Contents

An Approach for Determining Optimal Contrast in Visual CryptographyJ. Juhnke, H. Lefmann, and V. Strehl1
An Approach for Determining Optimal Contrast in Visual Cryptography

Jakob Juhnke ${ }^{1}$, Hanno Lefmann ${ }^{1}$, and Volker Strehl ${ }^{2}$
${ }^{1}$ Fakultät für Informatik, TU Chemnitz, 09111 Chemnitz, Germany,
${ }^{2}$ Department Informatik, Technische Fakultät, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany

Abstract

Naor and Shamir introduced in 1994 a secret sharing scheme in Visual Cryptography, where, given $2 \leq k \leq n$, among n transparencies any k of these put on each other give complete information, however, less than k transparencies give no information. These (k, n) schemes are constructed by encoding black and white pixels into subpixels via appropriate 0,1-matrices. Schemes with optimal contrast are rarely known. We present an approach towards determining the largest possible contrast of such schemes, and apply this to certain pairs (k, n).

1 Introduction

Naor and Shamir [7] introduced a secret sharing scheme in Visual Cryptography. Given $k \leq n$, there are n transparencies, that are distributed among n people. Any k of these transparencies put on each other provide by recognition through the eye the (secret) information, however, less than any k of these transparencies provide no information. Such a system is called (k, n)-scheme.

One can construct such schemes by using 0,1-matrices. Given are two families C_{0} and C_{1} of 0,1-matrices, all of dimension $n \times m$. Each pixel of the secret is transformed into n collections of subpixels in the same position on each of the n transparencies. To encode a white pixel, uniformly at random a matrix from C_{0} is chosen, else, to encode a black pixel, uniformly at random a matrix from C_{1} is chosen. The pixel on transparencies $i=1, \ldots, n$ gets the i 'th row of the chosen matrix as an array of subpixels, with the subpixels arranged in a rectangle, say. Here a " 1 " corresponds to a black subpixel, and a " 0 " to a white one. Stacking ℓ transparencies on top of each other means that ℓ subpixels in the same position
produce a " 1 " if at least one of them is " 1 ", else it gives " 0 ". This is nothing but parallel boolean disjunction for all subpixels. A pixel will be visually identified as black if there are many (say at least d) black subpixels, otherwise (say at most $d-\alpha m$ black subpixels) it will be identified as white. The difference between black and white is thus given by αm, and α is called the contrast. We make this more precise as follows.

For boolean vectors and matrices we will use the usual notion of Hammingweight (shortly: weight) and the operation of parallel (component-wise) disjunction for vectors (matrices, resp.) of the same format.

Definition $1 A(k, n)$-scheme (in Visual Cryptography) with parameters (d, α) consists of two families C_{0} and C_{1} of boolean $(n \times m)$-matrices having the following properties:

1. For each matrix M from C_{0} the parallel disjunction of any k rows of M gives a vector of weight $\leq d-\alpha m$. (contrast condition 1).
2. For each matrix M from C_{1} the parallel disjunction of any k rows of M gives a vector of weight $\geq d$. (contrast condition 2).
3. For all subsets $\left\{i_{1}, \ldots, i_{q}\right\} \subset\{1, \ldots, n\}$ with $q<k$, the families of $(q \times m)$ matrices D_{0} und D_{1}, obtained by restricting the matrices in C_{0} und C_{1} to their submatrices to rows i_{1}, \ldots, i_{q}, contain the same matrices with the same relative frequencies. (security condition).

In Definition 1 the parameter d is called threshold, as black pixels are identified by the occurrence of at least d black subpixels, while white pixels are identified by at most $d-\alpha m$ black subpixels. The parameter α is called contrast. The larger the contrast α is, the better is the discrimination between black and white pixels. The general goal is to determine (k, n)-schemes with largest possible contrast.
Naor and Shamir [7] constructed (k, k)-schemes with optimal contrast $2^{-(k-1)}$ for any $k \geq 2$, which is also an upper bound on the optimal contrast of any (k, n)-scheme. Extending work of Droste [3], Hofmeister, Krause, and Simon [4] determined the optimal contrast of $(2, n)$-schemes to be $n /(4(n-1))$ for n even. For $(3, n)$-schemes (n divisible by 4) they proved that the optimal contrast is $n^{2} /(16(n-1)(n-2))$. In [4] it is shown that one can restrict attention to families of totally symmetric matrices. A matrix is totally symmetric if all columns with the same weight occur with the same frequency. They were able to transform
the problem of determining optimal (k, n)-schemes to the problem of solving the following linear program.

Definition 2 The linear program $L(k, n)$ with $n \geq 2$ und $k \in\{2, \ldots, n\}$ for the variables $(x, y)=\left(\left(x_{0}, \ldots, x_{n}\right),\left(y_{0}, \ldots, y_{n}\right)\right)$ is given by the target function
$L(k, n)=\sum_{j=0}^{n-k}\binom{n-k}{j} \cdot\binom{n}{j}^{-1} \cdot\left(x_{j}-y_{j}\right) \longrightarrow$ maximize
subject to the feasibility conditions:

1. x and y are probability distributions on $\{0, \ldots, n\}$
2. $\sum_{j=\ell}^{n-k+\ell+1}\binom{n-k+1}{j-\ell} \cdot\binom{n}{j}^{-1} \cdot\left(x_{j}-y_{j}\right)=0 \quad \ell=0, \ldots, k-1$.

Any solution $\left(\left(x_{0}, \ldots, x_{n}\right),\left(y_{0}, \ldots, y_{n}\right)\right)$ to $L(k, n)$ determines the families C_{0} and C_{1} of all totally symmetric matrices, for which any boolean column vector of weight j occurs with relative frequency $x_{j}\left(y_{j}\right.$, resp.) in every matrix from C_{0} $\left(C_{1}\right.$, resp. $), j=0, \ldots, n$. The contrast of this (k, n)-scheme is equal to the value of the target function of $L(k, n)$, compare [4].

No closed expression for the optimal target value $L_{\text {opt }}(k, n)$ of $L(k, n)$ is known. In [4] it has been conjectured that $\lim _{n \rightarrow \infty} L_{o p t}(k, n)=4^{-(k-1)}$ for fixed $k \geq 2$. Using Chebyshev polynomials and results from approximation theory, Krause and Simon [6] have shown that for any $2 \leq k \leq n$:

$$
4^{-(k-1)} \leq L_{o p t}(k, n) \leq 4^{-(k-1)} \cdot \frac{n^{k}}{n(n-1) \cdots(n-k+1)}
$$

However, for k close to n these lower and upper bounds are quite apart.
Blundo et al. [2] determined the optimal contrast of $(n-1, n)$-schemes and $(3, n)$-schemes for any $n \geq 4$. They also presented $(4, n)$ - and $(5, n)$-schemes of contrast asymptotically equal to $1 / 64$ and $1 / 256$, respectively, for which they conjectured optimality. All these calculations are rather lengthy.

Here we use another approach. The algebraic dependencies in the security condition (2.) of the linear program $L(k, n)$ will be transformed using hypergeometric functions to get some "nice" representation of the variables in terms of basis variables. With this one can derive certain properties of optimal solutions to $L(k, n)$. In this work in progress, having developed this machinery, we apply our approach to $(k-j, k)$-schemes for $j=0,1,2$. It turns out that the cases $j=0,1$ are now simple, while the case $j=2$ still needs some further consideration to determine the optimal contrast precisely.

2 Properties of the Linear Program

We recall some properties of the linear program $L(k, n)$ from [4].

Lemma 1 ([4]) Let $(x, y)=\left(\left(x_{0}, \ldots, x_{n}\right),\left(y_{0}, \ldots, y_{n}\right)\right)$ be an optimal solution to the linear program $L(k, n)$. Then the target value of $L(k, n)$ is positive and the vectors x, y are orthogonal.

Setting $z=x-y$ (component-wise) we recover x and y from z by $x=z^{+}=$ $\max (z, 0), y=z^{-}=-\min (z, 0)$ (component-wise), where 0 is the zero vector. This allows us to reformulate the linear program $L(k, n)$ using the z-variables:

Definition 3 The linear program $L(k, n)_{z}$ with $n \geq 2$ und $k \in\{2, \ldots, n\}$ for the variables $\left(z_{0}, \ldots, z_{n}\right)$ is given by the target function

$$
L(k, n)_{z}=\sum_{j=0}^{n-k}\binom{n-k}{j} \cdot\binom{n}{j}^{-1} \cdot z_{j} \longrightarrow \text { maximize }
$$

subject to the feasibility conditions:

1. z^{+}and z^{-}are probability distributions on $\{0, \ldots, n\}$
2. $\sum_{j=\ell}^{n-k+\ell+1}\binom{n-k+1}{j-\ell} \cdot\binom{n}{j}^{-1} \cdot z_{j}=0 \quad \ell=0, \ldots, k-1$.

Optimal solutions z to $L(k, n)_{z}$ then can be transformed into optimal solutions (x, y) to $L(k, n)$ by setting $x=\max (z, 0), y=-\min (z, 0)$.

In the following we will only deal with the linear program $L(k, n)_{z}$, and we derive some crucial properties of it. We will make use of tools from the field of hypergeometric functions, see, e.g., [1] for details.

Definition 4 Let $a_{1}, \ldots, a_{p}, b_{1}, \ldots, b_{q}, z \in \mathbb{C}$ with $b_{i} \notin\{0,-1-2, \ldots\}$ for $i=$ $1, \ldots, q$. The hypergeometric function ${ }_{p} F_{q}$ is defined as the formal series

$$
{ }_{p} F_{q}\left(\begin{array}{l}
a_{1}, \ldots, a_{p} \\
b_{1}, \ldots, b_{q}
\end{array} ; z\right):=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n} \cdot \ldots \cdot\left(a_{p}\right)_{n}}{\left(b_{1}\right)_{n} \cdot \ldots \cdot\left(b_{q}\right)_{n}} \cdot \frac{z^{n}}{n!}
$$

where $(c)_{n}:=c \cdot(c+1) \cdot \ldots \cdot(c+n-1)$ is the Pochhammer symbol.

The following facts are needed in our computations.

Lemma 2 (Chu-Vandermonde) Let $b, c \in \mathbb{C}$ and $m \in \mathbb{N}$. Then

$$
{ }_{2} F_{1}\left(\begin{array}{c}
-m, b \\
c
\end{array} ; 1\right)=\frac{(c-b)_{m}}{(c)_{m}}
$$

Lemma 3 (Pfaff-Saalschütz) Let $a, b, c, d \in \mathbb{C}, m \in \mathbb{N}$ and let $d=1+a+b-c-$ m. Then

$$
{ }_{3} F_{2}\left(\begin{array}{c}
a, b,-m \\
c, d
\end{array} ; 1\right)=\frac{(c-a)_{m} \cdot(c-b)_{m}}{(c)_{m} \cdot(c-a-b)_{m}}
$$

Proofs of these identities can be found in [1]. Theorem 3 is only applicable if $d=1+a+b-c-m$ holds. As this is not always the case, transformations are necessary. We need the following one.

Lemma 4 (Gauss' contiguous relation) Let $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, z \in \mathbb{C}$. Then

$$
\begin{aligned}
& \left(a_{2}-a_{3}\right) \cdot{ }_{3} F_{2}\left(\begin{array}{c}
a_{1}, a_{2}, a_{3} \\
b_{1}, b_{2}
\end{array} z\right)= \\
& \quad a_{2} \cdot{ }_{3} F_{2}\left(\begin{array}{c}
a_{1}, a_{2}+1, a_{3} \\
b_{1}, b_{2}
\end{array} ; z\right)-a_{3} \cdot{ }_{3} F_{2}\left(\begin{array}{c}
a_{1}, a_{2}, a_{3}+1 \\
b_{1}, b_{2}
\end{array} ; z\right) .
\end{aligned}
$$

In our computations we also use the following lemma.

Lemma 5 Let $c(t)=\sum_{j \geq 0} c_{j} \cdot t^{j}$ be a formal series and let

$$
(1+t)^{k+1} \cdot c(t)=\sum_{j=0}^{k} p_{j} \cdot t^{j}+\sum_{j \geq n+1} p_{j} \cdot t^{j}
$$

for some $k \geq 0$ and $n>k$, thus $p_{k+1}=\ldots=p_{n}=0$. Then the series coefficients c_{m}, $m=k+1, \ldots, n$, can be expressed in terms of the $c_{i}, i=0, \ldots, k$, as follows:

$$
c_{m}=(-1)^{m-k} \cdot\binom{m}{k+1} \cdot \sum_{i=0}^{k} c_{i} \cdot \frac{k+1-i}{m-i} \cdot\binom{k+1}{i}
$$

These technical Lemmas 2-5 allow to represent the variables of the linear program $L(k, n)_{z}$ as follows.

Proposition 1 The structure of the feasible solutions $z=\left(z_{0}, \ldots, z_{n}\right)$ to the linear program $L(k, n)_{z}$ for $\ell=0, \ldots, n$ is given by

$$
\begin{align*}
z_{\ell} & =(-1)^{\ell-n+k} \cdot\binom{k-1}{n-\ell} \cdot \sum_{j=0}^{n-k}\binom{n-j}{k-1} \cdot z_{j} \cdot \frac{n-k+1-j}{\ell-j} \quad(\ell \geq n-k+1) \\
& =(-1)^{\ell-(n-k)} \cdot\binom{n}{\ell} \cdot \sum_{j=0}^{n-k} \frac{(\ell-(n-k))_{n-k-j} \cdot(\ell+1-j)_{j}}{(n+1-j)_{j} \cdot(n-k-j)!} \cdot z_{j} \quad(\ell \geq 0) \cdot(1 \tag{1}
\end{align*}
$$

With Proposition 1 we see that the feasibility of Definition 3 can be replaced by (1), which we will use in Section 3.

Concerning the optimization in $L(k, n)_{z}$, we have the following.

Lemma 6 Let $z^{\prime}=\left(z_{0}^{\prime}, \ldots, z_{n}^{\prime}\right)$ and $z^{\prime \prime}=\left(z_{0}^{\prime \prime}, \ldots, z_{n}^{\prime \prime}\right)$ be two feasible solutions to the linear program $L(k, n)_{z}$ with the same target value α. The for any convex combination $z^{\prime \prime \prime}=\left(z_{0}^{\prime \prime \prime}, \ldots, z_{n}^{\prime \prime \prime}\right)$ with $z_{i}^{\prime \prime \prime}=\lambda \cdot z_{i}^{\prime}+(1-\lambda) \cdot z_{i}^{\prime \prime}, i=0, \ldots, n$ and $0 \leq \lambda \leq 1$,

1. either $z^{\prime \prime \prime}$ is feasible with the same target value α as for z^{\prime} and $z^{\prime \prime}$, or
2. $z^{\prime \prime \prime}$ is not feasible, but from it one can construct a feasible solution $z^{\prime \prime \prime \prime}$, that yields a target value $\alpha^{*}>\alpha$.

Proposition 2 Let $z=\left(z_{0}, \ldots, z_{n}\right)$ be a feasible solution to $L(k, n)_{z}$ with target value α. Then, $z^{\prime}=\left(z_{0}^{\prime}, \ldots, z_{n}^{\prime}\right)$ with $z_{i}^{\prime}:=(-1)^{k} \cdot z_{n-i}, i=0, \ldots, n$, is also a feasible solution to $L(k, n)_{z}$ with the same target value.

From Lemma 6 and Proposition 2 we obtain:

Corollary 1 For the linear program $L(k, n)_{z}$ there always exists an optimal solution $z=\left(z_{0}, \ldots, z_{n}\right)$ with $z_{i}=(-1)^{k} \cdot z_{n-i}, i=0, \ldots, n$.

Corollary 1 allows us to reduce the number of variables in $L(k, n)_{z}$ by a factor of approximately 2. We will make use of this in Section 3.

3 Applications

3.1 The Linear Program $L(k, k)_{z}$

For the linear program $L(k, k)_{z}$, by Proposition 1 , for $\ell=0, \ldots, k$, we get

$$
\begin{equation*}
z_{\ell}=(-1)^{\ell} \cdot\binom{k}{\ell} \cdot \sum_{j=0}^{0} \frac{(\ell)_{-j} \cdot(\ell+1-j)_{j}}{(k+1-j)_{j} \cdot(-j)!} \cdot z_{j}=(-1)^{\ell} \cdot\binom{k}{\ell} \cdot z_{0} \tag{2}
\end{equation*}
$$

Thus, the linear program $L(k, k)_{z}$ can be formulated as

$$
L(k, k)_{z}=z_{0} \longrightarrow \text { maximize }
$$

subject to $\sum_{\substack{j=0 \\ z_{j}>0}}^{k} z_{j}=1$ and $z_{\ell}=(-1)^{\ell} \cdot\binom{k}{\ell} \cdot z_{0} \quad \ell=0, \ldots, k$.
As $L(k, k)_{z}=z_{0}$, in an optimal solution z we have $z_{0}>0$, hence, using that the sum of the positive variables has to be equal to 1 , we infer that

$$
\begin{equation*}
1 \stackrel{!}{=} \sum_{\substack{j=0 \\ j \text { even }}}^{k} z_{j}=z_{0} \cdot \sum_{\substack{j=0 \\ j \text { even }}}^{k}\binom{k}{j}=z_{0} \cdot 2^{k-1} \tag{3}
\end{equation*}
$$

thus $z_{0}=2^{-k+1}$, which is the (unique) optimal value of the target function.
Naor and Shamir [7] already gave a proof of the optimality of this contrast for $L(k, k)_{z}$ by using approximate inclusion-exclusion. A simpler argument than that in [7] for the optimal target value of $L(k, k)$ has been given in [4].
3.2 The Linear Program $L(k-1, k)_{z}$

For the linear program $L(k-1, k)_{z}$ we have by Proposition 1 for $\ell=0, \ldots, k$:

$$
\begin{align*}
z_{\ell} & =(-1)^{\ell-1} \cdot\binom{k}{\ell} \cdot \sum_{j=0}^{1} \frac{(\ell-1)_{1-j} \cdot(\ell+1-j)_{j}}{(k+1-j)_{j} \cdot(1-j)!} \cdot z_{j} \\
& =(-1)^{\ell-1} \cdot\binom{k}{\ell} \cdot\left(\frac{z_{1}}{k}+(\ell-1) \cdot\left(z_{0}+\frac{z_{1}}{k}\right)\right) . \tag{4}
\end{align*}
$$

Identity (4) has already been shown in [5] by another argument.
Thus, the linear program $L(k-1, k)_{z}$ is given by

$$
L(k-1, k)_{z}=z_{0}+\frac{z_{1}}{k} \longrightarrow \text { maximize }
$$

subject to: $\sum_{\substack{j=0 \\ z_{j}>0}}^{k} z_{j}=1$ and

$$
z_{\ell}=(-1)^{\ell-1} \cdot\binom{k}{\ell} \cdot\left(\frac{z_{1}}{k}+(\ell-1) \cdot\left(z_{0}+\frac{z_{1}}{k}\right)\right) \quad \ell=0, \ldots, k
$$

By Corollary 1 there must exist an optimal solution z to $L(k-1, k)_{z}$ with $z_{\ell}=$ $(-1)^{k-1} \cdot z_{k-\ell}, \ell=0, \ldots, n$, and we infer

$$
\begin{align*}
0= & (-1)^{k-1} \cdot z_{k-\ell}-z_{\ell} \\
= & (-1)^{k-1} \cdot(-1)^{k-\ell-1} \cdot\binom{k}{k-\ell} \cdot\left(\frac{z_{1}}{k}+(k-\ell-1) \cdot\left(z_{0}+\frac{z_{1}}{k}\right)\right) \\
& -(-1)^{\ell-1} \cdot\binom{k}{\ell} \cdot\left(\frac{z_{1}}{k}+(\ell-1) \cdot\left(z_{0}+\frac{z_{1}}{k}\right)\right) \tag{4}\\
= & (-1)^{\ell} \cdot\binom{k}{\ell} \cdot\left(\frac{2 z_{1}}{k}+(k-2) \cdot\left(z_{0}+\frac{z_{1}}{k}\right)\right) \\
\Longleftrightarrow \quad z_{0}= & -\frac{z_{1}}{k-2} . \tag{5}
\end{align*}
$$

By (4) and (5) we obtain for $\ell=0, \ldots, k$:

$$
\begin{equation*}
z_{\ell}=(-1)^{\ell-1} \cdot\binom{k}{\ell} \cdot z_{1} \cdot \frac{k-2 \ell}{(k-2) \cdot k^{\prime}} \tag{6}
\end{equation*}
$$

and by (5) the target function of $L(k-1, k)_{z}$ becomes

$$
z_{0}+\frac{z_{1}}{k} \cdot z_{1}=z_{1} \cdot\left(\frac{1}{k}-\frac{1}{k-2}\right)=-\frac{2 z_{1}}{(k-2) \cdot k^{\prime}}
$$

hence $z_{1}<0$ due to the assumption on the optimality of z.

To satisfy the first feasibility condition, we determine the sum of all positive variables z_{ℓ} by using (6). Let k be even (the case of odd k is quite similar). From (6) we see that for $\ell<k / 2$ each z_{ℓ} is positive if ℓ is even, as $z_{1}<0$. For $\ell>k / 2$ however, those z_{ℓ} are positive when ℓ is odd. Using $z_{\ell}=(-1)^{k-1} \cdot z_{k-\ell}=$ $-z_{k-\ell}, \ell=0, \ldots, n$, the sum of the positive z_{ℓ} for $\ell>k / 2$ is equal to the absolute values of the sum of all negative z_{ℓ} for $\ell<k / 2$. Hence, the sum of all positive z_{ℓ} can be replaced by the negative sum of all negative z_{ℓ}, which simplifies the
calculations, and we obtain by using (4) and (5):

$$
\begin{align*}
1 \stackrel{!}{=} \sum_{\substack{j=0 \\
z_{j}>0}}^{k} z_{j} & =\sum_{\substack{j=0 \\
j \text { even }}}^{k / 2} z_{j}-\sum_{j=1}^{k / 2} z_{j}=-\sum_{j=0}^{k / 2}\left(\frac{z_{1}}{k}+(j-1)\left(-\frac{z_{1}}{k-2}+\frac{z_{1}}{k}\right)\right) \cdot\binom{k}{j} \\
& =-z_{1} \cdot\left[\frac{1}{k} \cdot \sum_{j=0}^{k / 2}\binom{k}{j} \cdot j-\frac{1}{k-2} \cdot \sum_{j=0}^{k / 2}\binom{k}{j} \cdot j+\frac{1}{k-2} \cdot \sum_{j=0}^{k / 2}\binom{k}{j}\right] \\
& =-z_{1} \cdot\left[\frac{1}{k} \cdot \frac{k \cdot 2^{k}}{4}-\frac{1}{k-2} \cdot \frac{k \cdot 2^{k}}{4}+\frac{1}{k-2} \cdot\left(2^{k-1}+\frac{1}{2} \cdot\binom{k}{\frac{k}{2}}\right)\right] \\
& =-\frac{z_{1}}{2(k-2)} \cdot\binom{k}{\frac{k}{2}} \\
\Longleftrightarrow z_{1} & =(4-2 k) \cdot\binom{k}{\frac{k}{2}}^{-1} . \tag{7}
\end{align*}
$$

With (5) and (7) we further infer

$$
z_{0}=-\frac{z_{1}}{k-2}=-\frac{1}{k-2} \cdot(4-2 k) \cdot\binom{k}{\frac{k}{2}}^{-1}=2\binom{k}{\frac{k}{2}}^{-1}
$$

hence for the optimal value of the target function we have

$$
z_{0}+\frac{z_{1}}{k}=2\binom{k}{\frac{k}{2}}^{-1}+\frac{4-2 k}{k} \cdot\binom{k}{\frac{k}{2}}^{-1}=\frac{4}{k} \cdot\binom{k}{\frac{k}{2}}^{-1} .
$$

By (4) an optimal solution to $L(k-1, k)_{z}$ for k even is given by

$$
z_{\ell}=(-1)^{\ell-1} \cdot\binom{k}{\ell} \cdot\binom{k}{\frac{k}{2}}^{-1} \cdot\left(\frac{4 \ell}{k}-2\right) \quad \ell=0, \ldots, k
$$

Lemma 7 Let k be an even positive integer, and let $z=\left(z_{0}, \ldots, z_{k}\right)$ be an optimal solution to the linear program $L(k-1, k) z$. Then $z_{k / 2}=0$.

Proof. Let $z^{\prime}=\left(z_{0}^{\prime}, \ldots, z_{k}^{\prime}\right)$ be an optimal solution to $L(k-1, k)_{z}$ with $z_{k / 2}^{\prime} \neq 0$. Then, the solution $z^{\prime \prime}=\left(z_{0}^{\prime \prime}, \ldots, z_{k}^{\prime \prime}\right)$ with $z_{i}^{\prime \prime}:=-z_{k-i}^{\prime}, i=0, \ldots, k$, is also optimal by Proposition 2. These solutions are distinct as $z_{k / 2}^{\prime \prime}=-z_{k / 2}^{\prime} \neq 0$. We construct another solution $z^{\prime \prime \prime}=\left(z_{0}^{\prime \prime \prime}, \ldots, z_{k}^{\prime \prime \prime}\right)$ with $z_{i}^{\prime \prime \prime}:=\left(z_{i}^{\prime}+z_{i}^{\prime \prime}\right) / 2$, $i=0, \ldots, k$. From the proof of Lemma 6 it follows, that this solution is only feasible if there is no i such that $\operatorname{sgn}\left(z_{i}^{\prime}\right)=-\operatorname{sgn}\left(z_{i}^{\prime \prime}\right) \neq 0$ holds. For $i=k / 2$ however, $\operatorname{sgn}\left(z_{k / 2}^{\prime}\right) \neq \operatorname{sgn}\left(z_{k / 2}^{\prime \prime}\right)$ holds, which implies that $z^{\prime \prime \prime}$ is not feasible. By Lemma 6(2.) we can construct another solution $z^{\prime \prime \prime \prime}-$ by scaling the solution $z^{\prime \prime \prime}-$, with a larger target value than that of z^{\prime} and $z^{\prime \prime}$ yield and with $z_{k / 2}^{\prime \prime \prime}=0$.

With $z_{k / 2}=0$ we infer for each optimal solution

$$
\begin{aligned}
0 & =(-1)^{\frac{k}{2}-1} \cdot z_{\ell}=(-1)^{\frac{k}{2}-1} \cdot\binom{k}{\frac{k}{2}} \cdot\left(\frac{z-1}{k}+\left(\frac{k}{2}-1\right) \cdot\left(z_{0}+\frac{z_{1}}{k}\right)\right) \\
\Longleftrightarrow \quad z_{0} & =-\frac{z_{1}}{k-2}
\end{aligned}
$$

thus we have (5), the optimal solution is unique for k even (but not for k odd).
The optimal contrast for $(k-1, k)$-schemes has also been obtained by Blundo et al. [2] by using a different approach via canonical matrices.

3.3 The Linear Program $L(k-2, k)_{z}$

For $(k-2, k)$-schemes we have by Proposition 1 for $\ell=0, \ldots, k$:

$$
\begin{equation*}
z_{\ell}=(-1)^{\ell} \cdot\binom{k}{\ell} \cdot\left[\frac{(\ell-2)(\ell-1)}{2} \cdot z_{0}+\frac{(\ell-2) \ell}{k} \cdot z_{1}+\frac{(\ell-1) \ell}{k(k-1)} \cdot z_{2}\right] \tag{8}
\end{equation*}
$$

Hence, the linear program $L(k-2, k)_{z}$ is given by

$$
L(k-2, k)_{z}=z_{0}+\frac{2 z_{1}}{k}+\frac{2 z_{2}}{k(k-1)} \longrightarrow \text { maximize }
$$

subject to $\sum_{\substack{j=0 \\ z_{j}>0}}^{k} z_{j}=1$ and
$z_{\ell}=(-1)^{\ell}\binom{k}{\ell}\left[\frac{(\ell-2)(\ell-1)}{2} \cdot z_{0}+\frac{(\ell-2) \ell}{k} \cdot z_{1}+\frac{(\ell-1) \ell}{k(k-1)} \cdot z_{2}\right] \quad \ell=0, \ldots, k$.
By Corollary 1 there exists an optimal solution z with $z_{\ell}=(-1)^{k-2} \cdot z_{k-\ell,} \ell=$ $0, \ldots, k$, and by (8) we have

$$
\begin{align*}
z_{2} & =(-1)^{k-2} \cdot z_{k-2} \\
& =\binom{k}{2}\left[\frac{(k-4)(k-3)}{2} z_{0}+\frac{(k-4)(k-2)}{k} z_{1}+\frac{(k-3)(k-2)}{k(k-1)} z_{2}\right] \\
& \Longleftrightarrow z_{2}=-\frac{(k-3) k}{2} z_{0}-(k-2) z_{1} . \tag{9}
\end{align*}
$$

For the target function we obtain with (9)

$$
\begin{equation*}
z_{0}+\frac{2 z_{1}}{k}+\frac{2 z_{2}}{k(k-1)}=\frac{2}{k-1} \cdot\left(z_{0}+\frac{z_{1}}{k}\right) \tag{10}
\end{equation*}
$$

Inserting (9) into (8), for $\ell=0, \ldots, k$ we infer

$$
\begin{equation*}
z_{\ell}=(-1)^{\ell}\binom{k}{\ell} \underbrace{\frac{1}{k-1}\left(z_{0}+\frac{z_{1}}{k}\right)}_{A} \underbrace{\left(\ell^{2}-k \ell+\frac{z_{0} k(k-1)}{z_{0} k+z_{1}}\right)}_{B} . \tag{11}
\end{equation*}
$$

The term A is equal to one half of the target function, thus A can be assumed to be positive. The term B determines, which variables z_{ℓ} are positive or negative. The zeros ℓ_{1} and ℓ_{2} of the parabola B, i.e., $B=0$, are given by

$$
\ell_{1,2}=\frac{k}{2} \pm \sqrt{\frac{k^{2}}{4}-\frac{z_{0} k(k-1)}{z_{0} k+z_{1}}}
$$

To satisfy the first feasibility condition, we now need to investigate whether the discriminant is positive, zero, or negative. We briefly discuss the observations. In case of a negative discriminant we obtain that the target value is less than

$$
\begin{equation*}
16 /\left(k 2^{k}\right) \tag{12}
\end{equation*}
$$

For optimal solutions, the zeros a of the parabola B, if at all, have to be in the interval $[0, k]$, say $a \in[0, k / 2]$ is such a zero of B. Then, with some computations concerning monotonicity and taking into account the parity of a and k, the optimal solution to $L(k-2, k)$ is given by the largest positive integer $a<(k-1) / 2$ such that

$$
\sum_{j=0}^{a}\binom{k}{j}<2^{k-2}
$$

However, this means that for some constant $c>0$ it is $a \approx k / 2-c \cdot \sqrt{k}$ by Stirling's formula, and we cannot say anything more precise currently. However, assuming that $a=(k-2) / 2$, say, determining the corresponding target value of $L(k-2, k)_{z}$ gives a larger one than (12), hence for an optimal solution there is definitely a zero of the parabola B in the interval $[0, k / 2]$.

4 Conclusion

Here we have given a new approach to determine the optimal contrast of (k, n) schemes in Visual Cryptography. For $k=n$ and $k=n-1$ this techniques turned out to be quite elegant. For the case $k=n-2$ this is also the case, however, further considerations are necessary. Our approach should also be successful in the case of $k=n-3$, however, this is work in progress, and more investigations are left for the future. It would be also of interest to see, whether these methods apply to the case of $(4, n)$-schemes.

References

[1] Andrews, G. E., Askey, R., and Roy, R.: Special Functions, Cambridge University Press, 1999.
[2] Blundo, C., D'Arco, P., De Santis, A., and Stinson, D. R.: Contrast optimal threshold visual cryptography schemes, SIAM Journal on Discrete Mathematics, 16, 224-261, 2003.
[3] Droste, S.: New Results on Visual Cryptography, Proc. of the 16th Annual International Cryptology Conference - CRYPTO 96, LNCS 1109, 401-415, 1996.
[4] Hofmeister, T., Krause, M., and Simon, H. U.: Contrast optimal k out of n secret sharing schemes in visual cryptography, Theoretical Computer Science, 240, 471-485, 2000.
[5] Juhnke, J.: Visuelle Kryptographie und (k, n)-Schemata, Bachelor Thesis, TU Chemnitz, 2011; see also: Ein Optimierungsproblem aus der Visuellen Kryptographie und seine Eigenschaften, Master Thesis, TU Chemnitz, 2013.
[6] Krause, M. and Simon, H. U.: Determining the optimal contrast for secret sharing schemes in visual cryptography, Combinatorics, Probability and Computing 12, 285-299, 2003.
[7] Naor, M. and Shamir, A.: Visual Cryptography, Proc. Advances in Cryptology - EUROCRYPT '94, LNCS 950, 1-12, 1995.

