Proper Bounded Edge-Colorings (Extended Abstract)

Claudia Bertram-Kretzberg*, Hanno Lefmann**, Vojtěch Rödl ${ }^{\star \star \star \dagger}$ and Beata Wysocka ${ }^{\ddagger}$

Abstract

For an n-element set X and a proper coloring $\Delta:[X]^{k} \longrightarrow$ $\{0,1, \ldots\}$ where each color class is a matching with cardinality bounded by u, we show that there exists a totally multicolored subset $Y \subseteq X$ with $$
|Y| \geq \max \left\{c_{1} \cdot\left(n^{k} / u\right)^{\frac{1}{2 k-1}}, \quad c_{2} \cdot\left(n^{k} / u\right)^{\frac{1}{2 k-1}} \cdot(\ln (u / \sqrt{n}))^{\frac{1}{2 k-1}}\right\}
$$

This bound is tight up to constant factors for $u=\omega\left(n^{1 / 2+\epsilon}\right)$ for any $\epsilon>0$. Moreover, for fixed k, we give a polynomial time algorithm for finding such a set Y of guaranteed size.

1 Introduction

On each of $\binom{3 n}{3} / n$ school days, in a school attended by $3 n$ students, the students are asked to line up in n rows, each containing three students. In 1851, Kirkman asked for the existence of such a schedule that would allow each triplet of students to occupy a row on exactly one of the school days, cf. [6]. This classical problem was answered completely by Ray-Chaudhuri and Wilson [10] who proved that such a schedule exists for each $n \equiv 1,3 \bmod 6$. Here, we investigate a somewhat related combinatorial problem. Suppose that after such a schedule was prepared, the principle of the school wants (for unrevealed purposes) to select the largest group of, say, m students with the property that no two triplets of students

[^0]occupy a row at the same day. Such an m must satisfy $(*) c_{1} \cdot n^{1 / 3} \cdot(\log n)^{1 / 3} \leq$ $m \leq c_{2} \cdot n^{2 / 3}$ for any schedule. While the upper bound is straightforward, the lower bound follows from [2]. Here, we give a polynomial time algorithm which finds a group of m students satisfying the lower bound in (*). Moreover, there are schedules which, up to a constant factor, are the best possible. We consider the general case in which one has n students which are asked to line up in at most u rows, each containing k people. We extend earlier results from [2] and [11] where the case $u=n / k$ respectively $k=2$ was considered.

We formulate our problem in terms of edge-colored hypergraphs: vertices correspond to students, edges to rows, and the edges are colored by the day.

Definition 1. Let $\Delta:[X]^{k} \longrightarrow \omega$ where $\omega=\{0,1, \ldots\}$ be a coloring of the k element subsets of X. The coloring $\Delta:[X]^{k} \longrightarrow \omega$ with color classes C_{0}, C_{1}, \ldots, i.e., $\Delta^{-1}(i)=C_{i}$ for $i \in \omega$, is called u-bounded if $\left|C_{i}\right| \leq u$ for $i=0,1, \ldots$. The coloring $\Delta:[X]^{k} \longrightarrow \omega$ is called proper if each color class $C_{i}, i=0,1, \ldots$, is a matching, i.e., sets of the same color are pairwise disjoint, thus, $\Delta(U)=\Delta(V)$ implies $U \cap V=\emptyset$ for all distinct sets $U, V \in[X]^{k}$. A subset $Y \subseteq X$ is called totally multicolored if the restriction of the coloring Δ to the set $[Y]^{k}$ is a one-to-one coloring. For an n-element set X, define, minimizing over all proper u-bounded colorings $\Delta:[X]^{k} \longrightarrow \omega$, the following function

$$
f_{u}(n, k)=\min _{\Delta} \max \{|Y| ; Y \subseteq X \text { is totally multicolored }\}
$$

The first estimates on $f_{u}(n, k)$ were given by Babai [4], in connection with some Sidon-type problem. He showed for the case $u=n / 2$ and $k=2$ that $c_{1} \cdot n^{1 / 3} \leq$ $f_{n / 2}(n, 2) \leq c_{2} \cdot(n \cdot \ln n)^{1 / 3}$. In [2], the lower bound was improved by the factor $O\left((\ln n)^{1 / 3}\right)$. Here, we will show the following:

Theorem 1. Let $k, u \geq 2$ be fixed integers. There exist positive constants c_{1}, c_{2}, c_{3} such that for n large enough,

$$
\begin{align*}
& \max \left\{c_{1} \cdot\left(n^{k} / u\right)^{1 /(2 k-1)}, c_{2} \cdot\left(n^{k} / u\right)^{1 /(2 k-1)} \cdot(\ln (u / \sqrt{n}))^{1 /(2 k-1)}\right\} \\
\leq & f_{u}(n, k) \leq c_{3} \cdot\left(n^{k} / u\right)^{1 /(2 k-1)} \cdot(\ln n)^{1 /(2 k-1)} \tag{1}
\end{align*}
$$

Moreover, for every u-bounded proper coloring $\Delta:[X]^{k} \longrightarrow \omega$ with $|X|=n$, one can find in time $O\left(u \cdot n^{2 k-1}\right)$ a totally multicolored subset $Y \subseteq X$ with $|Y| \geq \max \left\{c_{1} \cdot\left(n^{k} / u\right)^{1 /(2 k-1)}, c_{2} \cdot\left(n^{k} / u\right)^{1 /(2 k-1)} \cdot(\ln (u / \sqrt{n}))^{1 /(2 k-1)}\right\}$.

2 The Existence

Let $\mathcal{G}=(V, \mathcal{E})$ be a hypergraph with vertex set V and edge set \mathcal{E}. For a vertex $v \in V$, let $d(v)$ denote the degree of v in \mathcal{G}, i.e., the number of edges $E \in$ \mathcal{E} containing v. Let $d=\sum_{v \in V} d(v) /|\mathcal{V}|$ denote the average degree of \mathcal{G}. The hypergraph \mathcal{G} is called k-uniform if $|E|=k$ for each edge $E \in \mathcal{E}$. A 2-cycle in \mathcal{G} is a pair $E, E^{\prime} \in \mathcal{E}$ of distinct edges which intersect in at least two vertices. The independence number $\alpha(\mathcal{G})$ is the largest size of a subset $I \subseteq V$ such that the induced hypergraph contains no edges.

Here, we will prove inequality (1) of Theorem 1. Some of our arguments are based on a result of Ajtai, Komlós, Pintz, Spencer and Szemerédi, [1]. We use a modified version proved in [7], cf. [2] and [12].

Theorem 2. Let $k \geq 2$. Let \mathcal{G} be a $(k+1)$-uniform hypergraph on n vertices. If (i) \mathcal{G} contains no 2 -cycles, and (ii) the average degree satisfies $d \leq t^{k}$ where $t \geq t_{0}(k)$, then for some positive constant $c=c(k)$,

$$
\begin{equation*}
\alpha(\mathcal{G}) \geq c \cdot n / t \cdot(\ln t)^{1 / k} \tag{2}
\end{equation*}
$$

Proof. We start by showing the lower bounds in (1). Let $\Delta:[X]^{k} \rightarrow \omega$ be a u bounded proper coloring where $|X|=n$. We construct a $2 k$-uniform hypergraph $\mathcal{H}=(X, \mathcal{E})$ on X where $U \in \mathcal{E} \subseteq[X]^{2 k}$ if there exist two distinct sets $S, T \in[X]^{k}$, $S, T \subseteq U$ so that $\Delta(S)=\Delta(T)$. As Δ is u-bounded, we infer

$$
\begin{equation*}
|\mathcal{E}|=\sum_{i \in \omega}\binom{\left|\Delta^{-1}(i)\right|}{2} \leq \frac{\binom{n}{k}}{u} \cdot\binom{u}{2} . \tag{3}
\end{equation*}
$$

If $I \subseteq X$ is an independent set of \mathcal{H}, then I is totally multicolored w.r.t. the coloring Δ. Hence, it is enough to show that \mathcal{H} contains an independent set of size $c_{1} \cdot\left(n^{k} / u\right)^{\frac{1}{2 k-1}}$. This follows by an easy probabilistic argument, i.e., choose
every vertex in X independently of the other vertices with probability

$$
\begin{equation*}
p=\left(n^{k-1} \cdot u\right)^{-1 /(2 k-1)} . \tag{4}
\end{equation*}
$$

By Chernoff's and Markov's inequality, we know that there exists a subset $Y \subseteq X$ with $|Y| \sim\left(n^{k} / u\right)^{1 /(2 k-1)}$, and the subhypergraph induced on Y contains at most

$$
2 \cdot p^{2 k} \cdot|\mathcal{E}| \leq 2 \cdot p^{2 k} \cdot \frac{\binom{n}{k}}{u} \cdot\binom{u}{2} \leq \frac{1}{2} \cdot\left(\frac{n^{k}}{u}\right)^{1 /(2 k-1)}
$$

edges. We delete one vertex from each edge in $[Y]^{2 k} \cap \mathcal{E}$, and we obtain a subset $Y^{\prime} \subseteq Y$ with $\left|Y^{\prime}\right| \geq|Y| / 2 \geq p n / 2$. Then, Y^{\prime} is an independent set in \mathcal{H}, hence Y^{\prime} is totally multicolored w.r.t. Δ.

If $u=\sqrt{n} \cdot \omega(n)$, where $\omega(n) \longrightarrow \infty$ with $n \longrightarrow \infty$, we can improve this lower bound by a logarithmic factor. Let $\Delta:[X]^{k} \rightarrow \omega$ be a u-bounded proper coloring. Consider the $2 k$-uniform hypergraph $\mathcal{H}=(V, \mathcal{E})$ defined in the same way as above. Again, we want to find a large independent set in \mathcal{H}. The strategy is to find a random subset $Y \subseteq X$ such that the induced hypergraph has only a few 2-cycles. By deleting these 2-cycles, the desired result will follow from (2). The number of edges of \mathcal{H} satisfies inequality (3). With forsight we use a slightly larger value than in (4) for the probability p of picking vertices, namely,

$$
p=\left(1 /\left(n^{k-1} \cdot u\right)\right)^{1 /(2 k-1)} \cdot(u / \sqrt{n})^{1 /((k+1)(2 k-1))} .
$$

Let Y be a random subset of X obtained by choosing vertices $v \in X$ with probability p independently of the others. The expected size of Y is $E(|Y|)=p \cdot n$. Let $\nu_{j}(Y)$, for $j=2, \ldots, 2 k-1$, be random variables counting the number of $(2, j)$-cycles, i.e. the number of pairs of edges in the subhypergraph of \mathcal{H} induced on Y which intersect in exactly j vertices. The random variable $\mu_{2}(Y)=$ $\sum_{j=2}^{2 k-1} \nu_{j}(Y)$ counts the total number of 2-cycles of the subhypergraph induced on Y. We will give upper bounds on the expected values $E\left(\nu_{j}(Y)\right)$. To do so, we estimate the total number ν_{j} of $(2, j)$-cycles in \mathcal{H}. Fix an edge $E \in \mathcal{E}$. The number of pairs of distinct sets $U, V \in[X]^{k}$ with $\Delta(U)=\Delta(V)$ and $|(U \cup V) \cap E|=j$
and $1 \leq|U \cap E|,|V \cap E| \leq j-1$ is at most

$$
\begin{equation*}
\sum_{i=\lceil j / 2\rceil}^{j-1}\binom{2 k}{i} \cdot\binom{n-2 k}{k-i} \cdot\binom{2 k-i}{j-i} \leq c_{1} \cdot n^{k-\lceil j / 2\rceil} \tag{5}
\end{equation*}
$$

as either $|U \cap E| \geq\lceil j / 2\rceil$ or $|V \cap E| \geq\lceil j / 2\rceil$, and every color class is a matching. If $U \cap E=\emptyset$ or $V \cap E=\emptyset$, but $|(U \cup V) \cap E|=j$, then the number of such pairs U, V is bounded from above by

$$
\begin{equation*}
\binom{2 k}{j} \cdot\binom{n-2 k}{k-j} \cdot(u-1) \leq c_{2} \cdot n^{k-j} \cdot u \tag{6}
\end{equation*}
$$

Now, (3), (5) and (6) imply that

$$
\begin{equation*}
\nu_{j} \leq|\mathcal{E}| \cdot\left(c_{1} \cdot n^{k-\lceil j / 2\rceil}+c_{2} \cdot n^{k-j} \cdot u\right) \leq c_{3} \cdot u \cdot\left(n^{2 k-\lceil j / 2\rceil}+n^{2 k-j} \cdot u\right) \tag{7}
\end{equation*}
$$

As every color class is a matching, we have $u \leq n / k$, thus, $n^{2 k-\lceil j / 2\rceil} \geq n^{2 k-j} \cdot u$ for $j \geq 2$, and (7) becomes

$$
\begin{equation*}
\nu_{j} \leq c_{4} \cdot u \cdot n^{2 k-\lceil j / 2\rceil} \tag{8}
\end{equation*}
$$

We infer for $j=2, \ldots, 2 k-1$ that

$$
\begin{aligned}
& E\left(\nu_{j}(Y)\right) \leq p^{4 k-j} \cdot c_{4} \cdot u \cdot n^{2 k-\lceil j / 2\rceil}= \\
= & p n \cdot c_{4} \cdot u^{\frac{j-2 k+\frac{1}{k+1}(4 k-j-1)}{2 k-1}} \cdot n^{\frac{k(j+1-2\lceil j / 2\rceil)-\lfloor j / 2\rfloor-\frac{1}{2(k+1)(4 k-j-1)}}{2 k-1}} .
\end{aligned}
$$

As $u=\sqrt{n} \cdot \omega(n) \leq n / k$, we have $\omega(n)=O(\sqrt{n})$, and hence, for j odd,

$$
\begin{align*}
E\left(\nu_{j}(Y)\right) & \leq p n \cdot c_{4} \cdot u^{\frac{j-2 k+\frac{1}{k+(}(4 k-j-1)}{2 k-1}} \cdot n^{\frac{-(j-1) / 2-\frac{1}{2(k+1)}(4 k-j-1)}{2 k-1}} \\
& =p n \cdot c_{4} \cdot \omega(n)^{\frac{j-2 k+\frac{1}{k+1}(4 k-j-1)}{2 k-1}} \cdot n^{\frac{-k+1 / 2}{2 k-1}} \\
& \leq p n \cdot c_{4} \cdot \omega(n)^{\frac{k-1}{(k+1)(2 k-1)}} \cdot n^{\frac{-k+1 / 2}{2 k-1}} \quad \text { as } j \leq 2 k-1 \\
& =o(p n) . \tag{9}
\end{align*}
$$

Similarly, for j even, we obtain

$$
\begin{equation*}
E\left(\nu_{j}(Y)\right)=o(p n) \tag{10}
\end{equation*}
$$

By (9) and (10), we infer $E\left(\mu_{2}(Y)\right)=\sum_{j=2}^{2 k-1} E\left(\nu_{j}(Y)\right)=o(p n)$. Thus, there exists a subset $Y \subseteq X$ with $|Y|=c_{5} p n$ such that the induced hypergraph
contains at most $c_{6} p^{2 k}|\mathcal{E}|$ edges and has only $o(p n) 2$-cycles. We omit one vertex from each 2-cycle in \mathcal{H}_{0}. The remaining subhypergraph \mathcal{H}_{1} has $\left(c_{5}-o(1)\right) \cdot p n$ vertices and by (3), the average degree $d^{2 k-1}$ satisfies $d \leq c_{8} \cdot(u / \sqrt{n})^{\frac{1}{(k+1)(2 k-1)}}$. As $u / \sqrt{n} \longrightarrow \infty$ with $n \longrightarrow \infty$, we obtain from (2) that

$$
\begin{aligned}
\alpha(\mathcal{H}) \geq \alpha\left(\mathcal{H}_{1}\right) & \geq c \cdot \frac{\left(c_{1}-o(1)\right) \cdot p \cdot n}{c_{8} \cdot(u / \sqrt{n})^{(k+1)(2 k-1)}} \cdot\left[\ln \left(c_{8} \cdot\left(\frac{u}{\sqrt{n}}\right)^{\frac{1}{(k+1)(2 k-1)}}\right)\right]^{\frac{1}{2 k-1}} \\
& \geq c^{\prime} \cdot\left(n^{k} / u\right)^{1 /(2 k-1)} \cdot(\ln (u / \sqrt{n}))^{1 /(2 k-1)}
\end{aligned}
$$

Next, we will show the upper bound in (1), extending some ideas from [4]. Let X be an n-element set where w.l.o.g. n is divisible by k. Set $m=\left\lceil c \cdot n^{k} / u\right\rceil$, where $c>0$ is a constant. Let M_{1}, \ldots, M_{m} be random matchings, chosen uniformly and independently from the set of all matchings of size u from $[X]^{k}$, and set $H_{j}=\bigcup_{i<j} M_{i}$. We define a coloring $\Delta:[X]^{k} \rightarrow \omega$ as follows: for $j=1, \ldots, m$, color all sets in $M_{j} \backslash H_{j}$ by color j, and color all remaining elements in $[X]^{k} \backslash H_{m+1}$ in an arbitrary way, such that each color class is a matching. Let $Y \subseteq X$ be a fixed subset with $|Y|=x$ where $x=o\left(n / u^{1 / k}\right)$. We will prove that for $x \geq$ $c_{3} \cdot\left(n^{k} / u \cdot \ln n\right)^{1 /(2 k-1)}$ with probability approaching to 1 any such set Y is not totally multicolored, where $c_{3}>0$ is an appropriate constant. This will give the desired result. We split the proof into several claims.

Claim. For $j=1, \ldots, m$ and $t=1,2, \ldots$,

$$
\begin{equation*}
\operatorname{Prob}\left[\left|M_{j} \cap[Y]^{k}\right| \geq t\right] \leq\left(u \cdot x^{k} / n^{k}\right)^{t} \tag{11}
\end{equation*}
$$

Proof. The left hand side of (11) does not depend on the particular choice of Y. Thus, assume that the matching M_{j} is fixed. The set Y can be chosen in $\binom{n}{x}$ ways. From M_{j} we can choose t edges in $\binom{u}{t}$ ways, and the remaining elements of Y can be chosen in at most $\binom{n-k t}{x-k t}$ ways, hence

Prob $\left[\left|M_{j} \cap[Y]^{k}\right| \geq t\right] \leq\binom{ u}{t} \cdot\binom{n-k t}{x-k t} /\binom{n}{x} \leq\left(u \cdot x^{k} / n^{k}\right)^{t}$.
Claim. For $t=1,2, \ldots$ and for large enough integers n,

$$
\begin{equation*}
\text { Prob }\left[\left|H_{m+1} \cap[Y]^{k}\right| \geq t\right] \leq\left(\frac{e \cdot(t+m) \cdot u \cdot x^{k}}{t \cdot n^{k}}\right)^{t} \tag{12}
\end{equation*}
$$

Proof. For $j=1, \ldots, m$, consider the events $\left|M_{j} \cap[Y]^{k}\right| \geq t_{j}$. These events are independent. By Claim 2, we have Prob $\left[\left|M_{j} \cap[Y]^{k}\right| \geq t_{j}\right] \leq\left(u \cdot x^{k} / n^{k}\right)^{t_{j}}$. Since $\left|H_{m+1} \cap[Y]^{k}\right| \leq \sum_{j=1}^{m}\left|M_{j} \cap[Y]^{k}\right|$ we infer, using $\binom{n}{k} \leq(e \cdot n / k)^{k}$, that

$$
\text { Prob }\left[\left|H_{m+1} \cap[Y]^{k}\right| \geq t\right] \leq \operatorname{Prob}\left[\sum_{j=1}^{m}\left|M_{j} \cap[Y]^{k}\right| \geq t\right] \leq
$$

$$
\leq \sum_{\left(t_{j}\right)_{j=1}^{m}, t_{j} \geq 0, \sum_{j=1}^{m}} \prod_{t_{j}=t}^{m} \operatorname{Prob}\left[\left|M_{j} \cap[Y]^{k}\right| \geq t_{j}\right] \leq
$$

$$
\leq \sum_{\left(t_{j}\right)_{j=1}^{m}, t_{j} \geq 0, \sum_{j=1}^{m} t_{j}=t} \prod_{j=1}^{m}\left(u \cdot x^{k} / n^{k}\right)^{t_{j}}=\binom{t+m-1}{t} \cdot\left(u \cdot x^{k} / n^{k}\right)^{t} \leq
$$

$$
\leq\left(\frac{e \cdot(t+m) \cdot u \cdot x^{k}}{t \cdot n^{k}}\right)^{t}
$$

Let E_{i} denote the event $\left|H_{i} \cap[Y]^{k}\right| \leq c_{1} \cdot x^{k}$, where $c_{1}>0$ is a small constant.
Claim. For large enough positive integers n,

$$
\operatorname{Prob}\left[E_{m+1}\right] \geq 1-2^{-c_{1} \cdot x^{k}}
$$

Proof. For $t=c_{1} \cdot x^{k}$ with $x=o\left(n / u^{1 / k}\right)$, we have $t=o\left(n^{k} / u\right)$. If n is large, $m=\left\lceil c \cdot n^{k} / u\right\rceil$ and $e c / c_{1} \leq 1 / 3$, then (12) is less than $(1 / 2)^{t}$, hence,

Prob $\left[E_{m+1}\right] \geq 1-\operatorname{Prob}\left[\left|H_{m+1} \cap[Y]^{k}\right| \geq c_{1} \cdot x^{k}\right] \geq 1-2^{c_{1} \cdot x^{k}}$.

We define another random variable $Y_{j}=\left|\left[M_{j}\right]^{2} \cap\left[[Y]^{k} \backslash H_{j}\right]^{2}\right|$ for $j=1, \ldots, m$. Claim. If n is a sufficiently large positive integer, then for $j=1, \ldots, m$,

$$
E\left(Y_{j} \mid E_{j}\right)>c_{5} \cdot u^{2} \cdot x^{2 k} / n^{2 k}
$$

Proof. Clearly, we have Prob $\left[E_{1}\right]=1$. As E_{j} holds, it is $\left|[Y]^{k} \backslash H_{j}\right| \geq\binom{ x}{k}-$ $c_{1} \cdot x^{k} \geq c_{2} \cdot x^{k}$. For each set $S \in[Y]^{k}$, there are less than $k \cdot\binom{x-1}{k-1} k$-element subsets of Y which are not disjoint from S. Hence, for n large, the number of sets $\{S, T\} \in\left[[Y]^{k} \backslash H_{j}\right]^{2}$ with $S \cap T=\emptyset$ is at least

$$
\begin{equation*}
1 / 2 \cdot c_{2} \cdot x^{k} \cdot\left(c_{2} \cdot x^{k}-k \cdot\binom{x-1}{k-1}\right)>c_{3} \cdot x^{2 k} \tag{13}
\end{equation*}
$$

Two disjoint k-element sets S, T, are both in M_{j} with probability

$$
\begin{equation*}
\text { Prob }\left[S, T \in M_{j}\right]=\frac{u \cdot(u-1)}{\binom{n}{k} \cdot\binom{n-k}{k}} \geq c_{4} \cdot \frac{u^{2}}{n^{2 k}} \tag{14}
\end{equation*}
$$

By (13) and (14) for the conditional expected value $E\left(Y_{j} \mid E_{j}\right)$, we have $E\left(Y_{j} \mid E_{j}\right) \geq$ $c_{5} \cdot u^{2} \cdot x^{2 k} / n^{2 k}$.

Claim. For $j=1, \ldots, m$, and large positive integers n, and $0<\epsilon \ll c_{5}$,

$$
\operatorname{Prob}\left[Y_{j}=1 \mid E_{j}\right] \geq\left(c_{5}-\epsilon\right) \cdot u^{2} \cdot x^{2 k} / n^{2 k}
$$

Proof. For $t=1,2, \ldots$, we claim that

$$
\begin{equation*}
\operatorname{Prob}\left[Y_{j} \geq t \mid E_{j}\right] \leq\left(u \cdot x^{k} / n^{k}\right)^{\lceil\sqrt{2 t+1}\rceil} \tag{15}
\end{equation*}
$$

Namely, the statement $Y_{j} \geq t$ implies $\left|M_{j} \cap[Y]^{k}\right| \geq\lceil\sqrt{2 t+1}\rceil$, hence,
$\operatorname{Prob}\left[Y_{j} \geq t \mid E_{j}\right] \leq \operatorname{Prob}\left[\left|M_{j} \cap[Y]^{k}\right| \geq\lceil\sqrt{2 t+1}\rceil\right] \leq\left(u \cdot x^{k} / n^{k}\right)^{\lceil\sqrt{2 t+1}\rceil}$.
For $i=0,1, \ldots$, set $p_{i}=\operatorname{Prob}\left[Y_{j}=i \mid E_{j}\right]$. We infer from (15), that

$$
\begin{aligned}
& E\left(Y_{j} \mid E_{j}\right)=\sum_{i \geq 0} i \cdot p_{i} \leq p_{1}+\sum_{i \geq 2} i \cdot\left(u \cdot x^{k} / n^{k}\right)^{\lceil\sqrt{2 i+1\rceil}}= \\
= & p_{1}+O\left(\left(u \cdot x^{k} / n^{k}\right)^{3}\right)=p_{1}+o\left(u^{2} \cdot x^{2 k} / n^{2 k}\right),
\end{aligned}
$$

as $x=o\left(n / u^{1 / k}\right)$. By Claim 2, we obtain that $p_{1} \geq\left(c_{5}-\epsilon\right) \cdot u^{2} \cdot x^{2 k} / n^{2 k}$ for some positive constant $\varepsilon<c_{5}$ and n large enough.

Finally, let A_{j} denote the event $\left(Y_{j}=0\right.$ and $\left.E_{j+1}\right)$.
Claim.

$$
\operatorname{Prob}\left[A_{1} \wedge \ldots \wedge A_{m}\right] \leq \exp \left(-c^{\prime} \cdot u \cdot x^{2 k} / n^{k}\right)
$$

Proof. By Claim 2, we have

$$
\begin{align*}
\operatorname{Prob}\left(A_{1}\right) & \leq \operatorname{Prob}\left(Y_{1}=0 \mid E_{1}\right) \leq \operatorname{Prob}\left(Y_{1} \neq 1 \mid E_{1}\right) \leq \\
& \leq 1-\left(c_{5}-\epsilon\right) \cdot u^{2} \cdot x^{2 k} / n^{2 k}, \tag{16}
\end{align*}
$$

while

$$
\begin{align*}
& \operatorname{Prob}\left[A_{i} \mid A_{1} \wedge \ldots \wedge A_{i-1}\right] \leq \operatorname{Prob}\left[Y_{i}=0 \mid A_{1} \wedge \ldots \wedge A_{i-1}\right] \\
& \leq \operatorname{Prob}\left[Y_{i} \neq 1 \mid A_{1} \wedge \ldots \wedge A_{i-1}\right] \leq 1-\left(c_{5}-\epsilon\right) \cdot u^{2} \cdot x^{2 k} / n^{2 k} \tag{17}
\end{align*}
$$

With $(1-x)^{m} \leq \exp (-m \cdot x)$ and $m=\left\lceil c \cdot n^{k} / u\right\rceil$, inequalities (16), (17) imply

$$
\begin{aligned}
& \operatorname{Prob}\left[A_{1} \wedge A_{2} \wedge \ldots \wedge A_{m}\right]=\operatorname{Prob}\left[A_{1}\right] \cdot \prod_{i=2}^{m} \operatorname{Prob}\left[A_{i} \mid A_{1} \wedge \ldots \wedge A_{i-1}\right] \leq \\
\leq & \left(1-\left(c_{5}-\epsilon\right) \cdot u^{2} \cdot x^{2 k} / n^{2 k}\right)^{m} \leq \exp \left(-\left(c_{5}-\epsilon\right) \cdot m \cdot u^{2} \cdot x^{2 k} / n^{2 k}\right) \leq \\
\leq & \exp \left(-c \cdot\left(c_{5}-\epsilon\right) \cdot u \cdot x^{2 k} / n^{k}\right)
\end{aligned}
$$

Claim. The probability that there exists a totally multicolored x-element subset is at most

$$
\begin{equation*}
\binom{n}{x} \cdot\left(\exp \left(-c^{\prime} \cdot u \cdot x^{2 k} / n^{k}\right)+2^{-c_{1} \cdot x^{k}}\right) . \tag{18}
\end{equation*}
$$

Proof. If Y is not totally multicolored, then either $A_{1} \wedge \ldots \wedge A_{m}$ holds or E_{m+1} fails. As there are exactly $\binom{n}{x} x$-element sets Y, by combining the estimates from Claim 3 and Claim 6, we obtain (18).

For $x \geq c_{6} \cdot\left(n^{k} / u\right)^{1 /(2 k-1)} \cdot(\ln n)^{1 /(2 k-1)}$, where $c_{6}>0$ is a big enough constant, expression (18) tends to 0 with $n \longrightarrow \infty$. For $n \leq n_{0}$, one can obtain asymptotically the same upper bound by taking an appropriately large constant.

3 The Algorithm

In this section, we sketch the idea how to find in time $O\left(u \cdot n^{2 k-1}\right)$ a totally multicolored subset as guaranteed by (1). The algorithm follows the probabilistic arguments given before. It is based on recent results from [5] and [8].
Let $k \geq 2$ be fixed and let $\Delta:[X]^{k} \rightarrow \omega$ with $|X|=n$ be a proper u-bounded coloring. First, we collect sets $S \in[X]^{k}$ of the same color. This can be done in time $O\left(n^{k}\right)$. We form a $2 k$-uniform hypergraph $\mathcal{H}=(X, \mathcal{E}), \mathcal{E} \subseteq[X]^{2 k}$, where $E \in \mathcal{E}$ if there exist distinct sets $S, T \in[X]^{k}$ with $S \cup T=E$ and $\Delta(S)=\Delta(T)$.

Then, $|\mathcal{E}|=O\left(u \cdot n^{k}\right)$ by (3), hence, constructing \mathcal{H} can be done in time $O\left(u \cdot n^{k}\right)$. First, assume that $u \leq C \cdot \sqrt{n}$ for some constant $C>0$. We use the following algorithmic version of Turán's theorem for hypergraphs, cf. [5], [13].

Lemma 1. Let $\mathcal{G}=(V, \mathcal{E})$ be a $(k+1)$-uniform hypergraph on n vertices with average degree d^{k}. Then, one can find in time $O(|V|+|\mathcal{E}|)$ an independent set $I \subseteq V$ with $|I| \geq c \cdot n / d$.

Proof. We use the method of conditional probabilities, cf. [9] and [3]. Let $V=$ $\left\{v_{1}, \ldots, v_{n}\right\}$. Every vertex v_{i} will be assigned a probability $p_{i}, i=1, \ldots, n$. Define a potential by

$$
V\left(p_{1}, \ldots, p_{n}\right)=\sum_{i=1}^{n} p_{i}-\sum_{\left\{v_{i_{1}}, \ldots, v_{i_{k+1}}\right\} \in \mathcal{E}} \prod_{j=1}^{k+1} p_{i_{j}}
$$

In each step $i, i=1, \ldots, n$, one after the other, we choose either $p_{i}=0$ or $p_{i}=1$ to maximize the value of $V\left(p_{1}, \ldots, p_{n}\right)$. As $V\left(p_{1}, \ldots, p_{n}\right)$ is linear in each p_{i}, for $i=1$, for example, either $V\left(p_{1}, \ldots, p_{n}\right)<V\left(1, p_{2}, \ldots, p_{n}\right)$ or $V\left(p_{1}, \ldots, p_{n}\right) \leq$ $V\left(0, p_{2}, \ldots, p_{n}\right)$. In the first case, we take vertex v_{1}, else we discard it. Choosing in the beginning, $p_{1}=\ldots=p_{n}=p=1 / d$, the value of the potential is initially $V(p, \ldots, p)=p \cdot n-p^{k+1} \cdot n \cdot d^{k} /(k+1)=k /(k+1) \cdot n / d$. Finally, having chosen $p_{1}, \ldots, p_{n} \in\{0,1\}$, the set $V^{\prime}=\left\{v_{i} \in V \mid p_{i}=1\right\}$ is an independent set in \mathcal{G} of size as desired as can easily be seen. Each vertex and each edge in \mathcal{G} is considered only a constant number of times, thus, the running time is $O(|V|+|\mathcal{E}|)$.

By (3), the average degree d of \mathcal{H} satisfies $d^{2 k-1} \leq c^{\prime} \cdot n^{k-1} \cdot u$. Thus, in $\mathcal{H}=$ (X, \mathcal{E}), we can find in time $O\left(u \cdot n^{k}\right)$ an independent set of size at least c. $\left(n^{k} / u\right)^{1 /(2 k-1)}$. This part of the algorithm can be done in time $O\left(u \cdot n^{k}\right)$. Now, assume that $u=\sqrt{n} \cdot \omega(n)$ where $\omega(n) \longrightarrow \infty$ with $n \longrightarrow \infty$. First, we construct the sets $C_{2, j}$ of $(2, j)$-cycles in $\mathcal{H}, j=2, \ldots, 2 k-1$. Using (8), this can be done in time $O\left(u \cdot n^{2 k-1}\right)$. We use the following lemma, cf. [5].

Lemma 2. Let $\mathcal{G}=(V, \mathcal{E})$ be a $(k+1)$-uniform hypergraph. Let \mathcal{G} contain $\nu_{j}(\mathcal{G})$ many $(2, j)$-cycles for $j=2, \ldots, k$. Then, for any real $p, 0 \leq p \leq 1$, one can find in time $O\left(|V|+|\mathcal{E}|+\sum_{j=2}^{2 k-1} \nu_{j}(\mathcal{G})\right)$ an induced subhypergraph $\mathcal{G}^{\prime}=\left(V^{\prime}, \mathcal{E}^{\prime}\right)$ such
that $\left|V^{\prime}\right| \geq p / 3 \cdot|V|,\left|\mathcal{E}^{\prime}\right| \leq 3 p^{k+1} \cdot|\mathcal{E}|$ and $\sum_{j=2}^{k} \nu_{j}\left(\mathcal{G}^{\prime}\right) \leq 3 \cdot \sum_{j=2}^{k} p^{2 k+2-j} \cdot \nu_{j}(\mathcal{G})$ for $j=2, \ldots, k$.

Proof. Let $V=\left\{v_{1}, \ldots, v_{n}\right\}$. The proof is similar to that of Lemma 1. Step by step, one minimizes the potential $V\left(p_{1}, \ldots, p_{n}\right)$ given by

$$
3^{p \cdot n / 3} \cdot \prod_{i=1}^{n}\left(1-2 p_{i} / 3\right)+\frac{\sum_{E \in \mathcal{E}} \prod_{v_{i} \in E} p_{i}}{3 \cdot p^{k+1} \cdot|\mathcal{E}|}+\frac{\sum_{j=2}^{k} \sum_{c_{j} \in C_{2, j}} \prod_{v_{i} \in c_{j}} p_{i}}{3 \cdot \sum_{j=2}^{k} p^{2 k+2-j} \cdot\left|C_{2, j}\right|}
$$

which satisfies in the beginning $V(p, \ldots, p)<1$.
We apply Lemma 2 to the hypergraph \mathcal{H} with $p=\left(1 /\left(n^{k-1} \cdot u\right)\right)^{1 /(2 k-1)}$. $(u / \sqrt{n})^{1 /((k+1)(2 k-1))}$, and we obtain in time $O\left(u \cdot n^{2 k-1}\right)$ an induced subhypergraph $\mathcal{H}^{\prime}=\left(X^{\prime}, \mathcal{E}^{\prime}\right)$ with $\left|X^{\prime}\right| \geq p / 3 \cdot|X|$ and $\left|\mathcal{E}^{\prime}\right| \leq 3 p^{2 k} \cdot|\mathcal{E}|$ and, by (9) and (10), we have $\sum_{j=2}^{2 k-1} \nu_{j}\left(\mathcal{H}^{\prime}\right) \leq p / 6 \cdot|X|$. In time $o\left(u \cdot n^{2 k-1}\right)$, we can determine easily all 2 -cycles in \mathcal{H}^{\prime} and delete from \mathcal{H}^{\prime} one vertex from each 2-cycle. The remaining hypergraph $\mathcal{H}^{\prime \prime}$ on at least $p n / 6$ vertices contains at most $c \cdot p^{2 k} \cdot n^{k} \cdot u$ edges, thus, has average degree $d^{2 k-1} \leq c^{\prime} \cdot p^{2 k-1} \cdot n^{k-1} \cdot u$. Then, we apply the following result from [5] which gives an algorithmic version of the existence result from [7] and extends an algorithm of Fundia [8].

Theorem 3. Let $k \geq 2$ be a fixed integer. Let $\mathcal{G}=(V, \mathcal{E})$ be a $(k+1)$-uniform hypergraph on n vertices with average degree d^{k}. If \mathcal{G} does not contain any 2 cycles, then one can find for every fixed $\delta>0$ in time $O\left(n \cdot d^{k}+n^{3} / d^{3-\delta}\right)$ an independent set of size at least $c(k, \delta) \cdot n / d \cdot(\ln d)^{1 / k}$.

Using Theorem 3, we can find an independent set in $\mathcal{H}^{\prime \prime}$, hence in \mathcal{H}, in time $O\left(p^{2 k} \cdot n^{k} \cdot u+n^{3} /\left(p \cdot n^{(k-1) /(2 k-1)} \cdot u^{1 /(2 k-1)}\right)^{3-\delta}\right)=o\left(u \cdot n^{2 k-1}\right)$.

4 Final Remarks

For $u=\omega(\sqrt{n})$, the running time of the algorithm can be reduced to $O\left(u^{1-2 /(k+1)}\right.$. $\left.n^{2 k-1-1 /(k+1)}\right)$ as follows. Similarly as in Lemma 2, for $p=(\sqrt{n} / u)^{2 /((k+1)(2 k-1))}$ one chooses first a subhypergraph $\mathcal{H}^{\prime}=\left(X^{\prime}, \mathcal{E}^{\prime}\right)$ of $\mathcal{H}=(X, \mathcal{E})$, where we do not control the 2-cycles, but where $\left|X^{\prime}\right|=p / 3 \cdot|X|$ and $\left|\mathcal{E}^{\prime}\right| \leq 3 p^{2 k} \cdot|\mathcal{E}|$. Hence, \mathcal{H}^{\prime}
has $O\left(u \cdot(p \cdot n)^{2 k-\lceil j / 2\rceil}\right)$ many $(2, j)$-cycles. Then, we apply Lemma 2 with a different value p^{\prime} and proceed as before. Thus, we save some time as we build the 2-cycles later. We omit the details here.

It might also be interesting to find the real growth rate of $f_{u}(n, k)$ and a corresponding fast algorithm or to give an explicit coloring which yields our upper bound for $f_{u}(n, k)$ or even a better upper bound for $u=O(\sqrt{n})$.

References

1. M. Ajtai, J. Komlós, J. Pintz, J. Spencer and E. Szemerédi, Extremal Uncrowded Hypergraphs, Journal of Combinatorial Theory Ser. A 32, 1982, 321-335.
2. N. Alon, H. Lefmann and V. Rödl, On an Anti-Ramsey Type Result, Coll. Math. Soc. János Bolyai, 60. Sets, Graphs and Numbers, 1991, 9-22.
3. N. Alon and J. Spencer, The Probabilistic Method, Wiley \& Sons, New York, 1992.
4. L. Babai, An Anti-Ramsey Theorem, Graphs and Combinatorics 1, 1985, 23-28.
5. C. Bertram-Kretzberg and H. Lefmann, The Algorithmic Aspects of Uncrowded Hypergraphs, 8th ACM-SIAM Symp. on Discrete Algorithms, to appear, 1997.
6. N. L. Biggs, T. P. Kirkman, Bull. London Math. Soc. 13, 1981, 97-120.
7. R. A. Duke, H. Lefmann and V. Rödl, On Uncrowded Hypergraphs, Random Structures \& Algorithms 6, 1995, 209-212.
8. A. Fundia, Derandomizing Chebychev's Inequality to find Independent Sets in Uncrowded Hypergraphs, Random Structures \& Algorithms 8, 1996, 131-147.
9. P. Raghavan, Probabilistic Construction of Deterministic Algorithms: Approximating Packing Integer Programs, Journal on Computer and Systems Sciences. 37, 1988, 130-143.
10. D. Ray-Chaudhuri and R. M. Wilson, Solution of Kirkman's Schoolgirl Problem, Proc. Symp. Pure Math. Vol. XIX, UCLA, AMS, Providence, 1968, 187-203.
11. H. Lefmann, V. Rödl, and B. Wysocka, Multicolored Subsets in Colored Hypergraphs, Journal of Combinatorial Theory Ser. A 74, 1996, 209-248.
12. V. Rödl and E. Sin̆ajová, Note on Independent Sets in Steiner Systems, Random Structures \& Algorithms 5, 1994, 183-190.
13. J. Spencer, Turán's Theorem for k-Graphs, Discrete Mathematics 2, 1972, 183-186.

[^0]: * Universität Dortmund, Fachbereich Informatik, LS II, D-44221 Dortmund, Germany. bertram@ls2.informatik.uni-dortmund.de
 ** Universität Dortmund, Fachbereich Informatik, LS II, D-44221 Dortmund, Germany. lefmann@ls2.informatik.uni-dortmund.de
 *** Emory University, Department of Mathematics and Computer Science, Atlanta, Georgia 30322, USA. rodl@mathcs.emory.edu
 \dagger Research supported by NSF grant DMS 9401559. Part of this work was done during the author's visit of Humboldt-Universität, Berlin, with a Humboldt seniorfellowship.
 \ddagger University of North Carolina at Greensboro, Department of Mathematical Sciences, Greensboro, NC 27412, USA. beata@maths.mu.oz.au

