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(Extended Abstract)
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Abstract. For an n-element set X and a proper coloring A: [X]* —
{0,1,...} where each color class is a matching with cardinality bounded
by u, we show that there exists a totally multicolored subset Y C X with
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This bound is tight up to constant factors for u = w(n'/?T¢) for any
€ > 0. Moreover, for fixed k, we give a polynomial time algorithm for
finding such a set Y of guaranteed size.

1 Introduction

On each of (%) /n school days, in a school attended by 3n students, the students
are asked to line up in n rows, each containing three students. In 1851, Kirkman
asked for the existence of such a schedule that would allow each triplet of students
to occupy a row on exactly one of the school days, cf. [6]. This classical problem
was answered completely by Ray-Chaudhuri and Wilson [10] who proved that
such a schedule exists for each n = 1,3 mod 6. Here, we investigate a somewhat
related combinatorial problem. Suppose that after such a schedule was prepared,
the principle of the school wants (for unrevealed purposes) to select the largest
group of, say, m students with the property that no two triplets of students
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occupy a row at the same day. Such an m must satisfy (x) ¢;-n'/3 - (logn)*/3 <
m < ¢y - n?/3 for any schedule. While the upper bound is straightforward, the
lower bound follows from [2]. Here, we give a polynomial time algorithm which
finds a group of m students satisfying the lower bound in (x). Moreover, there
are schedules which, up to a constant factor, are the best possible. We consider
the general case in which one has n students which are asked to line up in at
most u rows, each containing k people. We extend earlier results from [2] and
[11] where the case u = n/k respectively k = 2 was considered.

We formulate our problem in terms of edge-colored hypergraphs: vertices corre-

spond to students, edges to rows, and the edges are colored by the day.

Definition 1. Let A:[X]¥ — w where w = {0,1,...} be a coloring of the k-
element subsets of X. The coloring A: [X]¥ — w with color classes Cy, Cy, .. .,
i.e., A7Y(i) = C; fori € w, is called u-bounded if |C;| < u fori=0,1,.... The
coloring A: [X]¥ — w is called proper if each color class C;, i = 0,1,..., is a
matching, i.e., sets of the same color are pairwise disjoint, thus, A(U) = A(V)
implies U NV = () for all distinct sets U,V € [X]F. A subset Y C X is called
totally multicolored if the restriction of the coloring A to the set [Y¥ is a one-
to-one coloring. For an n-element set X, define, minimizing over all proper

u-bounded colorings A: [X|¥ — w, the following function
fu(n, k) = minamax{|Y]; Y C X is totally multicolored} .

The first estimates on f,(n, k) were given by Babai [4], in connection with some
Sidon-type problem. He showed for the case u = n/2 and k = 2 that ¢; - n'/? <
fay2(n,2) < ez (n-Inn)/3. In [2], the lower bound was improved by the factor
O((Inn)*/3). Here, we will show the following:

Theorem 1. Let k,u > 2 be fized integers. There exist positive constants c1, ca, c3

such that for n large enough,

max {Cl . (nk/u)l/(Qkfl) . Co- (nk/u)l/@kfl) . (hl (u/\/ﬁ))l/(Zkfl)}

< fuln k) < e+ (0 fu) "0 )R (1)



Moreover, for every u-bounded proper coloring A:[X]F — w with |X| = n,
one can find in time O(u - n?*~1) a totally multicolored subset Y C X with

Y| > max{cl . (nk/u)l/(%fl)’ . (nk/u)l/(qu) (I (u/\/ﬁ))l/@kfl)}'

2 The Existence

Let G = (V, &) be a hypergraph with vertex set V' and edge set £. For a vertex
v € V, let d(v) denote the degree of v in G, i.e., the number of edges E €

& containing v. Let d = Y _,d(v)/|V| denote the average degree of G. The

vev
hypergraph G is called k-uniform if |E| = k for each edge E € £. A 2-cycle in
G is a pair E,E’ € £ of distinct edges which intersect in at least two vertices.
The independence number «(G) is the largest size of a subset I C V such that
the induced hypergraph contains no edges.

Here, we will prove inequality (1) of Theorem 1. Some of our arguments are

based on a result of Ajtai, Komlés, Pintz, Spencer and Szemerédi, [1]. We use a

modified version proved in [7], cf. [2] and [12].

Theorem 2. Let k > 2. Let G be a (k + 1)-uniform hypergraph on n vertices.
If (1) G contains no 2-cycles, and (ii) the average degree satisfies d < t* where

t > to(k), then for some positive constant ¢ = c(k),
a(G) > c-n/t-(In t)/* . (2)

Proof. We start by showing the lower bounds in (1). Let A:[X]* — w be a u-
bounded proper coloring where | X| = n. We construct a 2k-uniform hypergraph
H = (X,&) on X where U € £ C [X]?* if there exist two distinct sets S, T € [X]¥,
S, T C U so that A(S) = A(T). As A is u-bounded, we infer
A7 I U

f-3 , M) ®
If I C X is an independent set of H, then I is totally multicolored w.r.t. the
coloring A. Hence, it is enough to show that H contains an independent set of

size ¢; - (n*/u) -1 . This follows by an easy probabilistic argument, i.e., choose



every vertex in X independently of the other vertices with probability

p= (nkfl . u)fl/(2k71) ) (4)

By Chernoff’s and Markov’s inequality, we know that there exists a subset Y C X
with |Y] ~ (nk/u) 1/(%_1), and the subhypergraph induced on Y contains at

n K 1/(2k—1)
2.p2’€.|5‘ SQ.ka.Q. (u> < 1 (n)

most

U 2) =2 \u

edges. We delete one vertex from each edge in [Y]?* N &, and we obtain a subset
Y’ CY with |[Y’'] > |Y|/2 > pn/2. Then, Y’ is an independent set in , hence
Y is totally multicolored w.r.t. A.

If w = +/n-w(n), where w(n) — oo with n — oo, we can improve this
lower bound by a logarithmic factor. Let A: [X]* — w be a u-bounded proper
coloring. Consider the 2k-uniform hypergraph H = (V, &) defined in the same
way as above. Again, we want to find a large independent set in H. The strategy
is to find a random subset Y C X such that the induced hypergraph has only a
few 2-cycles. By deleting these 2-cycles, the desired result will follow from (2).
The number of edges of H satisfies inequality (3). With forsight we use a slightly

larger value than in (4) for the probability p of picking vertices, namely,
_ 1/(2k—1) 1/((k+1)(2k—1

Let Y be a random subset of X obtained by choosing vertices v € X with
probability p independently of the others. The expected size of Y is E(|Y|) = p-n.
Let v;(Y), for j = 2,...,2k — 1, be random variables counting the number
of (2,j)-cycles, i.e. the number of pairs of edges in the subhypergraph of #H
induced on Y which intersect in exactly j vertices. The random variable ps(Y) =
Z?Sl vj(Y) counts the total number of 2-cycles of the subhypergraph induced
on Y. We will give upper bounds on the expected values E(v;(Y")). To do so, we
estimate the total number v; of (2, j)-cycles in H. Fix an edge E € £. The number
of pairs of distinct sets U,V € [X]* with A(U) = A(V) and (UUV)NE| =j



and 1 <|UNE|VNE|] <j—1isat most

(2 —2k\ (2k —i

Z ()(n )( .Z>§cl-nk_w2w, (5)
L= ) k—1 j—1i

i=[3j/2]

as either [UNE| > [j/2] or [VNE| > [j/2], and every color class is a matching.
HUNE=0or VNE =0, but (UUV)NE|=j, then the number of such pairs
U,V is bounded from above by

2k n — 2k .
. u—1)<ecy-nF I q. 6
<j) (k—j) (s et ©
Now, (3), (5) and (6) imply that
v < |€]- <C1 k2] oy ki u) <esou- (n%—rj/zw | p2h—i u) (7)

As every color class is a matching, we have u < n/k, thus, n2h=13/21 > p2k=i .y,

for j > 2, and (7) becomes
Vj§04-u-n2k_“/ﬂ . (8)
We infer for j = 2,...,2k — 1 that
Ej(Y)) <p*7 . ¢y u-n?=1/21 =

G=2kt gy (k—i—1)  RGH1-2[5/2D)= /2] - gty (k=i - 1)
:pn.c4 - U 2k—1 -n 2k—1

As u=+/n-w(n) <n/k, we have w(n) = O(y/n), and hence, for j odd,

jo2ktphp@k—j-1)  —G-D/2-gales (k-1
E(VJ(Y)) Spn.c4 ‘u 2k—1 .n 2k—1
j—2k+ﬁ(4k—j—1) kt1)2
=pn-cy w(n) k-1 . 2R—1
k—1 —k+1/2 .
< pn - cy - w(n) F+D(Rk—1) . 2k—1 as j < 2k — 1
=o(pn) . )

Similarly, for j even, we obtain
E(v;(Y)) = o(pn) . (10)

By (9) and (10), we infer E(us(Y)) = 2271 E(v;(Y)) = o(pn). Thus, there

j=2
exists a subset Y C X with |Y| = c¢spn such that the induced hypergraph



contains at most csp?*|€| edges and has only o(pn) 2-cycles. We omit one vertex
from each 2-cycle in Hgy. The remaining subhypergraph #H; has (¢5 — o(1)) - pn
vertices and by (3), the average degree d**~1 satisfies d < cg - (u/y/n) DD

As u/\/n — oo with n — oo, we obtain from (2) that

1

(Cl _0(1)) pen i W 2k—1
o)z ol 2 e vy [ln (cs' <\/ﬁ) N

> (nk/u)l/@k*l) . (1n (u/\/ﬁ))l/(%*l) . 0

Next, we will show the upper bound in (1), extending some ideas from [4]. Let X
be an n-element set where w.l.o.g. n is divisible by k. Set m = [¢-n*/u], where
¢ > 0 is a constant. Let My, ..., M,, be random matchings, chosen uniformly
and independently from the set of all matchings of size u from [X]*, and set
H; = U;; Mi. We define a coloring A: [X]* — w as follows: for j = 1,...,m,
color all sets in M;\ H; by color j, and color all remaining elements in [X]*\ H,,+1
in an arbitrary way, such that each color class is a matching. Let Y C X be a
fixed subset with |Y| = x where x = o(n/u'/¥). We will prove that for x >
c3 - (nk/u -In n) 1/(@k=1) with probability approaching to 1 any such set Y is not

totally multicolored, where c3 > 0 is an appropriate constant. This will give the

desired result. We split the proof into several claims.
Claim. For j=1,...,mand t=1,2,...,
Prob [|M; n[Y]¥| >¢t] < (u- xk/nk)t . (11)

Proof. The left hand side of (11) does not depend on the particular choice of Y.
Thus, assume that the matching M; is fixed. The set Y can be chosen in (Z)

ways. From M; we can choose t edges in (;‘) ways, and the remaining elements

n—kt
r—kt

Prob [|M; N[Y]¥| > ] < (;‘) : (Z:ZD/(“) < (u-ak/mh)" .

T

of Y can be chosen in at most ( ) ways, hence

Claim. For t =1,2,... and for large enough integers n,

e-(t+m)-u-xP !
t-nk

Prob [[Hmi1 N[Y]¥| > 1] < (



Proof. For j =1,...,m, consider the events |M; N [Y]¥| > t;. These events are
independent. By Claim 2, we have Prob [| M; N[Y]* | >¢;] < (u- zk/nk)tj.
Since |Hp, 41 N [Y]F| < >y 1My N [Y]*| we infer, using (}) < (e n/k)¥, that

Prob [[Hpy1 N [Y]¥| >t] <Prob |Y |M;n[Y]*| >t
j=1

IN

m

< > [T Prob [IM; n[y)*| > t,] <

. . mo =1
(t,);’;l,tjzo,zjzltjftj

< X My = () et

()T ot zo,zj:1 tj=tJ

e-(t+m)-u-a” !
<
- t-nk

Let E; denote the event |H; N [Y]¥| < ¢; - 2%, where ¢; > 0 is a small constant.

Claim. For large enough positive integers n,
Prob [Epiq] >1—2"7"

Proof. For t = ¢ - 2% with z = o (n/u'/*), we have t = o(n* /u). If n is large,

m = [c-n*/u] and ec/c; < 1/3, then (12) is less than (1/2)*, hence,

Prob [E,,1+1] > 1— Prob [|Hm+1 N [Y]k\ > ~xk] >1-— gera® |

We define another random variable Y; = |[M;]> N [[Y]* \ H;]?| for j =1,...,m.

Claim. If n is a sufficiently large positive integer, then for j =1,...,m,
E(Y;|Ej) > c5 - u? - 2% /n?F .

Proof. Clearly, we have Prob [E1] = 1. As E; holds, it is |[Y]*\ H;| > (}) —
c1 - 2% > ¢y - 2. For each set S € [Y]*, there are less than k - (ij) k-element
subsets of Y which are not disjoint from S. Hence, for n large, the number of

sets {9, T} € [[Y]*\ H;]? with SNT = () is at least

-1
1/2~02-xk-<02-xk—k-<i1)>>03'$2k- (13)



Two disjoint k-element sets S, T, are both in M; with probability
w-(u—1) 204'£-

() - ("%") n2t

By (13) and (14) for the conditional expected value E(Y;|E;), we have E(Y;|E;) >

cs - u? -z /n2k. O

Prob [S,T € M;] = (14)

Claim. For j = 1,...,m, and large positive integers n, and 0 < € < c¢s,
Prob [Y; = 1| E;] > (c5 —€) - u? - 22 /n?F .

Proof. Fort =1,2,..., we claim that

Prob [Y; >t | Ej] < (u xk/nk)( A (15)
Namely, the statement Y; >t implies |M; N [Y]¥| > [ /2t + 1 ], hence,
Prob [Y; > t| E;] < Prob [[M; N [Y]*| > [VaI+1]] < (u-2f/m®) VT

Fori=0,1,..., set p; = Prob [Y; =i | E;]. We infer from (15), that

E(Y; | Ej) ZZ Pz<p1+Zz uxk (2””

>0 i>2

=p1+0 ((uxk/”k)3> =p1 +0(u2-m2k/n2k) ,

as x = o (n/u'/*). By Claim 2, we obtain that p; > (c5 — €) - u? - 22% /n?* for

some positive constant € < ¢5 and n large enough. a

Finally, let A; denote the event (Y; =0 and E;1).

Claim.

Prob [Aj A... A Ap] <exp (—c -u- 2 /n").
Proof. By Claim 2, we have

Prob (Al) S Prob (}/1 =0 |E1) S Prob (Yl 7§ 1 |E1) S

<1—(c5s—e)-u? 2% /n? (16)



while

Prob [Az IA]_/\.../\AZ',]_]SPI'Ob [}/lzolAl/\/\Azfl]

<Prob [V #1[A1A ... ANA;_1] <1—(c5 —e€)-u?- 22 /n?F . (17)
With (1 —2)™ < exp(—m - x) and m = [c-n*/u], inequalities (16), (17) imply

Prob [Al /\A2 VAN /\Am] = Prob [Al] . HPI‘Ob [Az | Al VAN /\Ai—l] S
=2

< (1= (c5—€)-u? ~m2k/n2k)m <exp (—(cs —€)-m-u?-2?/n?*) <

<exp(—c-(cs—€)-u- x%/nk) .

Claim. The probability that there exists a totally multicolored z-element subset
is at most

T

Proof. If Y is not totally multicolored, then either Ay A...A A, holds or F,, 11
fails. As there are exactly (2) z-element sets Y, by combining the estimates from

Claim 3 and Claim 6, we obtain (18). O

For x > ¢4+ (nk/u)l/(%_l) “(In n)"/ =D Where ¢g > 0 is a big enough constant,
expression (18) tends to 0 with n — co. For n < ng, one can obtain asymptot-

ically the same upper bound by taking an appropriately large constant.

3 The Algorithm

In this section, we sketch the idea how to find in time O(u - n?*~1)

a totally
multicolored subset as guaranteed by (1). The algorithm follows the probabilistic
arguments given before. It is based on recent results from [5] and [8].

Let k > 2 be fixed and let A:[X]* — w with |X| = n be a proper u-bounded
coloring. First, we collect sets S € [X]* of the same color. This can be done in
time O(n*). We form a 2k-uniform hypergraph H = (X, &), £ C [X]?*, where
E € € if there exist distinct sets S, T € [X]¥ with SUT = E and A(S) = A(T).



Then, || = O(u-n¥) by (3), hence, constructing H can be done in time O(u-n*).
First, assume that u < C - \/n for some constant C' > 0. We use the following

algorithmic version of Turdn’s theorem for hypergraphs, cf. [5], [13].

Lemma 1. Let G = (V,E€) be a (k + 1)-uniform hypergraph on n vertices with
average degree d*. Then, one can find in time O(|V| + |E]) an independent set
ICV with |I| >c-n/d.

Proof. We use the method of conditional probabilities, cf. [9] and [3]. Let V =
{v1,...,v,}. Every vertex v; will be assigned a probability p;, i = 1,...,n.
Define a potential by

k+1

V(ph---,pn):z:pi— Z Hpij .
i=1

{viy,svip, YEE =1
In each step 7,7 = 1,...,n, one after the other, we choose either p; =0 or p; =1
to maximize the value of V(p1,...,pn). As V(p1,...,pyn) is linear in each p;, for
i = 1, for example, either V(p1,...,pn) < V(L,p2,...,0n) or V(p1,...,pn) <
V(0,pa,...,pn). In the first case, we take vertex v, else we discard it. Choosing
in the beginning, py = ... = p, = p = 1/d, the value of the potential is initially
V(p,...,p) =p-n—ptt.n.d*/(k+1) = k/(k+1)-n/d. Finally, having chosen
P1s--->Pn €{0,1}, the set V' = {v; € V | p; = 1} is an independent set in G of
size as desired as can easily be seen. Each vertex and each edge in G is considered

only a constant number of times, thus, the running time is O(|V| + |£]). O

By (3), the average degree d of H satisfies d**~! < ¢/ - n*~!.u. Thus, in H =
(X,&), we can find in time O(u - n*) an independent set of size at least c -
(n*/u) V@D iy part of the algorithm can be done in time O(u - n*).

Now, assume that u = y/n - w(n) where w(n) — oo with n — oco. First, we
construct the sets Cy ; of (2, j)-cyclesin H, j = 2,...,2k —1. Using (8), this can

2k—1>

be done in time O(u - n . We use the following lemma, cf. [5].

Lemma 2. Let G = (V, &) be a (k+1)-uniform hypergraph. Let G contain v;(G)
many (2, j)-cycles for j =2,..., k. Then, for any realp, 0 < p < 1, one can find
in time O(|V]+ || + Z?igl vi(G)) an induced subhypergraph G' = (V',E") such



that [V'| > p/3-|V|, [€'| < 3p"*1-|€] and 35, v;(G') < 3-35_, p?+279.1(G)
forj=2,... k.

Proof. Let V = {v1,...,v,}. The proof is similar to that of Lemma 1. Step by

step, one minimizes the potential V(py,...,p,) given by
k
pn/s. H (1—2p;/3) + 2peelluerpi | 2j=2 2ycCny e, i
i e+ 1 % — g
1 3 pitt-[e] SED DY s N (N1
which satisfies in the beginning V(p,...,p) < 1. O

We apply Lemma 2 to the hypergraph H with p = (1/(71’“_1 -u))l/(%_l) .

(u//m)"/ FFDEE=) " and we obtain in time O(u - n2*~1) an induced subhy-
pergraph H' = (X', &') with | X'| > p/3-|X| and |€'| < 3p?* - |€| and, by (9) and
(10), we have Z?i;l vj(H') < p/6-|X|. In time o (u- n?*~1), we can determine
easily all 2-cycles in H’ and delete from H’ one vertex from each 2-cycle. The

remaining hypergraph H" on at least pn/6 vertices contains at most c-p?*-n* -

2k=1. pk=1 .. Then, we apply

edges, thus, has average degree d?*=1 < ¢ . p
the following result from [5] which gives an algorithmic version of the existence

result from [7] and extends an algorithm of Fundia [8].

Theorem 3. Let k > 2 be a fized integer. Let G = (V,E) be a (k + 1)-uniform
hypergraph on n vertices with average degree d*. If G does not contain any 2-
cycles, then one can find for every fived § > 0 in time O(n - d* +n3/d*>=%) an
independent set of size at least c(k,d) -n/d- (Ind)'/*.

Using Theorem 3, we can find an independent set in H”, hence in H, in time
0 (p2k bt/ (p- pk=1)/(2k=1) . u1/(2k—1))3—5) = o (u-n2k1).

4 Final Remarks

For u = w(y/n), the running time of the algorithm can be reduced to O (u!~2/(*+1).
n2k=1=1/(k+1)) a5 follows. Similarly as in Lemma 2, for p = (y/n/u)?/(k+1)(2k=1))
one chooses first a subhypergraph H' = (X', &’) of H = (X, £), where we do not
control the 2-cycles, but where |X’| = p/3 - |X| and |&’| < 3p?F - |€|. Hence, H’



has O(u - (p - n)?*~[9/21) many (2, j)-cycles. Then, we apply Lemma 2 with a

different value p’ and proceed as before. Thus, we save some time as we build

th
It

e 2-cycles later. We omit the details here.

might also be interesting to find the real growth rate of f,(n,k) and a cor-

responding fast algorithm or to give an explicit coloring which yields our upper

bound for f,(n,k) or even a better upper bound for u = O(y/n).
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