (p1,x+s, p1,y +
h) in the T×T -grid. By symmetry we may assume that s > 0 and 0 ≤ h ≤ s ≤ T ,
which is taken into account by an additional constant factor of 2. Given the grid-
points P1 and Pg, since area (P1, Pf , Pg) ≤ Ai for f = 2, . . . , g−1 by Proposition
1(i), with P1 ≤l Pf ≤l Pg and by Lemma 1(a) there are at most 4 · Ai choices
for each grid-point Pf in the T ×T -grid, hence, given h, s, the number of choices
for the grid-points P1, . . . , Pg is at most

(4 ·Ai)g−2 · T 2. (9)

For the convex hulls of the grid-points P1, . . . , Pi and P1, . . . , Pg, Qg+1, . . . , Qj

let their (w.r.t. ≤l) extremal points be P ′, P ′′ ∈ {P1, . . . , Pi} and Q′, Q′′ ∈
{P1, . . . , Pg, Qg+1, . . . , Qj}, respectively, i.e., with P ′ ≤l P ′′ and Q′ ≤l Q′′ we
have P ′ ≤l P1, . . . , Pi ≤l P ′′ and Q′ ≤l P1, . . . , Pg, Qg+1, . . . , Qj ≤l Q′′.
Given the grid-points P1 ≤l · · · ≤l Pg, there are three possibilities for the convex
hulls of the grid-points P1, . . . , Pi and P1, . . . , Pj , Qj+1, . . . , Qk, respectively:
(i) P1 and Pg are extremal, or (ii) exactly one grid-point, P1 or Pg, is extremal,
or (iii) neither P1 nor Pg is extremal.
We only consider the convex hull of P1, . . . , Pi, as the considerations for the
convex hull of P1, . . . , Pg, Qg+1, . . . , Qj are essentially the same.
In case (i) the grid-points P1 and Pg are extremal for the convex hull of P1, . . . , Pi,
hence P1 ≤l Pg+1, . . . , Pi ≤l Pg. By Lemma 1(a), since area (P1, Pf , Pg) ≤ Ai

by Proposition 1(i), f = g + 1, . . . , i, and no three of the grid-points P1, . . . , Pi

are collinear, there are at most 4 · Ai choices for each grid-point Pf , hence the
number of choices for the grid-points Pg+1, . . . , Pi is at most

case (i): (4 ·Ai)i−g. (10)

In case (ii) exactly one of the grid-points P1 or Pg is extremal for the convex
hull of P1, . . . , Pi. By Lemma 1(b) there are at most (12 · Ai · T )/s choices for
the second extremal grid-point P ′ or P ′′. Having chosen this second extremal
grid-point, for each of the (i−g−1) remaining grid-points Pg+1, . . . , Pi 6= P ′, P ′′

there are by Lemma 1(a) at most 4 ·Ai choices, hence the number of choices for
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the grid-points Pg+1, . . . , Pi is at most

case (ii): (4 ·Ai)i−g−1 · 12 ·Ai · T
s

=
3 · (4 ·Ai)i−g · T

s
. (11)

In case (iii) none of the grid-points P1, Pg is extremal for the convex hull of
P1, . . . , Pi. By Proposition 1(ii) all grid-points Pg+1, . . . , Pi are contained in a
strip Si, which is centered at the line P1Pg, of width (4 ·Ai)/

√
h2 + s2. Consider

the parallelogram P0 = {(px, py) ∈ Si | p1,x ≤ px ≤ p1,x + s} within the strip
Si. We partition the strip Si within the T × T -grid into pairwise congruent
parallelograms Pl, −L ≤ l ≤ L with L := dT/se + 1, where Pl := {(px, py) ∈
Si | p1,x + l · s ≤ px ≤ p1,x + (l + 1) · s}. Each parallelogram has side-lengths
(4 ·Ai)/s and

√
h2 + s2 and its area is 4 ·Ai.

Since by assumption neither P1 ∈ P0 nor Pg ∈ P0 are extremal, each extremal
grid-point, P ′ or P ′′, is contained in some parallelogram Pl for some l 6= 0, for
which there are by Lemma 1(a) at most 4 · Ai choices. Each grid-point P =
(px, py) ∈ Pl satisfies |px − p1,x| ≥ l · s or |px − pj,x| ≥ l · s. Thus, if one of
the grid-points P ′ or P ′′ is contained in some parallelogram Pl, l 6= 0, then
by Lemma 1(b) there are at most (12 · Ai · T )/(l · s) choices for the second
extremal grid-point. Having fixed both extremal grid-points P ′ and P ′′ in at
most (4 ·Ai) · ((12 ·Ai · T )/(l · s)) = (48 ·A2

i · T )/(l · s) ways, for the remaining
(i − g − 2) grid-points Pg+1, . . . , Pi 6= P ′, P ′′ there are by Lemma 1(a) at most
(4 · Ai)i−g−2 choices. Hence, by summing over all possible choices of l 6= 0, the
number of choices for the grid-points Pg+1, . . . , Pi is at most

case (iii): (4 ·Ai)i−g−2 · 2 ·
dT/se+1∑

l=1

48 ·A2
i · T

l · s
=

= (4 ·Ai)i−g · 6 · T
s

·
dT/se+1∑

l=1

1
l
≤ (4 ·Ai)i−g · 10 · T · log T

s
.(12)

Thus, given the grid-points P1, . . . , Pg, by (10)–(12) and using s ≤ T , altogether
the number of choices for the grid-points Pg+1, . . . , Pi is at most

(4 ·Ai)i−g ·
(

1 +
3 · T

s
+

10 · T · log T

s

)
≤ 14 · (4 ·Ai)i−g · T · log T

s
. (13)

Similar to (13), for the number of choices of the grid-points Qg+1, . . . , Qj the
following upper bound holds:

14 · (4 ·Aj)j−g · T · log T

s
. (14)
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Hence, with (9), (13), and (14) for 2 ≤ g ≤ i ≤ j ≤ k and g < j we obtain for
constants c2;(g,i,j) > 0:

s2;(g,i,j)(G) ≤ 2 · (4 ·Ai)g−2 · T 2 ·
T∑

s=1

s∑
h=0

(
14 · (4 ·Ai)i−g · T · log T

s

)
·

·
(

14 · (4 ·Aj)j−g · T · log T

s

)
≤

= 392 · 4i+j−g−2 ·Ai−2
i ·Aj−g

j · T 4 · log2 T ·
T∑

s=1

s∑
h=0

1
s2

≤ c2;(g,i,j) ·Ai−2
i ·Aj−g

j · T 4 · log3 T. ut

3.3 Choosing a Subhypergraph in G

With probability p := T ε/tk(0) ≤ 1, hence p = Θ(T ε/(A(k−2)/(k−1)
k · T 2/(k−1))

by (7), where ε > 0 is a small constant, we select uniformly at random and
independently of each other vertices from V . Let V ∗ ⊆ V be the random set of
chosen vertices. Let G∗ = (V ∗, E0∗

3 ∪ E∗3 ∪ E∗4 ∪ · · · ∪ E∗k ) with E0∗
3 := E0

3 ∩ [V ∗]3

and E∗j := Ej ∩ [V ∗]j , j = 3, . . . , k, be the random subhypergraph of G, which is
induced by V ∗. Let E[|V ∗|], E[|E0∗

3 |], E[|E∗j |], j = 3, . . . , k, and E[s2;(g,i,j)(G∗)],
2 ≤ g ≤ i ≤ j ≤ k but g < j, be the expected numbers of vertices, induced
collinear triples, j-element edges and (2; (g, i, j))-cycles, respectively, in G∗. By
(5), (6), and (8) we infer for constants c′1, c

0′

3 c′j , c
′
2;(g,i,j) > 0:

E[|V ∗|] = p · T 2 = (c′1 · T
2k−4
k−1 +ε)/A

k−2
k−1
k (15)

E[|E0∗
3 |] = p3 · |E0

3 | ≤ (c0′

3 · T
5k−11

k−1 +3ε)/A
3k−6
k−1

k (16)

E[|E∗j |] = pj · |Ej | ≤ (c′j · T
4k−2j−4

k−1 +jε ·Aj−2
j )/A

j(k−2)
k−1

k (17)

E[s2;(g,i,j)(G∗)] = pi+j−g · s2;(g,i,j)(G) ≤

≤
c′2;(g,i,j) · T

4− 2(i+j−g)
k−1 +(i+j−g)ε · log3 T ·Ai−2

i ·Aj−g
j

A
(k−2)(i+j−g)

k−1
k

. (18)

By (15)–(18) and by Chernoff’s and Markov’s inequality there exists a subhy-
pergraph G∗ = (V ∗, E0∗

3 ∪ E∗3 ∪ E∗4 ∪ · · · ∪ E∗k ) of G such that

|V ∗| ≥ ((c′1/2) · T
2k−4
k−1 +ε)/A

k−2
k−1
k (19)

|E0∗
3 | ≤ (k3 · c0′

3 · T
5k−11

k−1 +3ε)/A
3k−6
k−1

k (20)

|E∗j | ≤ (k3 · c′j · T
4k−2j−4

k−1 +jε ·Aj−2
j )/A

j(k−2)
k−1

k (21)

s2;(g,i,j)(G∗) ≤
k3 · c′2;(g,i,j) · T

4− 2(i+j−g)
k−1 +(i+j−g)ε · log3 T ·Ai−2

i ·Aj−g
j

A
(k−2)(i+j−g)

k−1
k

. (22)
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This probabilistic argument can be turned into a deterministic polynomial time
algorithm by using the method of conditional probabilities. For 2 ≤ g ≤ i ≤ j ≤
k but g < j, let C2;(g,i,j) denote the multiset of all (i + j − g)-element subsets
E∪E′ of V with E ∈ Ei and E′ ∈ Ej and |E∩E′| = g. Let the grid-points in the
T × T -grid be P1, . . . , PT 2 . To each grid-point Pi associate a variable pi ∈ [0, 1],
i = 1, . . . , T 2, and let F : [0, 1]T

2 −→ R be a function, which is defined by

F (p1, . . . , pT 2) := 2pT 2/2 ·
T 2∏
i=1

(
1− pi

2

)
+

+

∑
{Pi,Pj ,Pk}∈E0

3
pi · pj · pk

(k3 · c0′
3 · T

5k−11
k−1 +3ε)/A

3k−6
k−1

k

+
k∑

j=3

∑
{Pi1 ,...,Pij

}∈Ej

∏j
l=1 pil

(k3 · c′j · T
4k−2j−4

k−1 +jε ·Aj−2
j )/A

j(k−2)
k−1

k

+

+
∑

2≤g≤i≤j≤k;g<j

A
(k−2)(i+j−g)

k−1
k ·

∑
{Pi1 ,...,Pii+j−g

}∈C2;(g,i,j)

∏i+j−g
l=1 pil

k3 · c′2;(g,i,j) · T
4− 2(i+j−g)

k−1 +(i+j−g)ε · log3 T ·Ai−2
i ·Aj−g

j

.

For convenience we assume that p · T 2 is an integer. In the beginning we set
p1 := · · · := pT 2 := p = T ε/tk(0). We infer by (15)–(18) and using 1 + x ≤ ex

that F (p, . . . , p) < (2/e)pT 2/2+1/3, hence F (p, . . . , p) < 1 for p·T 2 ≥ 3. By using
the linearity of the function F (p1, . . . , pT 2) in each pi, we minimize F (p1, . . . , pT 2)
step by step by choosing one after the other pi := 0 or pi := 1, i = 1, . . . , T 2.
Finally we obtain p1, . . . , pT 2 ∈ {0, 1} such that F (p1, . . . , pT 2) < 1. The set
V ∗ = {Pi ∈ V | pi = 1} yields an induced subhypergraph G∗ = (V ∗, E0∗

3 ∪ E∗3 ∪
· · · ∪ E∗k ) of G with E∗j := Ej ∩ [V ∗]j for j = 3, . . . , k, and E0∗

3 := E0
3 ∩ [V ∗]3,

which satisfies (19)–(22), as otherwise F (p1, . . . , pT 2) > 1 gives a contradiction.
Namely, for example if |V ∗| < p · T 2/2, hence |V ∗| ≤ (p · T 2 − 1)/2 since we
assumed that p ·T 2 is an integer, then F (p1, . . . , pT 2) ≥ 2pT 2/2 ·

∏T 2

i=1(1−pi/2) ≥
21/2 > 1, which contradicts the fact that the final value of the function F is less
than 1.

By (4)–(6) and (8) and using T = n1+β for fixed β > 0, the running time of this
derandomization is given by

O

|V |+ |E0
3 |+

k∑
j=3

|Ej |+
∑

2≤g≤i≤j≤k;g<j

|C2;(g,i,j)|

 = O(|C2;(2,k,k)|) =

= O(A2k−4
k · T 4 · log3 T ) = O((T 4k−4 · log5 n)/n2k−2). (23)

Lemma 4. For fixed β, ε with β > 1 and 0 < ε ≤ (β − 1)/(2 · (1 + β)) it is

|E0∗
3 | = o(|V ∗|). (24)
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Proof. By (4), (19), and (20), and with T = n1+β we have

|E0∗
3 | = o(|V ∗|)

⇐= T
5k−11

k−1 +3ε/A
3k−6
k−1

k = o(T
2k−4
k−1 +ε/A

k−2
k−1
k )

⇐⇒ n2−(1+β)(1−2ε)/(log n)
2

k−1 = o(1)
⇐⇒ (1 + β) · (1− 2 · ε) ≥ 2,

which holds for ε ≤ (β − 1)/(2 · (1 + β)). ut

Lemma 5. For fixed 2 ≤ g ≤ i ≤ j ≤ k with g < j, and for fixed ε with
0 < ε < j−g

(i+j−g−1)(j−2)(1+β) it is

s2;(g,i,j)(G∗) = o(|V ∗|). (25)

Proof. With (4), (19), and (22) and by using T = n1+β we infer

s2;(g,i,j)(G∗) = o(|V ∗|)

⇐=
T 4− 2(i+j−g)

k−1 +(i+j−g)ε · log3 T ·Ai−2
i ·Aj−g

j

A
(k−2)(i+j−g)

k−1
k

= o

T
2k−4
k−1 +ε

A
k−2
k−1
k


⇐⇒ nε(1+β)(i+j−g−1)− j−g

j−2 · (log n)4+
j−g
j−2−

i+j−g−1
k−1 = o(1)

⇐⇒ ε <
j − g

(j − 2)(i + j − g − 1)(1 + β)
. ut

Set ε := 1/(2 ·k2 ·(1+β)) and β := 1+(2/k2). Then, all assumptions in Lemmas
4 and 5 and also p = T ε/tk(0) ≤ 1 are fulfilled. We delete one vertex from each
edge E ∈ E0∗

3 , and from each 2-cycle in G∗. Let V ∗∗ ⊆ V ∗ be the set of remaining
vertices. By Lemmas 4 and 5 and (19) we infer

|V ∗∗| = (1− o(1)) · |V ∗| ≥ |V ∗|/2 ≥ ((c1/4) · T
2k−4
k−1 +ε)/A

k−2
k−1
k , (26)

and the induced subhypergraph G∗∗ = (V ∗∗, E∗∗3 ∪ · · · ∪ E∗∗k ) with E∗∗j := E∗j ∩
[V ∗∗]j , j = 3, . . . , k, does not contain any edges from E0

3 or 2-cycles anymore,
i.e., G∗∗ is a linear hypergraph. Since |E∗∗j | ≤ |E∗j | with (4), (21), and (26) and
T = n1+β the average degrees tj−1

j for the j-element edges of G∗∗, j = 3, . . . , k,
fulfill

tj−1
j =

j · |E∗∗j |
|V ∗∗|

≤
(j · k3 · c′j · T

4k−2j−4
k−1 +jε ·Aj−2

j )/A
j(k−2)

k−1
k

((c′1/4) · T
2k−4
k−1 +ε)/A

k−2
k−1
k

≤

≤
4 · k4 · c′j · (c∗j )j−2

c′1 · (c∗k)
(j−1)(k−2)

k−1 · (1 + β)
k−j
k−1

· T (j−1)ε · (log T )
k−j
k−1 =: tj−1

j (1). (27)

Set

c := max

{
1,

(4 · k4 · c′k)
1

k−1

(c′1)
1

k−1

}
. (28)
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Dependent on the choice of the constant c∗k > 0 below, choose constants c∗j > 0
arising from (4), j = 3, . . . , k − 1, such that

6 · k2 ·
(4 · k4 · c′j)

1
j−1 · (c∗j )

j−2
j−1

(c′1)
1

j−1 · (c∗k)
k−2
k−1 · (1 + β)

k−j
(k−1)(j−1)

≤ c. (29)

With S := c · T ε we infer from (27)–(29) that tj−1
j (1) ≤ Sj−1 · (log S)(k−j)/(k−1)

for j = 3, . . . , k, as can be easily seen with (1/ε)(k−j)/(k−1) < 6 · k2. Hence, as
the subhypergraph G∗∗ is linear, the assumptions in Theorem 4 are fulfilled, and
we apply it. By using (4) we find by choice of β, ε > 0 in time

O((T
2k−4
k−1 +ε/A

k−2
k−1
k ) · S4k−2) = O(n · T (4k−1)ε) = o(T 2) (30)

with (26), (28), c ≥ 1, and T = n1+β , and ε = 1/(2 · k2 · (1+β)) an independent
set I of size

|I| ≥ Ck ·
|V ∗∗|

S
· (log S)

1
k−1

≥ Ck ·
((c1/4) · T

2k−4
k−1 +ε)/A

k−2
k−1
k

c · T ε
· (log(c · T ε))

1
k−1

=
Ck · (c1/4)

c
· T

2k−4
k−1

((c∗k)
k−2
k−1 · T

2k−4
k−1 · (log n)

1
k−1 )/n

· (log(c · T ε))
1

k−1

≥ Ck · (c1/4)
c

· (1/(2 · k2 · (1 + β)))
1

k−1

(c∗k)
k−2
k−1

· n

(log n)
1

k−1
· (log n)

1
k−1

>
Ck · (c1/4)

c
· 1

7 · (c∗k)
k−2
k−1

· n,

as (2 · k2 · (1 + β))1/(k−1) < 7. The constants c, c1, Ck do not depend on the
constant c∗k. Therefore, by choosing the constant c∗k > 0 in (4) sufficiently small,
we obtain an independent set of size n. This yields, after rescaling the areas Aj

by a factor of T 2, a desired set of n points in [0, 1]2 such that, simultaneously for
j = 3, . . . , k, the areas of the convex hulls of every j distinct of these n points are
Ω((log n)1/(j−2)/n(j−1)/(j−2)). Adding the times in (23) and (30) we obtain with
β = 1+(2/k2) the time bound O(T 4k−4 · log5 n/n2k−2 +T 2) = (n(2k−2)(1+2β)) =
o(n6k−4). ut

We remark that the bound o(n6k−4) on the running time might be improved a
little, for example by using the better estimate O(T 4 · log T ) on the number of
collinear triples of grid-points in the T × T -grid or by a random preselection of
grid-points. However, with this approach we cannot do better than O(nck) for
some constant c > 0 due to the need of constructing the edges and 2-cycles in
the hypergraph G.
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