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Abstract. For an n-element set X and a proper coloring ∆: [X]k −→
{0, 1, . . .} where each color class is a matching with cardinality bounded
by u, we show that there exists a totally multicolored subset Y ⊆ X with

|Y | ≥ max
{
c1 ·
(
nk/u

) 1
2k−1 , c2 ·

(
nk/u

) 1
2k−1 ·

(
ln
(
u/
√
n
)) 1

2k−1

}
This bound is tight up to constant factors for u = ω(n1/2+ε) for any
ε > 0. Moreover, for fixed k, we give a polynomial time algorithm for
finding such a set Y of guaranteed size.

1 Introduction

On each of
(
3n
3

)
/n school days, in a school attended by 3n students, the students

are asked to line up in n rows, each containing three students. In 1851, Kirkman

asked for the existence of such a schedule that would allow each triplet of students

to occupy a row on exactly one of the school days, cf. [6]. This classical problem

was answered completely by Ray-Chaudhuri and Wilson [10] who proved that

such a schedule exists for each n ≡ 1, 3 mod 6. Here, we investigate a somewhat

related combinatorial problem. Suppose that after such a schedule was prepared,

the principle of the school wants (for unrevealed purposes) to select the largest

group of, say, m students with the property that no two triplets of students
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occupy a row at the same day. Such an m must satisfy (∗) c1 ·n1/3 · (log n)1/3 ≤

m ≤ c2 · n2/3 for any schedule. While the upper bound is straightforward, the

lower bound follows from [2]. Here, we give a polynomial time algorithm which

finds a group of m students satisfying the lower bound in (∗). Moreover, there

are schedules which, up to a constant factor, are the best possible. We consider

the general case in which one has n students which are asked to line up in at

most u rows, each containing k people. We extend earlier results from [2] and

[11] where the case u = n/k respectively k = 2 was considered.

We formulate our problem in terms of edge-colored hypergraphs: vertices corre-

spond to students, edges to rows, and the edges are colored by the day.

Definition 1. Let ∆: [X]k −→ ω where ω = {0, 1, . . .} be a coloring of the k-

element subsets of X. The coloring ∆: [X]k −→ ω with color classes C0, C1, . . .,

i.e., ∆−1(i) = Ci for i ∈ ω, is called u-bounded if |Ci| ≤ u for i = 0, 1, . . .. The

coloring ∆: [X]k −→ ω is called proper if each color class Ci, i = 0, 1, . . ., is a

matching, i.e., sets of the same color are pairwise disjoint, thus, ∆(U) = ∆(V )

implies U ∩ V = ∅ for all distinct sets U, V ∈ [X]k. A subset Y ⊆ X is called

totally multicolored if the restriction of the coloring ∆ to the set [Y ]k is a one-

to-one coloring. For an n-element set X, define, minimizing over all proper

u-bounded colorings ∆: [X]k −→ ω, the following function

fu(n, k) = min∆max{|Y | ; Y ⊆ X is totally multicolored} .

The first estimates on fu(n, k) were given by Babai [4], in connection with some

Sidon-type problem. He showed for the case u = n/2 and k = 2 that c1 · n1/3 ≤

fn/2(n, 2) ≤ c2 · (n · lnn)1/3. In [2], the lower bound was improved by the factor

O((lnn)1/3). Here, we will show the following:

Theorem 1. Let k, u ≥ 2 be fixed integers. There exist positive constants c1, c2, c3

such that for n large enough,

max
{
c1 ·

(
nk/u

)1/(2k−1)
, c2 ·

(
nk/u

)1/(2k−1) · (ln (u/√n))1/(2k−1)}
≤ fu(n, k) ≤ c3 ·

(
nk/u

)1/(2k−1) · (lnn)
1/(2k−1)

. (1)



Moreover, for every u-bounded proper coloring ∆: [X]k −→ ω with |X| = n,

one can find in time O(u · n2k−1) a totally multicolored subset Y ⊆ X with

|Y | ≥ max
{
c1 ·

(
nk/u

)1/(2k−1)
, c2 ·

(
nk/u

)1/(2k−1) · (ln (u/
√
n))

1/(2k−1)
}

.

2 The Existence

Let G = (V, E) be a hypergraph with vertex set V and edge set E . For a vertex

v ∈ V , let d(v) denote the degree of v in G, i.e., the number of edges E ∈

E containing v. Let d =
∑
v∈V d(v)/|V| denote the average degree of G. The

hypergraph G is called k-uniform if |E| = k for each edge E ∈ E . A 2-cycle in

G is a pair E,E′ ∈ E of distinct edges which intersect in at least two vertices.

The independence number α(G) is the largest size of a subset I ⊆ V such that

the induced hypergraph contains no edges.

Here, we will prove inequality (1) of Theorem 1. Some of our arguments are

based on a result of Ajtai, Komlós, Pintz, Spencer and Szemerédi, [1]. We use a

modified version proved in [7], cf. [2] and [12].

Theorem 2. Let k ≥ 2. Let G be a (k + 1)-uniform hypergraph on n vertices.

If (i) G contains no 2-cycles, and (ii) the average degree satisfies d ≤ tk where

t ≥ t0(k), then for some positive constant c = c(k),

α(G) ≥ c · n/t · (ln t)1/k . (2)

Proof. We start by showing the lower bounds in (1). Let ∆: [X]k → ω be a u-

bounded proper coloring where |X| = n. We construct a 2k-uniform hypergraph

H = (X, E) onX where U ∈ E ⊆ [X]2k if there exist two distinct sets S, T ∈ [X]k,

S, T ⊆ U so that ∆(S) = ∆(T ). As ∆ is u-bounded, we infer

|E| =
∑
i∈ω

(
|∆−1(i)|

2

)
≤
(
n
k

)
u
·
(
u

2

)
. (3)

If I ⊆ X is an independent set of H, then I is totally multicolored w.r.t. the

coloring ∆. Hence, it is enough to show that H contains an independent set of

size c1 · (nk/u)
1

2k−1 . This follows by an easy probabilistic argument, i.e., choose



every vertex in X independently of the other vertices with probability

p = (nk−1 · u)−1/(2k−1) . (4)

By Chernoff’s and Markov’s inequality, we know that there exists a subset Y ⊆ X

with |Y | ∼
(
nk/u

)1/(2k−1)
, and the subhypergraph induced on Y contains at

most

2 · p2k · |E| ≤ 2 · p2k ·
(
n
k

)
u
·
(
u

2

)
≤ 1

2
·
(
nk

u

)1/(2k−1)

edges. We delete one vertex from each edge in [Y ]2k ∩E , and we obtain a subset

Y ′ ⊆ Y with |Y ′| ≥ |Y |/2 ≥ pn/2. Then, Y ′ is an independent set in H, hence

Y ′ is totally multicolored w.r.t. ∆.

If u =
√
n · ω(n), where ω(n) −→ ∞ with n −→ ∞, we can improve this

lower bound by a logarithmic factor. Let ∆: [X]k → ω be a u-bounded proper

coloring. Consider the 2k-uniform hypergraph H = (V, E) defined in the same

way as above. Again, we want to find a large independent set in H. The strategy

is to find a random subset Y ⊆ X such that the induced hypergraph has only a

few 2-cycles. By deleting these 2-cycles, the desired result will follow from (2).

The number of edges of H satisfies inequality (3). With forsight we use a slightly

larger value than in (4) for the probability p of picking vertices, namely,

p =
(
1/(nk−1 · u)

)1/(2k−1) · (u/√n)1/((k+1)(2k−1))
.

Let Y be a random subset of X obtained by choosing vertices v ∈ X with

probability p independently of the others. The expected size of Y is E(|Y |) = p·n.

Let νj(Y ), for j = 2, . . . , 2k − 1, be random variables counting the number

of (2, j)-cycles, i.e. the number of pairs of edges in the subhypergraph of H

induced on Y which intersect in exactly j vertices. The random variable µ2(Y ) =∑2k−1
j=2 νj(Y ) counts the total number of 2-cycles of the subhypergraph induced

on Y . We will give upper bounds on the expected values E(νj(Y )). To do so, we

estimate the total number νj of (2, j)-cycles inH. Fix an edge E ∈ E . The number

of pairs of distinct sets U, V ∈ [X]k with ∆(U) = ∆(V ) and |(U ∪ V ) ∩ E| = j



and 1 ≤ |U ∩ E|, |V ∩ E| ≤ j − 1 is at most

j−1∑
i=dj/2e

(
2k

i

)
·
(
n− 2k

k − i

)
·
(

2k − i
j − i

)
≤ c1 · nk−dj/2e , (5)

as either |U ∩E| ≥ dj/2e or |V ∩E| ≥ dj/2e, and every color class is a matching.

If U ∩E = ∅ or V ∩E = ∅, but |(U ∪V )∩E| = j, then the number of such pairs

U, V is bounded from above by(
2k

j

)
·
(
n− 2k

k − j

)
· (u− 1) ≤ c2 · nk−j · u . (6)

Now, (3), (5) and (6) imply that

νj ≤ |E| ·
(
c1 · nk−dj/2e + c2 · nk−j · u

)
≤ c3 · u ·

(
n2k−dj/2e + n2k−j · u

)
.(7)

As every color class is a matching, we have u ≤ n/k, thus, n2k−dj/2e ≥ n2k−j ·u

for j ≥ 2, and (7) becomes

νj ≤ c4 · u · n2k−dj/2e . (8)

We infer for j = 2, . . . , 2k − 1 that

E(νj(Y )) ≤ p4k−j · c4 · u · n2k−dj/2e =

= pn · c4 · u
j−2k+ 1

k+1
(4k−j−1)

2k−1 · n
k(j+1−2dj/2e)−bj/2c− 1

2(k+1)
(4k−j−1)

2k−1 .

As u =
√
n · ω(n) ≤ n/k, we have ω(n) = O(

√
n), and hence, for j odd,

E(νj(Y )) ≤ pn · c4 · u
j−2k+ 1

k+1
(4k−j−1)

2k−1 · n
−(j−1)/2− 1

2(k+1)
(4k−j−1)

2k−1

= pn · c4 · ω(n)
j−2k+ 1

k+1
(4k−j−1)

2k−1 · n
−k+1/2
2k−1

≤ pn · c4 · ω(n)
k−1

(k+1)(2k−1) · n
−k+1/2
2k−1 as j ≤ 2k − 1

= o(pn) . (9)

Similarly, for j even, we obtain

E(νj(Y )) = o(pn) . (10)

By (9) and (10), we infer E(µ2(Y )) =
∑2k−1
j=2 E(νj(Y )) = o(pn). Thus, there

exists a subset Y ⊆ X with |Y | = c5pn such that the induced hypergraph



contains at most c6p
2k|E| edges and has only o(pn) 2-cycles. We omit one vertex

from each 2-cycle in H0. The remaining subhypergraph H1 has (c5 − o(1)) · pn

vertices and by (3), the average degree d2k−1 satisfies d ≤ c8 · (u/
√
n)

1
(k+1)(2k−1) .

As u/
√
n −→∞ with n −→∞, we obtain from (2) that

α(H) ≥ α(H1) ≥ c · (c1 − o(1)) · p · n

c8 · (u/
√
n)

1
(k+1)(2k−1)

·

[
ln

(
c8 ·

(
u√
n

) 1
(k+1)(2k−1)

)] 1
2k−1

≥ c′ ·
(
nk/u

)1/(2k−1) · (ln (u/√n))1/(2k−1) . ut

Next, we will show the upper bound in (1), extending some ideas from [4]. Let X

be an n-element set where w.l.o.g. n is divisible by k. Set m = dc · nk/ue, where

c > 0 is a constant. Let M1, . . . ,Mm be random matchings, chosen uniformly

and independently from the set of all matchings of size u from [X]k, and set

Hj =
⋃
i<jMi. We define a coloring ∆: [X]k → ω as follows: for j = 1, . . . ,m,

color all sets inMj\Hj by color j, and color all remaining elements in [X]k\Hm+1

in an arbitrary way, such that each color class is a matching. Let Y ⊆ X be a

fixed subset with |Y | = x where x = o(n/u1/k). We will prove that for x ≥

c3 ·
(
nk/u · lnn

)1/(2k−1)
with probability approaching to 1 any such set Y is not

totally multicolored, where c3 > 0 is an appropriate constant. This will give the

desired result. We split the proof into several claims.

Claim. For j = 1, . . . ,m and t = 1, 2, . . .,

Prob
[
|Mj ∩ [Y ]k| ≥ t

]
≤
(
u · xk/nk

)t
. (11)

Proof. The left hand side of (11) does not depend on the particular choice of Y .

Thus, assume that the matching Mj is fixed. The set Y can be chosen in
(
n
x

)
ways. From Mj we can choose t edges in

(
u
t

)
ways, and the remaining elements

of Y can be chosen in at most
(
n−kt
x−kt

)
ways, hence

Prob
[
|Mj ∩ [Y ]k| ≥ t

]
≤
(
u

t

)
·
(
n− kt
x− kt

)
/

(
n

x

)
≤
(
u · xk/nk

)t
. ut

Claim. For t = 1, 2, . . . and for large enough integers n,

Prob
[
|Hm+1 ∩ [Y ]k| ≥ t

]
≤
(
e · (t+m) · u · xk

t · nk

)t
. (12)



Proof. For j = 1, . . . ,m, consider the events |Mj ∩ [Y ]k| ≥ tj . These events are

independent. By Claim 2, we have Prob
[
|Mj ∩ [Y ]k | ≥ tj

]
≤
(
u · xk/nk

)tj
.

Since |Hm+1 ∩ [Y ]k| ≤
∑m
j=1 |Mj ∩ [Y ]k| we infer, using

(
n
k

)
≤ (e · n/k)

k
, that

Prob
[
|Hm+1 ∩ [Y ]k| ≥ t

]
≤ Prob

 m∑
j=1

|Mj ∩ [Y ]k| ≥ t

 ≤
≤

∑
(tj)mj=1

,tj≥0,
∑m

j=1
tj=t

m∏
j=1

Prob
[
|Mj ∩ [Y ]k| ≥ tj

]
≤

≤
∑

(tj)mj=1
,tj≥0,

∑m

j=1
tj=t

m∏
j=1

(
u · xk/nk

)tj
=

(
t+m− 1

t

)
·
(
u · xk/nk

)t ≤
≤
(
e · (t+m) · u · xk

t · nk

)t
. ut

Let Ei denote the event |Hi ∩ [Y ]k| ≤ c1 · xk, where c1 > 0 is a small constant.

Claim. For large enough positive integers n,

Prob [Em+1] ≥ 1− 2−c1·x
k

.

Proof. For t = c1 · xk with x = o
(
n/u1/k

)
, we have t = o(nk/u). If n is large,

m = dc · nk/ue and ec/c1 ≤ 1/3, then (12) is less than (1/2)t, hence,

Prob [Em+1] ≥ 1− Prob
[
|Hm+1 ∩ [Y ]k| ≥ c1 · xk

]
≥ 1− 2c1·x

k

. ut

We define another random variable Yj = |[Mj ]
2 ∩ [[Y ]k \Hj ]

2| for j = 1, . . . ,m.

Claim. If n is a sufficiently large positive integer, then for j = 1, . . . ,m,

E(Yj |Ej) > c5 · u2 · x2k/n2k .

Proof. Clearly, we have Prob [E1] = 1. As Ej holds, it is |[Y ]k \ Hj | ≥
(
x
k

)
−

c1 · xk ≥ c2 · xk. For each set S ∈ [Y ]k, there are less than k ·
(
x−1
k−1
)
k-element

subsets of Y which are not disjoint from S. Hence, for n large, the number of

sets {S, T} ∈ [[Y ]k \Hj ]
2 with S ∩ T = ∅ is at least

1/2 · c2 · xk ·
(
c2 · xk − k ·

(
x− 1

k − 1

))
> c3 · x2k . (13)



Two disjoint k-element sets S, T , are both in Mj with probability

Prob [S, T ∈Mj ] =
u · (u− 1)(
n
k

)
·
(
n−k
k

) ≥ c4 · u2
n2k

. (14)

By (13) and (14) for the conditional expected value E(Yj |Ej), we have E(Yj |Ej) ≥

c5 · u2 · x2k/n2k. ut

Claim. For j = 1, . . . ,m, and large positive integers n, and 0 < ε� c5,

Prob [Yj = 1 | Ej ] ≥ (c5 − ε) · u2 · x2k/n2k .

Proof. For t = 1, 2, . . ., we claim that

Prob [Yj ≥ t | Ej ] ≤
(
u · xk/nk

)d √2t+1 e
. (15)

Namely, the statement Yj ≥ t implies |Mj ∩ [Y ]k| ≥ d
√

2t+ 1 e, hence,

Prob [Yj ≥ t | Ej ] ≤ Prob
[
|Mj ∩ [Y ]k| ≥ d

√
2t+ 1 e

]
≤
(
u · xk/nk

)d √2t+1 e
.

For i = 0, 1, . . ., set pi = Prob [Yj = i | Ej ]. We infer from (15), that

E(Yj | Ej) =
∑
i≥0

i · pi ≤ p1 +
∑
i≥2

i ·
(
u · xk/nk

)d√2i+1e
=

= p1 +O
((
u · xk/nk

)3)
= p1 + o

(
u2 · x2k/n2k

)
,

as x = o
(
n/u1/k

)
. By Claim 2, we obtain that p1 ≥ (c5 − ε) · u2 · x2k/n2k for

some positive constant ε < c5 and n large enough. ut

Finally, let Aj denote the event (Yj = 0 and Ej+1).

Claim.

Prob [A1 ∧ . . . ∧Am] ≤ exp
(
−c′ · u · x2k/nk

)
.

Proof. By Claim 2, we have

Prob (A1) ≤ Prob (Y1 = 0 |E1) ≤ Prob (Y1 6= 1 |E1) ≤

≤ 1− (c5 − ε) · u2 · x2k/n2k , (16)



while

Prob [Ai |A1 ∧ . . . ∧Ai−1] ≤ Prob [Yi = 0 | A1 ∧ . . . ∧Ai−1]

≤ Prob [Yi 6= 1 |A1 ∧ . . . ∧Ai−1] ≤ 1− (c5 − ε) · u2 · x2k/n2k . (17)

With (1− x)m ≤ exp(−m · x) and m = dc · nk/ue, inequalities (16), (17) imply

Prob [A1 ∧A2 ∧ . . . ∧Am] = Prob [A1] ·
m∏
i=2

Prob [Ai | A1 ∧ . . . ∧Ai−1] ≤

≤
(
1− (c5 − ε) · u2 · x2k/n2k

)m ≤ exp
(
−(c5 − ε) ·m · u2 · x2k/n2k

)
≤

≤ exp
(
−c · (c5 − ε) · u · x2k/nk

)
. ut

Claim. The probability that there exists a totally multicolored x-element subset

is at most (
n

x

)
·
(

exp
(
−c′ · u · x2k/nk

)
+ 2−c1·x

k
)
. (18)

Proof. If Y is not totally multicolored, then either A1 ∧ . . .∧Am holds or Em+1

fails. As there are exactly
(
n
x

)
x-element sets Y , by combining the estimates from

Claim 3 and Claim 6, we obtain (18). ut

For x ≥ c6 ·
(
nk/u

)1/(2k−1) ·(lnn)
1/(2k−1)

, where c6 > 0 is a big enough constant,

expression (18) tends to 0 with n −→∞. For n ≤ n0, one can obtain asymptot-

ically the same upper bound by taking an appropriately large constant.

3 The Algorithm

In this section, we sketch the idea how to find in time O(u · n2k−1) a totally

multicolored subset as guaranteed by (1). The algorithm follows the probabilistic

arguments given before. It is based on recent results from [5] and [8].

Let k ≥ 2 be fixed and let ∆: [X]k → ω with |X| = n be a proper u-bounded

coloring. First, we collect sets S ∈ [X]k of the same color. This can be done in

time O(nk). We form a 2k-uniform hypergraph H = (X, E), E ⊆ [X]2k, where

E ∈ E if there exist distinct sets S, T ∈ [X]k with S ∪T = E and ∆(S) = ∆(T ).



Then, |E| = O(u·nk) by (3), hence, constructing H can be done in time O(u·nk).

First, assume that u ≤ C ·
√
n for some constant C > 0. We use the following

algorithmic version of Turán’s theorem for hypergraphs, cf. [5], [13].

Lemma 1. Let G = (V, E) be a (k + 1)-uniform hypergraph on n vertices with

average degree dk. Then, one can find in time O(|V | + |E|) an independent set

I ⊆ V with |I| ≥ c · n/d.

Proof. We use the method of conditional probabilities, cf. [9] and [3]. Let V =

{v1, . . . , vn}. Every vertex vi will be assigned a probability pi, i = 1, . . . , n.

Define a potential by

V (p1, . . . , pn) =

n∑
i=1

pi −
∑

{vi1 ,...,vik+1
}∈E

k+1∏
j=1

pij .

In each step i, i = 1, . . . , n, one after the other, we choose either pi = 0 or pi = 1

to maximize the value of V (p1, . . . , pn). As V (p1, . . . , pn) is linear in each pi, for

i = 1, for example, either V (p1, . . . , pn) < V (1, p2, . . . , pn) or V (p1, . . . , pn) ≤

V (0, p2, . . . , pn). In the first case, we take vertex v1, else we discard it. Choosing

in the beginning, p1 = . . . = pn = p = 1/d, the value of the potential is initially

V (p, . . . , p) = p ·n−pk+1 ·n ·dk/(k+ 1) = k/(k+ 1) ·n/d. Finally, having chosen

p1, . . . , pn ∈ {0, 1}, the set V ′ = {vi ∈ V | pi = 1} is an independent set in G of

size as desired as can easily be seen. Each vertex and each edge in G is considered

only a constant number of times, thus, the running time is O(|V |+ |E|). ut

By (3), the average degree d of H satisfies d2k−1 ≤ c′ · nk−1 · u. Thus, in H =

(X, E), we can find in time O(u · nk) an independent set of size at least c ·(
nk/u

)1/(2k−1)
. This part of the algorithm can be done in time O(u · nk).

Now, assume that u =
√
n · ω(n) where ω(n) −→ ∞ with n −→ ∞. First, we

construct the sets C2,j of (2, j)-cycles in H, j = 2, . . . , 2k−1. Using (8), this can

be done in time O(u · n2k−1). We use the following lemma, cf. [5].

Lemma 2. Let G = (V, E) be a (k+1)-uniform hypergraph. Let G contain νj(G)

many (2, j)-cycles for j = 2, . . . , k. Then, for any real p, 0 ≤ p ≤ 1, one can find

in time O(|V |+ |E|+
∑2k−1
j=2 νj(G)) an induced subhypergraph G′ = (V ′, E ′) such



that |V ′| ≥ p/3 · |V |, |E ′| ≤ 3pk+1 · |E| and
∑k
j=2 νj(G′) ≤ 3 ·

∑k
j=2 p

2k+2−j ·νj(G)

for j = 2, . . . , k.

Proof. Let V = {v1, . . . , vn}. The proof is similar to that of Lemma 1. Step by

step, one minimizes the potential V (p1, . . . , pn) given by

3p·n/3 ·
n∏
i=1

(1− 2pi/3) +

∑
E∈E

∏
vi∈E pi

3 · pk+1 · |E|
+

∑k
j=2

∑
cj∈C2,j

∏
vi∈cj pi

3 ·
∑k
j=2 p

2k+2−j · |C2,j |
,

which satisfies in the beginning V (p, . . . , p) < 1. ut

We apply Lemma 2 to the hypergraph H with p =
(
1/(nk−1 · u)

)1/(2k−1) ·
(u/
√
n)

1/((k+1)(2k−1))
, and we obtain in time O(u · n2k−1) an induced subhy-

pergraph H′ = (X ′, E ′) with |X ′| ≥ p/3 · |X| and |E ′| ≤ 3p2k · |E| and, by (9) and

(10), we have
∑2k−1
j=2 νj(H′) ≤ p/6 · |X|. In time o

(
u · n2k−1

)
, we can determine

easily all 2-cycles in H′ and delete from H′ one vertex from each 2-cycle. The

remaining hypergraph H′′ on at least pn/6 vertices contains at most c ·p2k ·nk ·u

edges, thus, has average degree d2k−1 ≤ c′ · p2k−1 · nk−1 · u. Then, we apply

the following result from [5] which gives an algorithmic version of the existence

result from [7] and extends an algorithm of Fundia [8].

Theorem 3. Let k ≥ 2 be a fixed integer. Let G = (V, E) be a (k + 1)-uniform

hypergraph on n vertices with average degree dk. If G does not contain any 2-

cycles, then one can find for every fixed δ > 0 in time O(n · dk + n3/d3−δ) an

independent set of size at least c(k, δ) · n/d · (ln d)1/k.

Using Theorem 3, we can find an independent set in H′′, hence in H, in time

O
(
p2k · nk · u+ n3/

(
p · n(k−1)/(2k−1) · u1/(2k−1)

)3−δ)
= o

(
u · n2k−1

)
.

4 Final Remarks

For u = ω(
√
n), the running time of the algorithm can be reduced toO(u1−2/(k+1)·

n2k−1−1/(k+1)) as follows. Similarly as in Lemma 2, for p = (
√
n/u)2/((k+1)(2k−1))

one chooses first a subhypergraph H′ = (X ′, E ′) of H = (X, E), where we do not

control the 2-cycles, but where |X ′| = p/3 · |X| and |E ′| ≤ 3p2k · |E|. Hence, H′



has O(u · (p · n)2k−dj/2e) many (2, j)-cycles. Then, we apply Lemma 2 with a

different value p′ and proceed as before. Thus, we save some time as we build

the 2-cycles later. We omit the details here.

It might also be interesting to find the real growth rate of fu(n, k) and a cor-

responding fast algorithm or to give an explicit coloring which yields our upper

bound for fu(n, k) or even a better upper bound for u = O(
√
n).
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2. N. Alon, H. Lefmann and V. Rödl, On an Anti-Ramsey Type Result, Coll. Math.

Soc. János Bolyai, 60. Sets, Graphs and Numbers, 1991, 9-22.

3. N. Alon and J. Spencer, The Probabilistic Method, Wiley & Sons, New York, 1992.

4. L. Babai, An Anti-Ramsey Theorem, Graphs and Combinatorics 1, 1985, 23-28.

5. C. Bertram-Kretzberg and H. Lefmann, The Algorithmic Aspects of Uncrowded

Hypergraphs, 8th ACM-SIAM Symp. on Discrete Algorithms, to appear, 1997.

6. N. L. Biggs, T. P. Kirkman, Bull. London Math. Soc. 13, 1981, 97-120.
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12. V. Rödl and E. S̆in̆ajová, Note on Independent Sets in Steiner Systems, Random

Structures & Algorithms 5, 1994, 183-190.

13. J. Spencer, Turán’s Theorem for k-Graphs, Discrete Mathematics 2, 1972, 183-186.


