Point Sets in the Unit Square and Large Areas of Convex Hulls of Subsets of Points

Hanno Lefmann
Fakultät für Informatik, TU Chemnitz, D-09107 Chemnitz, Germany
lefmann@informatik.tu-chemnitz.de

Abstract

In this paper generalizations of Heilbronn's triangle problem to convex hulls of j points in the unit square $[0,1]^{2}$ are considered. By using results on the independence number of linear hypergraphs, for fixed integers $k \geq 3$ and any integers $n \geq k$ a deterministic $o\left(n^{6 k-4}\right)$ time algorithm is given, which finds distributions of n points in $[0,1]^{2}$ such that, simultaneously for $j=3, \ldots, k$, the areas of the convex hulls determined by any j of these n points are $\Omega\left((\log n)^{1 /(j-2)} / n^{(j-1) /(j-2)}\right)$.

1 Introduction

Distributions of n points in the unit square $[0,1]^{2}$, where the minimum area of a triangle determined by three of these n points is large, have been investigated by Heilbronn. Let $\Delta_{3}(n)$ denote the supremum - over all distributions of n points in $[0,1]^{2}$ - of the minimum area of a triangle among n points. Since no three of the points $(1 / n) \cdot\left(i \bmod n, i^{2} \bmod n\right), i=0, \ldots, n-1$, are collinear, we infer $\Delta_{3}(n)=\Omega\left(1 / n^{2}\right)$, provided n is prime, as has been observed by Erdős. For quite a while this lower bound was believed to be also the upper bound. However, Komlós, Pintz and Szemerédi [13] proved that $\Delta_{3}(n)=\Omega\left(\log n / n^{2}\right)$. In [6] a deterministic polynomial in n time algorithm has been given, which achieves this lower bound. Upper bounds on $\Delta_{3}(n)$ were given by Roth [18]-[21] and Schmidt [23] and, improving these earlier results, the currently best upper bound $\Delta_{3}(n)=O\left(2^{c \sqrt{\log n}} / n^{8 / 7}\right)$ for a constant $c>0$, has been obtained by Komlós, Pintz and Szemerédi [12]. We remark that, if n points are uniformly at random and independently of each other distributed in $[0,1]^{2}$, then the expected value of the minimum area of a triangle formed by three of n points has been shown in [11] to be equal to $\Theta\left(1 / n^{3}\right)$.
Variants of Heilbronn's triangle problem in higher dimensions have been investigated by Barequet $[2,3]$, who considered the minimum volumes of simplices among n points in the d-dimensional unit cube $[0,1]^{d}$, see also [14] and Brass [7]. Recently, Barequet and Shaikhet $[4,22]$ considered the on-line situation, where the points have to be positioned one after the other and suddenly this process stops. For this situation they showed by a packing argument the existence of configurations of n points in $[0,1]^{d}$, where the volume of any $(d+1)$-point simplex among these n points is $\Omega\left(1 / n^{(d+1) \ln (d-2)-0.265 d+2.269}\right)$ for fixed $d \geq 5$.
In generalizing Heilbronn's triangle problem to k-gons, see Schmidt [23], asks, given an integer $k \geq 3$, to maximize the minimum area of the convex hull of any
k distinct points in a distribution of n points in $[0,1]^{2}$. In particular, let $\Delta_{k}(n)$ be the supremum - over all distributions of n points in $[0,1]^{2}-$ of the minimum area of the convex hull determined by some k of n points. For $k=4$, Schmidt [23] proved the lower bound $\Delta_{4}(n)=\Omega\left(1 / n^{3 / 2}\right)$. In [6] a deterministic algorithm has been given, which shows the lower bound $\Delta_{k}(n)=\Omega\left(1 / n^{(k-1) /(k-2)}\right)$ has been shown for fixed integers $k \geq 3$. Also in [6] a deterministic polynomial in n time algorithm was given which achieves this lower bound. This has been improved in [15] to $\Delta_{k}(n)=\Omega\left((\log n)^{1 /(k-2)} / n^{(k-1) /(k-2)}\right)$ for fixed $k \geq 3$.
We remark that for k a function of n, Chazelle proved in [8] in connection with range searching problems that $\Delta_{k}(n)=\Theta(k / n)$ for $\log n \leq k \leq n$.
In [16] a deterministic algorithm has been given, which finds for fixed integers $k \geq 2$ and any integers $n \geq k$ in time polynomial in n a distribution of n points in the unit square $[0,1]^{2}$ such that, simultaneously for $j=2, \ldots, k$, the areas of the convex hulls of any j among the n points are $\Omega\left(1 / n^{(j-1) /(j-2)}\right)$. In [17] these simultaneously achievable lower bounds on the minimum areas of the convex hull of any j among n points in $[0,1]^{2}$ have been improved by using non-discrete probabilistic existence arguments by a logarithmic factor to $\Omega\left((\log n)^{1 /(j-2)} / n^{(j-1) /(j-2)}\right)$ for $j=3, \ldots, k$. (Note that $\Delta_{2}(n)=\Theta\left(1 / n^{1 / 2}\right)$.) Here we give a constructive argument, which provides deterministically such configurations of points in $[0,1]^{2}$:

Theorem 1. Let $k \geq 3$ be a fixed integer. For each integer $n \geq k$ one can find deterministically in time $o\left(n^{6 k-4}\right)$ some n points in the unit square $[0,1]^{2}$ such that, simultaneously for $j=3, \ldots, k$, the minimum area of the convex hull determined by some j of these n points is $\Omega\left((\log n)^{1 /(j-2)} / n^{(j-1) /(j-2)}\right)$.

Concerning upper bounds, we remark that for fixed $j \geq 4$ only the simple bounds $\Delta_{j}(n)=O(1 / n)$ are known, compare [23].

2 The Independence Number of a Linear Hypergraph

In our considerations we transform the geometric problem into a problem on hypergraphs. Before doing so, we take a closer look at hypergraphs and their independence numbers.

Definition 1. A hypergraph is a pair $\mathcal{G}=(V, \mathcal{E})$ with vertex-set V and edgeset \mathcal{E}, where $E \subseteq V$ for each edge $E \in \mathcal{E}$. For a hypergraph \mathcal{G} the notation $\mathcal{G}=\left(V, \mathcal{E}_{2} \cup \cdots \cup \mathcal{E}_{k}\right)$ means that \mathcal{E}_{i} is the set of all i-element edges in \mathcal{G}, $i=2, \ldots, k$. A hypergraph $\mathcal{G}=(V, \mathcal{E})$ is called k-uniform if $|E|=k$ for each edge $E \in \mathcal{E}$. The independence number $\alpha(\mathcal{G})$ of $\mathcal{G}=(V, \mathcal{E})$ is the largest size of a subset $I \subseteq V$ which contains no edges from \mathcal{E}.

For hypergraphs \mathcal{G} a lower bound on the independence number $\alpha(\mathcal{G})$ is given by Turán's theorem for arbitrary hypergraphs, see [24]:

Theorem 2. Let $\mathcal{G}=\left(V, \mathcal{E}_{2} \cup \cdots \cup \mathcal{E}_{k}\right)$ be a hypergraph on $|V|=N$ vertices with average degrees $t_{i}^{i-1}:=i \cdot\left|\mathcal{E}_{i}\right| / N$ for the i-element edges, $i=2, \ldots, k$. Let $t_{i_{0}}:=\max \left\{t_{i} \mid 2 \leq i \leq k\right\} \geq 1 / 2$.

Then, the independence nunber $\alpha(\mathcal{G})$ of \mathcal{G} satisfies

$$
\begin{equation*}
\alpha(\mathcal{G}) \geq N /\left(4 \cdot t_{i_{0}}\right) \tag{1}
\end{equation*}
$$

An independent set $I \subseteq V$ in \mathcal{G} with $|I| \geq N /\left(4 \cdot t_{i_{0}}\right)$ can be found deterministically in time $O\left(|V|+\left|\mathcal{E}_{2}\right|+\cdots+\left|\mathcal{E}_{k}\right|\right)$.

For convenience we include the short proof, as a related strategy is used in the proof of Theorem 1.

Proof. Choose uniformly at random and independently of each other vertices from the vertex-set V with probability $p:=1 /\left(2 \cdot t_{i_{0}}\right)$. Let $V^{*} \subseteq V$ be the random set of chosen vertices and let $\mathcal{E}_{i}^{*}:=\mathcal{E}_{i} \cap\left[V^{*}\right]^{i}, i=2, \ldots, k$, be the sets of induced i-element edges. Then, the difference of the expected numbers $E\left[\left|V^{*}\right|\right]$ and $E\left[\left|\mathcal{E}_{2}^{*}\right|+\cdots+\left|\mathcal{E}_{k}^{*}\right|\right]$ of chosen vertices and induced edges, respectively, satisfies

$$
\begin{aligned}
& E\left[\left|V^{*}\right|-\sum_{i=2}^{k}\left|\mathcal{E}_{i}^{*}\right|\right]=E\left[\left|V^{*}\right|\right]-\sum_{i=2}^{k} E\left[\left|\mathcal{E}_{i}^{*}\right|\right]=p \cdot N-\sum_{i=2}^{k} p^{i} \cdot N \cdot t_{i}^{i-1} / i \geq \\
\geq & p \cdot N-\sum_{i=2}^{k} p^{i} \cdot N \cdot t_{i_{0}}^{i-1} / i \geq \frac{N}{2 \cdot t_{i_{0}}}-\sum_{i=2}^{k} \frac{1}{i \cdot 2^{i}} \cdot \frac{N}{t_{i_{0}}} \geq \frac{N}{4 \cdot t_{i_{0}}}
\end{aligned}
$$

Thus there exists a subset $V^{*} \subseteq V$ such that $\left|V^{*}\right|-\sum_{i=2}^{k}\left|\mathcal{E}_{i}^{*}\right| \geq N /\left(4 \cdot t_{i_{0}}\right)$. Delete one vertex from each edge $E \in \mathcal{E}_{i}^{*}, i=2, \ldots, k$, hence all edges have been destroyed, and we obtain an independent set $V^{* *} \subseteq V^{*}$ with $\left|V^{* *}\right| \geq N /\left(4 \cdot t_{i_{0}}\right)$. This probabilistic argument can be turned into a deterministic algorithm with running time $O\left(|V|+\sum_{i=2}^{k}\left|\mathcal{E}_{i}\right|\right)$ by using the method of conditional probabilities, compare [5] for example.
For fixed integers $k \geq 2$, one can show by Theorem 2, Proposition 2 and Lemma 2 below, that one can find deterministically n points in the unit square $[0,1]^{2}$ such that the areas of the convex hulls of any j of these n points are $\Omega\left(1 / n^{(j-1) /(j-2)}\right)$, simultaneously for $j=2, \ldots, k$. However, we are aiming for better lower bounds. To achieve these, we consider the independence number of hypergraphs, which do not contain cycles of small lengths.

Definition 2. A j-cycle in a hypergraph $\mathcal{G}=(V, \mathcal{E})$ is given by a sequence E_{1}, \ldots, E_{j} of distinct edges $E_{1}, \ldots, E_{j} \in \mathcal{E}$, such that $E_{i} \cap E_{i+1} \neq \emptyset$ for $i=$ $1, \ldots, j-1$, and $E_{j} \cap E_{1} \neq \emptyset$, and a sequence v_{1}, \ldots, v_{j} of distinct vertices with $v_{i+1} \in \mathcal{E}_{i} \cap \mathcal{E}_{i+1}$ for $i=1, \ldots, j-1$, and $v_{1} \in \mathcal{E}_{1} \cap \mathcal{E}_{j}$. An unordered pair $\left\{E, E^{\prime}\right\}$ of distinct edges $E, E^{\prime} \in \mathcal{E}$ with $\left|E \cap E^{\prime}\right| \geq 2$ is called a 2 -cycle.
A hypergraph $\mathcal{G}=(V, \mathcal{E})$ is called linear if it does not contain any 2-cycles, and it is called uncrowded if it does not contain any 2-, 3- or 4-cycles.

For uncrowded, uniform hypergraphs the next lower bound on the independence number, which has been proved by Ajtai, Komlós, Pintz, Spencer and Szemerédi [1], is better than the one in (1), compare [5] and [10] for a deterministic polynomial time algorithm.

Theorem 3. Let $k \geq 3$ be a fixed integer. Let $\mathcal{G}=\left(V, \mathcal{E}_{k}\right)$ be an uncrowded, k uniform hypergraph with $|V|=N$ vertices and average degree $t^{k-1}:=k \cdot\left|\mathcal{E}_{k}\right| / N$. Then, for some constant $C_{k}>0$, the independence number $\alpha(\mathcal{G})$ of \mathcal{G} satisfies

$$
\begin{equation*}
\alpha(\mathcal{G}) \geq C_{k} \cdot(N / t) \cdot(\log t)^{\frac{1}{k-1}} \tag{2}
\end{equation*}
$$

Hence, for fixed $k \geq 3$ and uncrowded, k-uniform hypergraphs with average degree t^{k-1} the lower bound (2) improves on (1) by a factor of $\Theta\left((\log t)^{1 /(k-1)}\right)$. In [9] it has been shown that it suffices in Theorem 3 to relax the assumption of having an uncrowded hypergraph to having a linear hypergraph.
We use the following extension of Theorem 3 to non-uniform hypergraphs moreover, instead of an uncrowded hypergraph we require only a linear one -, see [17].

Theorem 4. Let $k \geq 3$ be a fixed integer. Let $\mathcal{G}=\left(V, \mathcal{E}_{3} \cup \cdots \cup \mathcal{E}_{k}\right)$ be a linear hypergraph on $|V|=N$ vertices, where the average degrees $t_{i}^{i-1}:=i \cdot\left|\mathcal{E}_{i}\right| / N$ for the i-element edges satisfy $t_{i}^{i-1} \leq S^{i-1} \cdot(\log S)^{(k-i) /(k-1)}$ for some number S. Then, for some constant $C_{k}>0$, the independence number $\alpha(\mathcal{G})$ of \mathcal{G} satisfies

$$
\begin{equation*}
\alpha(\mathcal{G}) \geq C_{k} \cdot \frac{N}{S} \cdot(\log S)^{\frac{1}{k-1}} \tag{3}
\end{equation*}
$$

An independent set of size $\Omega\left((N / S) \cdot(\log S)^{1 /(k-1)}\right)$ can be found deterministically in time $O\left(N \cdot S^{4 k-2}\right)$.

Both Theorems 3 and 4 are provable best possible for a certain range of the parameters $k<T<N$ as can be seen by a random hypergraph argument. Here we use Theorem 4 in our arguments to prove Theorem 1.

3 A Deterministic Algorithm

To give an algorithm, which for fixed integers $k \geq 3$ and any integers $n \geq k$ finds deterministically n points in the unit square $[0,1]^{2}$ such that, simultaneously for $j=3, \ldots, k$, the areas of the convex hulls of any j of these n points are $\Omega\left((\log n)^{1 /(j-2)} / n^{(j-1) /(j-2)}\right)$, we discretize $[0,1]^{2}$ by considering the standard $T \times T$-grid, i.e., the set $\left\{(i, j) \in \mathbb{Z}^{2} \mid 0 \leq i, j \leq T-1\right\}$, where $T=n^{1+\beta}$ for some constant $\beta>0$, which will be specified later.
For distinct grid-points P, Q in the $T \times T$-grid let $P Q$ denote the line through P and Q, and let $[P, Q]$ be the segment between P and Q. Let dist $(P, Q):=$ $\left(\left(p_{x}-q_{x}\right)^{2}+\left(p_{y}-q_{y}\right)^{2}\right)^{1 / 2}$ denote the Euclidean distance between the grid-points $P=\left(p_{x}, p_{y}\right)$ and $Q=\left(q_{x}, q_{y}\right)$. For grid-points P_{1}, \ldots, P_{l} in the $T \times T$-grid let area $\left(P_{1}, \ldots, P_{l}\right)$ be the area of the convex hull of the points P_{1}, \ldots, P_{l}. A strip centered at the line $P Q$ of width w is the set of all points in \mathbb{R}^{2}, which are at Euclidean distance at most $w / 2$ from the line $P Q$. Let \leq_{l} be a total order on the $T \times T$-grid, which is defined as follows: for grid-points $P=\left(p_{x}, p_{y}\right)$ and $Q=$ $\left(q_{x}, q_{y}\right)$ in the $T \times T$-grid let $P \leq_{l} Q: \Longleftrightarrow\left(p_{x}<q_{x}\right)$ or $\left(p_{x}=q_{x}\right.$ and $\left.p_{y}<q_{y}\right)$. First notice the following simple observation, which is used in our arguments.

Proposition 1. Let P_{1}, \ldots, P_{l} be grid-points in the $T \times T$-grid, $l \geq 3$.
(i) Then, it is area $\left(P_{1}, \ldots, P_{l}\right) \geq$ area $\left(P_{1}, \ldots, P_{l-1}\right)$.
(ii) If area $\left(P_{1}, \ldots, P_{l}\right) \leq A$, then for any distinct grid-points P_{i}, P_{j} every gridpoint $P_{k}, k=1, \ldots, l$, is contained in a strip centered at the line $P_{i} P_{j}$ of width $(4 \cdot A) / \operatorname{dist}\left(P_{i}, P_{j}\right)$.

Next we prove Theorem 1.
Proof. For suitable constants $c_{j}^{*}>0, j=3, \ldots, k$, which are fixed later in connection with inequality (29), we set

$$
\begin{equation*}
A_{j}:=\frac{c_{j}^{*} \cdot T^{2} \cdot(\log n)^{1 /(j-2)}}{n^{(j-1) /(j-2)}}>1 \tag{4}
\end{equation*}
$$

Then, it is $0<A_{3} \leq \cdots \leq A_{k}$ for $n \geq n_{0}$.
We form a non-uniform hypergraph $\mathcal{G}=\mathcal{G}\left(A_{3}, \ldots, A_{k}\right)=\left(V, \mathcal{E}_{3}^{0} \cup \mathcal{E}_{3} \cup \mathcal{E}_{4} \cup\right.$ $\cdots \cup \mathcal{E}_{k}$), which contains two types of 3 -element edges, and (one type of) j element edges, $j=4, \ldots, k$. The vertex-set V of \mathcal{G} consists of all T^{2} grid-points in the $T \times T$-grid. The edge-sets are defined as follows. For distinct grid-points $P, Q, R \in V$ in the $T \times T$-grid let $\{P, Q, R\} \in \mathcal{E}_{3}^{0}$ if and only if P, Q, R are collinear. Moreover, for $j=3, \ldots, k$, and distinct grid-points $P_{1}, \ldots, P_{j} \in V$ in the $T \times T$-grid let $\left\{P_{1}, \ldots, P_{j}\right\} \in \mathcal{E}_{j}$ if and only if area $\left(P_{1}, \ldots, P_{j}\right) \leq A_{j}$ and no three of the grid-points P_{1}, \ldots, P_{j} are collinear.
We want to find a large independent set in the hypergraph $\mathcal{G}=\left(V, \mathcal{E}_{3}^{0} \cup \mathcal{E}_{3} \cup\right.$ $\left.\mathcal{E}_{4} \cup \cdots \cup \mathcal{E}_{k}\right)$, as an independent set $I \subseteq V$ in \mathcal{G} corresponds to $|I|$ many grid-points in the $T \times T$-grid, such that the areas of the convex hulls of any j of these $|I|$ grid-points are bigger than $A_{j}, j=3, \ldots, k$. To find a suitable, induced subhypergraph of \mathcal{G} to which Theorem 4 may be applied, in a first step we estimate the numbers $\left|\mathcal{E}_{3}^{0}\right|$ and $\left|\mathcal{E}_{j}\right|, j=3, \ldots, k$, of 3 - and j-element edges, respectively, and the numbers of 2 -cycles in \mathcal{G}. Then, in a certain induced subhypergraph \mathcal{G}^{*} of \mathcal{G} we destroy all 3 -element edges in \mathcal{E}_{3}^{0} and all 2 -cycles. The resulting induced subhypergraph $\mathcal{G}^{* *}$ is linear, and then we may apply Theorem 4 to $\mathcal{G}^{* *}$.

3.1 The Numbers of Edges in \mathcal{G}

The next estimate is quite crude but it suffices for our purposes.
Proposition 2. The number $\left|\mathcal{E}_{3}^{0}\right|$ of unordered collinear triples of grid-points in the $T \times T$-grid satisfies

$$
\begin{equation*}
\left|\mathcal{E}_{3}^{0}\right| \leq T^{5} \tag{5}
\end{equation*}
$$

Proof. Each line is determined by two distinct grid-points in the $T \times T$-grid, for which there are at most T^{4} choices. Each line contains at most T grid-points from the $T \times T$-grid, and the upper bound $\left|\mathcal{E}_{3}^{0}\right| \leq T^{5}$ on the number of collinear triples follows.

To estimate $\left|\mathcal{E}_{j}\right|, j=3, \ldots, k$, we use the following observation from [6], compare Proposition 1.

Lemma 1. For distinct grid-points $P=\left(p_{x}, p_{y}\right)$ and $R=\left(r_{x}, r_{y}\right)$ with $P \leq_{l} R$ from the $T \times T$-grid, where $s:=r_{x}-p_{x} \geq 0$ and $h:=r_{y}-p_{y}$, it holds:
(a) There are at most 4•A grid-points Q in the $T \times T$-grid such that
(i) $P \leq_{l} Q \leq_{l} R$, and
(ii) P, Q, R are not collinear, and area $(P, Q, R) \leq A$.
(b) The number of grid-points Q in the $T \times T$-grid which fulfill only (ii) from (a) is at most $(12 \cdot A \cdot T) / s$ for $s>0$, and at most $(12 \cdot A \cdot T) /|h|$ for $|h|>s$.

Lemma 2. For $j=3, \ldots, k$, the numbers $\left|\mathcal{E}_{j}\right|$ of unordered j-tuples P_{1}, \ldots, P_{j} of pairwise distinct grid-points in the $T \times T$-grid with area $\left(P_{1}, \ldots, P_{j}\right) \leq A_{j}$, where no three of P_{1}, \ldots, P_{j} are collinear, satisfy for some constants $c_{j}>0$:

$$
\begin{equation*}
\left|\mathcal{E}_{j}\right| \leq c_{j} \cdot A_{j}^{j-2} \cdot T^{4} \tag{6}
\end{equation*}
$$

Proof. Let P_{1}, \ldots, P_{j} be pairwise distinct grid-points in the $T \times T$-grid, no three on a line and with area $\left(P_{1}, \ldots, P_{j}\right) \leq A_{j}$. We may assume that $P_{1} \leq_{l} \cdots_{l} P_{j}$. For $P_{1}=\left(p_{1, x}, p_{1, y}\right)$ and $P_{j}=\left(p_{j, x}, p_{j, y}\right)$ let $s:=p_{j, x}-p_{1, x} \geq 0$ and $h:=$ $p_{j, y}-p_{1, y}$. Then $s>0$, as otherwise P_{1}, \ldots, P_{j} are collinear.
There are T^{2} choices for the grid-point P_{1}. Given P_{1}, any grid-point P_{j} with $P_{1} \leq_{l} P_{j}$ is determined by a pair $(s, h) \neq(0,0)$ of integers with $1 \leq s \leq$ T and $-T \leq h \leq T$. By Proposition 1(i) we have area $\left(P_{1}, P_{i}, P_{j}\right) \leq A_{j}$ for $i=2, \ldots, j-1$. Given the grid-points P_{1} and P_{j}, since $P_{1} \leq_{l} P_{i} \leq_{l} P_{j}$ for $i=2, \ldots, j-1$, by Lemma 1 (a) there are at most $4 \cdot A_{j}$ choices for each gridpoint P_{i}, hence for $j=3, \ldots, k$ and constants $c_{j}>0$ we obtain

$$
\left|\mathcal{E}_{j}\right| \leq T^{2} \cdot \sum_{s=1}^{T} \sum_{h=-T}^{T}\left(4 \cdot A_{j}\right)^{j-2} \leq c_{j} \cdot A_{j}^{j-2} \cdot T^{4}
$$

For later use, observe that by (6) the average degrees t_{j}^{j-1} for the j-element edges $E \in \mathcal{E}_{j}, j=3, \ldots, k$, of \mathcal{G} satisfy

$$
\begin{equation*}
t_{j}^{j-1}=j \cdot\left|\mathcal{E}_{j}\right| /|V| \leq j \cdot c_{j} \cdot A_{j}^{j-2} \cdot T^{2}=:\left(t_{j}(0)\right)^{j-1} \tag{7}
\end{equation*}
$$

3.2 The Numbers of 2-Cycles in the Hypergraph \mathcal{G}

Here we take care of the number of 2-cycles in the hypergraph \mathcal{G}. Let $s_{2 ;(g, i, j)}(\mathcal{G})$ denote the number of $(2 ;(g, i, j))$-cycles in \mathcal{G}, i.e., the number of unordered pairs $\left\{E, E^{\prime}\right\}$ of edges with $E \in \mathcal{E}_{i}$ and $E^{\prime} \in \mathcal{E}_{j}$ and $\left|E \cap E^{\prime}\right|=g, 2 \leq g \leq i \leq j \leq k$ and $g<j$. Note that we do not take into account the edges from \mathcal{E}_{3}^{0}, i.e., collinear triples of grid-points, as these are treated separately.

Lemma 3. For $2 \leq g \leq i \leq j \leq k$ with $g<j$, the numbers $s_{2 ;(g, i, j)}(\mathcal{G})$ of $(2 ;(g, i, j))$-cycles in the hypergraph $\mathcal{G}=\left(V, \mathcal{E}_{3} \cup \mathcal{E}_{4} \cup \cdots \cup \mathcal{E}_{k}\right)$ fulfill for some constants $c_{2 ;(g, i, j)}>0$:

$$
\begin{equation*}
s_{2 ;(g, i, j)}(\mathcal{G}) \leq c_{2 ;(g, i, j)} \cdot A_{i}^{i-2} \cdot A_{j}^{j-g} \cdot T^{4} \cdot \log ^{3} T \tag{8}
\end{equation*}
$$

Proof. For $2 \leq g \leq i \leq j \leq k$ with $g<j$, let $\left\{E, E^{\prime}\right\}$ be a $(2 ;(g, i, j))$-cycle in \mathcal{G}, where $E \in \mathcal{E}_{i}$ and $E^{\prime} \in \mathcal{E}_{j}$. Let the grid-points, which correspond to the vertices in E and E^{\prime}, respectively, be P_{1}, \ldots, P_{i} and $P_{1}, \ldots, P_{g}, Q_{g+1}, \ldots, Q_{j}$ with $P_{1} \leq_{l}$ $\cdots \leq_{l} P_{g}$. By definition of the edge-set of \mathcal{G} no three of the grid-points P_{1}, \ldots, P_{i} and of $P_{1}, \ldots, P_{g}, Q_{g+1}, \ldots, Q_{j}$ are collinear, and area $\left(P_{1}, \ldots, P_{i}\right) \leq A_{i}$ as well as area $\left(P_{1}, \ldots, P_{g}, Q_{g+1}, \ldots, Q_{j}\right) \leq A_{j}$.
There are T^{2} choices for the grid-point P_{1}. Given $P_{1}:=\left(p_{1, x}, p_{1, y}\right)$, any pair $(s, h) \neq(0,0)$ of integers determines at most one grid-point $P_{g}:=\left(p_{1, x}+s, p_{1, y}+\right.$ h) in the $T \times T$-grid. By symmetry we may assume that $s>0$ and $0 \leq h \leq s \leq T$, which is taken into account by an additional constant factor of 2 . Given the gridpoints P_{1} and P_{g}, since area $\left(P_{1}, P_{f}, P_{g}\right) \leq A_{i}$ for $f=2, \ldots, g-1$ by Proposition 1(i), with $P_{1} \leq_{l} P_{f} \leq_{l} P_{g}$ and by Lemma 1(a) there are at most $4 \cdot A_{i}$ choices for each grid-point P_{f} in the $T \times T$-grid, hence, given h, s, the number of choices for the grid-points P_{1}, \ldots, P_{g} is at most

$$
\begin{equation*}
\left(4 \cdot A_{i}\right)^{g-2} \cdot T^{2} \tag{9}
\end{equation*}
$$

For the convex hulls of the grid-points P_{1}, \ldots, P_{i} and $P_{1}, \ldots, P_{g}, Q_{g+1}, \ldots, Q_{j}$ let their (w.r.t. \leq_{l}) extremal points be $P^{\prime}, P^{\prime \prime} \in\left\{P_{1}, \ldots, P_{i}\right\}$ and $Q^{\prime}, Q^{\prime \prime} \in$ $\left\{P_{1}, \ldots, P_{g}, Q_{g+1}, \ldots, Q_{j}\right\}$, respectively, i.e., with $P^{\prime} \leq_{l} P^{\prime \prime}$ and $Q^{\prime} \leq_{l} Q^{\prime \prime}$ we have $P^{\prime} \leq_{l} P_{1}, \ldots, P_{i} \leq_{l} P^{\prime \prime}$ and $Q^{\prime} \leq_{l} P_{1}, \ldots, P_{g}, Q_{g+1}, \ldots, Q_{j} \leq_{l} Q^{\prime \prime}$.
Given the grid-points $P_{1} \leq_{l} \cdots \leq_{l} P_{g}$, there are three possibilities for the convex hulls of the grid-points P_{1}, \ldots, P_{i} and $P_{1}, \ldots, P_{j}, Q_{j+1}, \ldots, Q_{k}$, respectively:
(i) P_{1} and P_{g} are extremal, or (ii) exactly one grid-point, P_{1} or P_{g}, is extremal, or (iii) neither P_{1} nor P_{g} is extremal.
We only consider the convex hull of P_{1}, \ldots, P_{i}, as the considerations for the convex hull of $P_{1}, \ldots, P_{g}, Q_{g+1}, \ldots, Q_{j}$ are essentially the same.
In case (i) the grid-points P_{1} and P_{g} are extremal for the convex hull of P_{1}, \ldots, P_{i}, hence $P_{1} \leq_{l} P_{g+1}, \ldots, P_{i} \leq_{l} P_{g}$. By Lemma 1(a), since area $\left(P_{1}, P_{f}, P_{g}\right) \leq A_{i}$ by Proposition 1 (i) $, f=g+1, \ldots, i$, and no three of the grid-points P_{1}, \ldots, P_{i} are collinear, there are at most $4 \cdot A_{i}$ choices for each grid-point P_{f}, hence the number of choices for the grid-points P_{g+1}, \ldots, P_{i} is at most

$$
\text { case (i): } \quad\left(4 \cdot A_{i}\right)^{i-g}
$$

In case (ii) exactly one of the grid-points P_{1} or P_{g} is extremal for the convex hull of P_{1}, \ldots, P_{i}. By Lemma $1(\mathrm{~b})$ there are at most $\left(12 \cdot A_{i} \cdot T\right) / s$ choices for the second extremal grid-point P^{\prime} or $P^{\prime \prime}$. Having chosen this second extremal grid-point, for each of the $(i-g-1)$ remaining grid-points $P_{g+1}, \ldots, P_{i} \neq P^{\prime}, P^{\prime \prime}$ there are by Lemma $1(\mathrm{a})$ at most $4 \cdot A_{i}$ choices, hence the number of choices for
the grid-points P_{g+1}, \ldots, P_{i} is at most

$$
\begin{equation*}
\text { case (ii): } \quad\left(4 \cdot A_{i}\right)^{i-g-1} \cdot \frac{12 \cdot A_{i} \cdot T}{s}=\frac{3 \cdot\left(4 \cdot A_{i}\right)^{i-g} \cdot T}{s} \tag{11}
\end{equation*}
$$

In case (iii) none of the grid-points P_{1}, P_{g} is extremal for the convex hull of P_{1}, \ldots, P_{i}. By Proposition 1(ii) all grid-points P_{g+1}, \ldots, P_{i} are contained in a strip S_{i}, which is centered at the line $P_{1} P_{g}$, of width $\left(4 \cdot A_{i}\right) / \sqrt{h^{2}+s^{2}}$. Consider the parallelogram $\mathcal{P}_{0}=\left\{\left(p_{x}, p_{y}\right) \in S_{i} \mid p_{1, x} \leq p_{x} \leq p_{1, x}+s\right\}$ within the strip S_{i}. We partition the strip S_{i} within the $T \times T$-grid into pairwise congruent parallelograms $\mathcal{P}_{l},-L \leq l \leq L$ with $L:=\lceil T / s\rceil+1$, where $\mathcal{P}_{l}:=\left\{\left(p_{x}, p_{y}\right) \in\right.$ $\left.S_{i} \mid p_{1, x}+l \cdot s \leq p_{x} \leq p_{1, x}+(l+1) \cdot s\right\}$. Each parallelogram has side-lengths $\left(4 \cdot A_{i}\right) / s$ and $\sqrt{h^{2}+s^{2}}$ and its area is $4 \cdot A_{i}$.
Since by assumption neither $P_{1} \in \mathcal{P}_{0}$ nor $P_{g} \in \mathcal{P}_{0}$ are extremal, each extremal grid-point, P^{\prime} or $P^{\prime \prime}$, is contained in some parallelogram \mathcal{P}_{l} for some $l \neq 0$, for which there are by Lemma 1 (a) at most $4 \cdot A_{i}$ choices. Each grid-point $P=$ $\left(p_{x}, p_{y}\right) \in \mathcal{P}_{l}$ satisfies $\left|p_{x}-p_{1, x}\right| \geq l \cdot s$ or $\left|p_{x}-p_{j, x}\right| \geq l \cdot s$. Thus, if one of the grid-points P^{\prime} or $P^{\prime \prime}$ is contained in some parallelogram $\mathcal{P}_{l}, l \neq 0$, then by Lemma $1(\mathrm{~b})$ there are at most $\left(12 \cdot A_{i} \cdot T\right) /(l \cdot s)$ choices for the second extremal grid-point. Having fixed both extremal grid-points P^{\prime} and $P^{\prime \prime}$ in at most $\left(4 \cdot A_{i}\right) \cdot\left(\left(12 \cdot A_{i} \cdot T\right) /(l \cdot s)\right)=\left(48 \cdot A_{i}^{2} \cdot T\right) /(l \cdot s)$ ways, for the remaining $(i-g-2)$ grid-points $P_{g+1}, \ldots, P_{i} \neq P^{\prime}, P^{\prime \prime}$ there are by Lemma 1(a) at most $\left(4 \cdot A_{i}\right)^{i-g-2}$ choices. Hence, by summing over all possible choices of $l \neq 0$, the number of choices for the grid-points P_{g+1}, \ldots, P_{i} is at most
case (iii):

$$
\begin{align*}
& \left(4 \cdot A_{i}\right)^{i-g-2} \cdot 2 \cdot \sum_{l=1}^{\lceil T / s\rceil+1} \frac{48 \cdot A_{i}^{2} \cdot T}{l \cdot s}= \\
= & \left(4 \cdot A_{i}\right)^{i-g} \cdot \frac{6 \cdot T}{s} \cdot \sum_{l=1}^{\lceil T / s\rceil+1} \frac{1}{l} \leq\left(4 \cdot A_{i}\right)^{i-g} \cdot \frac{10 \cdot T \cdot \log T}{s} . \tag{12}
\end{align*}
$$

Thus, given the grid-points P_{1}, \ldots, P_{g}, by (10)-(12) and using $s \leq T$, altogether the number of choices for the grid-points P_{g+1}, \ldots, P_{i} is at most

$$
\begin{equation*}
\left(4 \cdot A_{i}\right)^{i-g} \cdot\left(1+\frac{3 \cdot T}{s}+\frac{10 \cdot T \cdot \log T}{s}\right) \leq \frac{14 \cdot\left(4 \cdot A_{i}\right)^{i-g} \cdot T \cdot \log T}{s} \tag{13}
\end{equation*}
$$

Similar to (13), for the number of choices of the grid-points Q_{g+1}, \ldots, Q_{j} the following upper bound holds:

$$
\begin{equation*}
\frac{14 \cdot\left(4 \cdot A_{j}\right)^{j-g} \cdot T \cdot \log T}{s} . \tag{14}
\end{equation*}
$$

Hence, with (9), (13), and (14) for $2 \leq g \leq i \leq j \leq k$ and $g<j$ we obtain for constants $c_{2 ;(g, i, j)}>0$:

$$
\begin{aligned}
s_{2 ;(g, i, j)}(\mathcal{G}) \leq & 2 \cdot\left(4 \cdot A_{i}\right)^{g-2} \cdot T^{2} \cdot \sum_{s=1}^{T} \sum_{h=0}^{s}\left(\frac{14 \cdot\left(4 \cdot A_{i}\right)^{i-g} \cdot T \cdot \log T}{s}\right) \\
& \cdot\left(\frac{14 \cdot\left(4 \cdot A_{j}\right)^{j-g} \cdot T \cdot \log T}{s}\right) \leq \\
= & 392 \cdot 4^{i+j-g-2} \cdot A_{i}^{i-2} \cdot A_{j}^{j-g} \cdot T^{4} \cdot \log ^{2} T \cdot \sum_{s=1}^{T} \sum_{h=0}^{s} \frac{1}{s^{2}} \\
\leq & c_{2 ;(g, i, j)} \cdot A_{i}^{i-2} \cdot A_{j}^{j-g} \cdot T^{4} \cdot \log ^{3} T
\end{aligned}
$$

3.3 Choosing a Subhypergraph in \mathcal{G}

With probability $p:=T^{\varepsilon} / t_{k}(0) \leq 1$, hence $p=\Theta\left(T^{\varepsilon} /\left(A_{k}^{(k-2) /(k-1)} \cdot T^{2 /(k-1)}\right)\right.$ by (7), where $\varepsilon>0$ is a small constant, we select uniformly at random and independently of each other vertices from V. Let $V^{*} \subseteq V$ be the random set of chosen vertices. Let $\mathcal{G}^{*}=\left(V^{*}, \mathcal{E}_{3}^{0 *} \cup \mathcal{E}_{3}^{*} \cup \mathcal{E}_{4}^{*} \cup \cdots \cup \mathcal{E}_{k}^{*}\right)$ with $\mathcal{E}_{3}^{0 *}:=\mathcal{E}_{3}^{0} \cap\left[V^{*}\right]^{3}$ and $\mathcal{E}_{j}^{*}:=\mathcal{E}_{j} \cap\left[V^{*}\right]^{j}, j=3, \ldots, k$, be the random subhypergraph of \mathcal{G}, which is induced by V^{*}. Let $E\left[\left|V^{*}\right|\right], E\left[\left|\mathcal{E}_{3}^{0 *}\right|\right], E\left[\left|\mathcal{E}_{j}^{*}\right|\right], j=3, \ldots, k$, and $E\left[s_{2 ;(g, i, j)}\left(\mathcal{G}^{*}\right)\right]$, $2 \leq g \leq i \leq j \leq k$ but $g<j$, be the expected numbers of vertices, induced collinear triples, j-element edges and $(2 ;(g, i, j))$-cycles, respectively, in \mathcal{G}^{*}. By (5), (6), and (8) we infer for constants $c_{1}^{\prime}, c_{3}^{0^{\prime}} c_{j}^{\prime}, c_{2 ;(g, i, j)}^{\prime}>0$:

$$
\begin{align*}
E\left[\left|V^{*}\right|\right] & =p \cdot T^{2}=\left(c_{1}^{\prime} \cdot T^{\frac{2 k-4}{k-1}+\varepsilon}\right) / A_{k}^{\frac{k-2}{k-1}} \tag{15}\\
E\left[\left|\mathcal{E}_{3}^{0 *}\right|\right] & =p^{3} \cdot\left|\mathcal{E}_{3}^{0}\right| \leq\left(c_{3}^{0^{\prime}} \cdot T^{\frac{5 k-11}{k-1}+3 \varepsilon}\right) / A_{k}^{\frac{3 k-6}{k-1}} \tag{16}\\
E\left[\left|\mathcal{E}_{j}^{*}\right|\right] & =p^{j} \cdot\left|\mathcal{E}_{j}\right| \leq\left(c_{j}^{\prime} \cdot T^{\frac{4 k-2 j-4}{k-1}+j \varepsilon} \cdot A_{j}^{j-2}\right) / A_{k}^{\frac{j(k-2)}{k-1}} \tag{17}\\
E\left[s_{2 ;(g, i, j)}\left(\mathcal{G}^{*}\right)\right] & =p^{i+j-g} \cdot s_{2 ;(g, i, j)}(\mathcal{G}) \leq \\
& \leq \frac{c_{2 ;(g, i, j)}^{\prime} \cdot T^{4-\frac{2(i+j-g)}{k-1}+(i+j-g) \varepsilon} \cdot \log ^{3} T \cdot A_{i}^{i-2} \cdot A_{j}^{j-g}}{A_{k}^{\frac{(k-2)(i+j-g)}{k-1}}} . \tag{18}
\end{align*}
$$

By (15)-(18) and by Chernoff's and Markov's inequality there exists a subhypergraph $\mathcal{G}^{*}=\left(V^{*}, \mathcal{E}_{3}^{0 *} \cup \mathcal{E}_{3}^{*} \cup \mathcal{E}_{4}^{*} \cup \cdots \cup \mathcal{E}_{k}^{*}\right)$ of \mathcal{G} such that

$$
\begin{align*}
\left|V^{*}\right| & \geq\left(\left(c_{1}^{\prime} / 2\right) \cdot T^{\frac{2 k-4}{k-1}+\varepsilon}\right) / A_{k}^{\frac{k-2}{k-1}} \tag{19}\\
\left|\mathcal{E}_{3}^{0 *}\right| & \leq\left(k^{3} \cdot c_{3}^{0^{\prime}} \cdot T^{\frac{5 k-11}{k-1}+3 \varepsilon}\right) / A_{k}^{\frac{3 k-6}{k-1}} \tag{20}\\
\left|\mathcal{E}_{j}^{*}\right| & \leq\left(k^{3} \cdot c_{j}^{\prime} \cdot T^{\frac{4 k-2 j-4}{k-1}+j \varepsilon} \cdot A_{j}^{j-2}\right) / A_{k}^{\frac{j(k-2)}{k-1}} \tag{21}\\
s_{2 ;(g, i, j)}\left(\mathcal{G}^{*}\right) & \leq \frac{k^{3} \cdot c_{2 ;(g, i, j)}^{\prime} \cdot T^{4-\frac{2(i+j-g)}{k-1}+(i+j-g) \varepsilon} \cdot \log ^{3} T \cdot A_{i}^{i-2} \cdot A_{j}^{j-g}}{A_{k}^{\frac{(k-2)(i+j-g)}{k-1}}} . \tag{22}
\end{align*}
$$

This probabilistic argument can be turned into a deterministic polynomial time algorithm by using the method of conditional probabilities. For $2 \leq g \leq i \leq j \leq$ k but $g<j$, let $\mathcal{C}_{2 ;(g, i, j)}$ denote the multiset of all $(i+j-g)$-element subsets $E \cup E^{\prime}$ of V with $E \in \mathcal{E}_{i}$ and $E^{\prime} \in \mathcal{E}_{j}$ and $\left|E \cap E^{\prime}\right|=g$. Let the grid-points in the $T \times T$-grid be $P_{1}, \ldots, P_{T^{2}}$. To each grid-point P_{i} associate a variable $p_{i} \in[0,1]$, $i=1, \ldots, T^{2}$, and let $F:[0,1]^{T^{2}} \longrightarrow \mathbb{R}$ be a function, which is defined by

$$
\begin{aligned}
& F\left(p_{1}, \ldots, p_{T^{2}}\right):=2^{p T^{2} / 2} \cdot \prod_{i=1}^{T^{2}}\left(1-\frac{p_{i}}{2}\right)+ \\
& +\frac{\sum_{\left\{P_{i}, P_{j}, P_{k}\right\} \in \mathcal{E}_{3}^{0}} p_{i} \cdot p_{j} \cdot p_{k}}{\left(k^{3} \cdot c_{3}^{0^{\prime}} \cdot T^{\frac{5 k-11}{k-1}+3 \varepsilon}\right) / A_{k}^{\frac{3 k-6}{k-1}}}+\sum_{j=3}^{k} \frac{\sum_{\left\{P_{i_{1}}, \ldots, P_{i_{j}}\right\} \in \mathcal{E}_{j}} \prod_{l=1}^{j} p_{i_{l}}}{\left(k^{3} \cdot c_{j}^{\prime} \cdot T^{\frac{4 k-2 j-4}{k-1}+j \varepsilon} \cdot A_{j}^{j-2}\right) / A_{k}^{\frac{j(k-2)}{k-1}}}+ \\
& +\sum_{2 \leq g \leq i \leq j \leq k ; g<j} \frac{A_{k}^{\frac{(k-2)(i+j-g)}{k-1}} \cdot \sum_{\left\{P_{i_{1}}, \ldots, P_{i_{i+j-g}}\right\} \in \mathcal{C}_{2 ;(g, i, j)}} \prod_{l=1}^{i+j-g} p_{i_{l}}}{k^{3} \cdot c_{2 ;(g, i, j)}^{\prime} \cdot T^{4-\frac{2(i+j-g)}{k-1}+(i+j-g) \varepsilon} \cdot \log ^{3} T \cdot A_{i}^{i-2} \cdot A_{j}^{j-g}} .
\end{aligned}
$$

For convenience we assume that $p \cdot T^{2}$ is an integer. In the beginning we set $p_{1}:=\cdots:=p_{T^{2}}:=p=T^{\varepsilon} / t_{k}(0)$. We infer by (15)-(18) and using $1+x \leq e^{x}$ that $F(p, \ldots, p)<(2 / e)^{p T^{2} / 2}+1 / 3$, hence $F(p, \ldots, p)<1$ for $p \cdot T^{2} \geq 3$. By using the linearity of the function $F\left(p_{1}, \ldots, p_{T^{2}}\right)$ in each p_{i}, we minimize $F\left(p_{1}, \ldots, p_{T^{2}}\right)$ step by step by choosing one after the other $p_{i}:=0$ or $p_{i}:=1, i=1, \ldots, T^{2}$. Finally we obtain $p_{1}, \ldots, p_{T^{2}} \in\{0,1\}$ such that $F\left(p_{1}, \ldots, p_{T^{2}}\right)<1$. The set $V^{*}=\left\{P_{i} \in V \mid p_{i}=1\right\}$ yields an induced subhypergraph $\mathcal{G}^{*}=\left(V^{*}, \mathcal{E}_{3}^{0 *} \cup \mathcal{E}_{3}^{*} \cup\right.$ $\left.\cdots \cup \mathcal{E}_{k}^{*}\right)$ of \mathcal{G} with $\mathcal{E}_{j}^{*}:=\mathcal{E}_{j} \cap\left[V^{*}\right]^{j}$ for $j=3, \ldots, k$, and $\mathcal{E}_{3}^{0 *}:=\mathcal{E}_{3}^{0} \cap\left[V^{*}\right]^{3}$, which satisfies (19)-(22), as otherwise $F\left(p_{1}, \ldots, p_{T^{2}}\right)>1$ gives a contradiction. Namely, for example if $\left|V^{*}\right|<p \cdot T^{2} / 2$, hence $\left|V^{*}\right| \leq\left(p \cdot T^{2}-1\right) / 2$ since we assumed that $p \cdot T^{2}$ is an integer, then $F\left(p_{1}, \ldots, p_{T^{2}}\right) \geq 2^{p T^{2} / 2} \cdot \prod_{i=1}^{T^{2}}\left(1-p_{i} / 2\right) \geq$ $2^{1 / 2}>1$, which contradicts the fact that the final value of the function F is less than 1 .
By (4)-(6) and (8) and using $T=n^{1+\beta}$ for fixed $\beta>0$, the running time of this derandomization is given by

$$
\begin{align*}
& O\left(|V|+\left|\mathcal{E}_{3}^{0}\right|+\sum_{j=3}^{k}\left|\mathcal{E}_{j}\right|+\sum_{2 \leq g \leq i \leq j \leq k ; g<j}\left|\mathcal{C}_{2 ;(g, i, j)}\right|\right)=O\left(\left|\mathcal{C}_{2 ;(2, k, k)}\right|\right)= \\
= & O\left(A_{k}^{2 k-4} \cdot T^{4} \cdot \log ^{3} T\right)=O\left(\left(T^{4 k-4} \cdot \log ^{5} n\right) / n^{2 k-2}\right) . \tag{23}
\end{align*}
$$

Lemma 4. For fixed β, ε with $\beta>1$ and $0<\varepsilon \leq(\beta-1) /(2 \cdot(1+\beta))$ it is

$$
\begin{equation*}
\left|\mathcal{E}_{3}^{0 *}\right|=o\left(\left|V^{*}\right|\right) \tag{24}
\end{equation*}
$$

Proof. By (4), (19), and (20), and with $T=n^{1+\beta}$ we have

$$
\begin{aligned}
& \left|\mathcal{E}_{3}^{0 *}\right|=o\left(\left|V^{*}\right|\right) \\
\Longleftrightarrow & T^{\frac{5 k-11}{k-1}+3 \varepsilon} / A_{k}^{\frac{3 k-6}{k-1}}=o\left(T^{\frac{2 k-4}{k-1}+\varepsilon} / A_{k}^{\frac{k-2}{k-1}}\right) \\
\Longleftrightarrow & n^{2-(1+\beta)(1-2 \varepsilon)} /(\log n)^{\frac{2}{k-1}}=o(1) \\
\Longleftrightarrow & (1+\beta) \cdot(1-2 \cdot \varepsilon) \geq 2
\end{aligned}
$$

which holds for $\varepsilon \leq(\beta-1) /(2 \cdot(1+\beta))$.
Lemma 5. For fixed $2 \leq g \leq i \leq j \leq k$ with $g<j$, and for fixed ε with $0<\varepsilon<\frac{j-g}{(i+j-g-1)(j-2)(1+\beta)}$ it is

$$
\begin{equation*}
s_{2 ;(g, i, j)}\left(\mathcal{G}^{*}\right)=o\left(\left|V^{*}\right|\right) \tag{25}
\end{equation*}
$$

Proof. With (4), (19), and (22) and by using $T=n^{1+\beta}$ we infer

$$
\begin{aligned}
& s_{2 ;(g, i, j)}\left(\mathcal{G}^{*}\right)=o\left(\left|V^{*}\right|\right) \\
\Longleftarrow & \frac{T^{4-\frac{2(i+j-g)}{k-1}+(i+j-g) \varepsilon} \cdot \log ^{3} T \cdot A_{i}^{i-2} \cdot A_{j}^{j-g}}{A_{k}^{\frac{(k-2)(i+j-g)}{k-1}}}=o\left(\frac{T^{\frac{2 k-4}{k-1}+\varepsilon}}{A_{k}^{\frac{k-2}{k-1}}}\right) \\
\Longleftrightarrow & n^{\varepsilon(1+\beta)(i+j-g-1)-\frac{j-g}{j-2}} \cdot(\log n)^{4+\frac{j-g}{j-2}-\frac{i+j-g-1}{k-1}}=o(1) \\
\Longleftrightarrow & \varepsilon<\frac{j-g}{(j-2)(i+j-g-1)(1+\beta)} .
\end{aligned}
$$

Set $\varepsilon:=1 /\left(2 \cdot k^{2} \cdot(1+\beta)\right)$ and $\beta:=1+\left(2 / k^{2}\right)$. Then, all assumptions in Lemmas 4 and 5 and also $p=T^{\varepsilon} / t_{k}(0) \leq 1$ are fulfilled. We delete one vertex from each edge $E \in \mathcal{E}_{3}^{0 *}$, and from each 2 -cycle in \mathcal{G}^{*}. Let $V^{* *} \subseteq V^{*}$ be the set of remaining vertices. By Lemmas 4 and 5 and (19) we infer

$$
\begin{equation*}
\left|V^{* *}\right|=(1-o(1)) \cdot\left|V^{*}\right| \geq\left|V^{*}\right| / 2 \geq\left(\left(c_{1} / 4\right) \cdot T^{\frac{2 k-4}{k-1}+\varepsilon}\right) / A_{k}^{\frac{k-2}{k-1}} \tag{26}
\end{equation*}
$$

and the induced subhypergraph $\mathcal{G}^{* *}=\left(V^{* *}, \mathcal{E}_{3}^{* *} \cup \cdots \cup \mathcal{E}_{k}^{* *}\right)$ with $\mathcal{E}_{j}^{* *}:=\mathcal{E}_{j}^{*} \cap$ $\left[V^{* *}\right]^{j}, j=3, \ldots, k$, does not contain any edges from \mathcal{E}_{3}^{0} or 2-cycles anymore, i.e., $\mathcal{G}^{* *}$ is a linear hypergraph. Since $\left|\mathcal{E}_{j}^{* *}\right| \leq\left|\mathcal{E}_{j}^{*}\right|$ with (4), (21), and (26) and $T=n^{1+\beta}$ the average degrees t_{j}^{j-1} for the j-element edges of $\mathcal{G}^{* *}, j=3, \ldots, k$, fulfill

$$
\begin{align*}
t_{j}^{j-1} & =\frac{j \cdot\left|\mathcal{E}_{j}^{* *}\right|}{\left|V^{* *}\right|} \leq \frac{\left(j \cdot k^{3} \cdot c_{j}^{\prime} \cdot T^{\frac{4 k-2 j-4}{k-1}+j \varepsilon} \cdot A_{j}^{j-2}\right) / A_{k}^{\frac{j(k-2)}{k-1}}}{\left(\left(c_{1}^{\prime} / 4\right) \cdot T^{\frac{2 k-4}{k-1}+\varepsilon}\right) / A_{k}^{\frac{k-2}{k-1}}} \leq \\
& \leq \frac{4 \cdot k^{4} \cdot c_{j}^{\prime} \cdot\left(c_{j}^{*}\right)^{j-2}}{c_{1}^{\prime} \cdot\left(c_{k}^{*}\right)^{\frac{(j-1)(k-2)}{k-1}} \cdot(1+\beta)^{\frac{k-j}{k-1}}} \cdot T^{(j-1) \varepsilon} \cdot(\log T)^{\frac{k-j}{k-1}}=: t_{j}^{j-1}(1) \tag{27}
\end{align*}
$$

Set

$$
\begin{equation*}
c:=\max \left\{1, \frac{\left(4 \cdot k^{4} \cdot c_{k}^{\prime}\right)^{\frac{1}{k-1}}}{\left(c_{1}^{\prime}\right)^{\frac{1}{k-1}}}\right\} \tag{28}
\end{equation*}
$$

Dependent on the choice of the constant $c_{k}^{*}>0$ below, choose constants $c_{j}^{*}>0$ arising from (4), $j=3, \ldots, k-1$, such that

$$
\begin{equation*}
6 \cdot k^{2} \cdot \frac{\left(4 \cdot k^{4} \cdot c_{j}^{\prime}\right)^{\frac{1}{j-1}} \cdot\left(c_{j}^{*}\right)^{\frac{j-2}{j-1}}}{\left(c_{1}^{\prime}\right)^{\frac{1}{j-1}} \cdot\left(c_{k}^{*}\right)^{\frac{k-2}{k-1}} \cdot(1+\beta)^{\frac{k-j}{(k-1)(j-1)}}} \leq c \tag{29}
\end{equation*}
$$

With $S:=c \cdot T^{\varepsilon}$ we infer from $(27)-(29)$ that $t_{j}^{j-1}(1) \leq S^{j-1} \cdot(\log S)^{(k-j) /(k-1)}$ for $j=3, \ldots, k$, as can be easily seen with $(1 / \varepsilon)^{(k-j) /(k-1)}<6 \cdot k^{2}$. Hence, as the subhypergraph $\mathcal{G}^{* *}$ is linear, the assumptions in Theorem 4 are fulfilled, and we apply it. By using (4) we find by choice of $\beta, \varepsilon>0$ in time

$$
\begin{equation*}
O\left(\left(T^{\frac{2 k-4}{k-1}+\varepsilon} / A_{k}^{\frac{k-2}{k-1}}\right) \cdot S^{4 k-2}\right)=O\left(n \cdot T^{(4 k-1) \varepsilon}\right)=o\left(T^{2}\right) \tag{30}
\end{equation*}
$$

with (26), (28), $c \geq 1$, and $T=n^{1+\beta}$, and $\varepsilon=1 /\left(2 \cdot k^{2} \cdot(1+\beta)\right)$ an independent set I of size

$$
\begin{aligned}
|I| & \geq C_{k} \cdot \frac{\left|V^{* *}\right|}{S} \cdot(\log S)^{\frac{1}{k-1}} \\
& \geq C_{k} \cdot \frac{\left(\left(c_{1} / 4\right) \cdot T^{\frac{2 k-4}{k-1}+\varepsilon}\right) / A_{k}^{\frac{k-2}{k-1}}}{c \cdot T^{\varepsilon}} \cdot\left(\log \left(c \cdot T^{\varepsilon}\right)\right)^{\frac{1}{k-1}} \\
& =\frac{C_{k} \cdot\left(c_{1} / 4\right)}{c} \cdot \frac{T^{\frac{2 k-4}{k-1}}}{\left(\left(c_{k}^{*}\right)^{\frac{k-2}{k-1}} \cdot T^{\frac{2 k-4}{k-1}} \cdot(\log n)^{\frac{1}{k-1}}\right) / n} \cdot\left(\log \left(c \cdot T^{\varepsilon}\right)\right)^{\frac{1}{k-1}} \\
& \geq \frac{C_{k} \cdot\left(c_{1} / 4\right)}{c} \cdot \frac{\left(1 /\left(2 \cdot k^{2} \cdot(1+\beta)\right)\right)^{\frac{1}{k-1}}}{\left(c_{k}^{*}\right)^{\frac{k-2}{k-1}}} \cdot \frac{n}{(\log n)^{\frac{1}{k-1}}} \cdot(\log n)^{\frac{1}{k-1}} \\
& >\frac{C_{k} \cdot\left(c_{1} / 4\right)}{c} \cdot \frac{1}{7 \cdot\left(c_{k}^{*}\right)^{\frac{k-2}{k-1}} \cdot n}
\end{aligned}
$$

as $\left(2 \cdot k^{2} \cdot(1+\beta)\right)^{1 /(k-1)}<7$. The constants c, c_{1}, C_{k} do not depend on the constant c_{k}^{*}. Therefore, by choosing the constant $c_{k}^{*}>0$ in (4) sufficiently small, we obtain an independent set of size n. This yields, after rescaling the areas A_{j} by a factor of T^{2}, a desired set of n points in $[0,1]^{2}$ such that, simultaneously for $j=3, \ldots, k$, the areas of the convex hulls of every j distinct of these n points are $\Omega\left((\log n)^{1 /(j-2)} / n^{(j-1) /(j-2)}\right)$. Adding the times in (23) and (30) we obtain with $\beta=1+\left(2 / k^{2}\right)$ the time bound $O\left(T^{4 k-4} \cdot \log ^{5} n / n^{2 k-2}+T^{2}\right)=\left(n^{(2 k-2)(1+2 \beta)}\right)=$ $o\left(n^{6 k-4}\right)$.

We remark that the bound $o\left(n^{6 k-4}\right)$ on the running time might be improved a little, for example by using the better estimate $O\left(T^{4} \cdot \log T\right)$ on the number of collinear triples of grid-points in the $T \times T$-grid or by a random preselection of grid-points. However, with this approach we cannot do better than $O\left(n^{c k}\right)$ for some constant $c>0$ due to the need of constructing the edges and 2 -cycles in the hypergraph \mathcal{G}.

References

1. M. Ajtai, J. Komlós, J. Pintz, J. Spencer and E. Szemerédi, Extremal Uncrowded Hypergraphs, Journal of Combinatorial Theory Ser. A, 32, 1982, 321-335.
2. G. Barequet, A Lower Bound for Heilbronn's Triangle Problem in d Dimensions, SIAM Journal on Discrete Mathematics 14, 2001, 230-236.
3. G. Barequet, The On-Line Heilbronn's Triangle Problem, Discrete Mathematics 283, 2004, 7-14.
4. G. Barequet and A. Shaikhet, The On-Line Heilbronn's Triangle Problem in d Dimensions, Discrete \& Computational Geometry 38, 2007, 51-60.
5. C. Bertram-Kretzberg and H. Lefmann, The Algorithmic Aspects of Uncrowded Hypergraphs, SIAM Journal on Computing 29, 1999, 201-230.
6. C. Bertram-Kretzberg, T. Hofmeister and H. Lefmann, An Algorithm for Heilbronn's Problem, SIAM Journal on Computing 30, 2000, 383-390.
7. P. Brass, An Upper Bound for the d-Dimensional Analogue of Heilbronn's Triangle Problem, SIAM Journal on Discrete Mathematics 19, 192-195, 2005.
8. B. Chazelle, Lower Bounds on The Complexity of Polytope Range Searching, Journal of the American Mathematical Society 2, 1989, 637-666.
9. R. A. Duke, H. Lefmann and V. Rödl, On Uncrowded Hypergraphs, Random Structures \& Algorithms 6, 1995, 209-212.
10. A. Fundia, Derandomizing Chebychev's Inequality to find Independent Sets in Uncrowded Hypergraphs, Random Structures \& Algorithms, 8, 1996, 131-147.
11. T. Jiang, M. Li and P. Vitany, The Average Case Area of Heilbronn-type Triangles, Random Structures \& Algorithms 20, 2002, 206-219.
12. J. Komlós, J. Pintz and E. Szemerédi, On Heilbronn's Triangle Problem, Journal of the London Mathematical Society, 24, 1981, 385-396.
13. J. Komlós, J. Pintz and E. Szemerédi, A Lower Bound for Heilbronn's Problem, Journal of the London Mathematical Society, 25, 1982, 13-24.
14. H. Lefmann, On Heilbronn's Problem in Higher Dimension, Combinatorica 23, 2003, 669-680.
15. H. Lefmann, Distributions of Points in the Unit-Square and Large k-Gons, Proceedings '16th ACM-SIAM Symposium on Discrete Algorithms SODA'05', ACM and SIAM, 2005, 241-250; Long version in European Journal of Combinatorics, to appear.
16. H. Lefmann, Distributions of Points and Large Convex Hulls of k Points, Proceedings Second Int. Conference 'Algorithmic Aspects in Information and Management AAIM'06', LNCS 4041, Springer Verlag, 2006, 173-184.
17. H. Lefmann, Convex Hulls of Point Sets and Non-Uniform Uncrowded Hypergraphs, Proceedings Third Int. Conference 'Algorithmic Aspects in Information and Management AAIM'07', Springer Verlag, LNCS 4508, 2007, 285-295.
18. K. F. Roth, On a Problem of Heilbronn, Journal of the London Mathematical Society 26, 1951, 198-204.
19. K. F. Roth, On a Problem of Heilbronn, II, and III, Proceedings of the London Mathematical Society (3), 25, 1972, 193-212, and 543-549.
20. K. F. Roth, Estimation of the Area of the Smallest Triangle Obtained by Selecting Three out of n Points in a Disc of Unit Area, Proceedings of Symposia in Pure Mathematics, 24, 1973, AMS, Providence, 251-262.
21. K. F. Roth, Developments in Heilbronn's Triangle Problem, Advances in Mathematics, 22, 1976, 364-385.
22. A. Shaikhet, The On-line Heilbronn's Triangle Problem in d Dimensions, M.Sc. Thesis, Department of Computer Science, The Technion - Haifa, Israel, 2007.
23. W. M. Schmidt, On a Problem of Heilbronn, Journal of the London Mathematical Society (2), 4, 1972, 545-550.
24. J. Spencer, Turán's Theorem for k-Graphs, Discrete Mathematics, 2, 1972, 183186.
