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Abstract: Naor and Shamir introduced in 1994 a secret sharing scheme
in Visual Cryptography, where, given 2 ≤ k ≤ n, among n trans-
parencies any k of these put on each other give complete information,
however, less than k transparencies give no information. These (k, n)-
schemes are constructed by encoding black and white pixels into sub-
pixels via appropriate 0, 1-matrices. Schemes with optimal contrast
are rarely known. We present an approach towards determining the
largest possible contrast of such schemes, and apply this to certain
pairs (k, n).

1 Introduction

Naor and Shamir [7] introduced a secret sharing scheme in Visual Cryptogra-
phy. Given k ≤ n, there are n transparencies, that are distributed among n
people. Any k of these transparencies put on each other provide by recogni-
tion through the eye the (secret) information, however, less than any k of these
transparencies provide no information. Such a system is called (k, n)-scheme.

One can construct such schemes by using 0, 1-matrices. Given are two families
C0 and C1 of 0, 1-matrices, all of dimension n × m. Each pixel of the secret is
transformed into n collections of subpixels in the same position on each of the n
transparencies. To encode a white pixel, uniformly at random a matrix from C0
is chosen, else, to encode a black pixel, uniformly at random a matrix from C1 is
chosen. The pixel on transparencies i = 1, . . . , n gets the i’th row of the chosen
matrix as an array of subpixels, with the subpixels arranged in a rectangle, say.
Here a “1” corresponds to a black subpixel, and a “0” to a white one. Stacking `

transparencies on top of each other means that ` subpixels in the same position
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produce a “1” if at least one of them is “1”, else it gives “0”. This is nothing but
parallel boolean disjunction for all subpixels. A pixel will be visually identified
as black if there are many (say at least d) black subpixels, otherwise (say at most
d − αm black subpixels) it will be identified as white. The difference between
black and white is thus given by αm, and α is called the contrast. We make this
more precise as follows.

For boolean vectors and matrices we will use the usual notion of Hamming-
weight (shortly: weight) and the operation of parallel (component-wise) disjunc-
tion for vectors (matrices, resp.) of the same format.

Definition 1 A (k, n)-scheme (in Visual Cryptography) with parameters (d, α) con-
sists of two families C0 and C1 of boolean (n×m)-matrices having the following prop-
erties:

1. For each matrix M from C0 the parallel disjunction of any k rows of M gives a
vector of weight ≤ d− αm. (contrast condition 1).

2. For each matrix M from C1 the parallel disjunction of any k rows of M gives a
vector of weight ≥ d. (contrast condition 2).

3. For all subsets {i1, . . . , iq} ⊂ {1, . . . , n} with q < k, the families of (q × m)-
matrices D0 und D1, obtained by restricting the matrices in C0 und C1 to their
submatrices to rows i1, . . . , iq, contain the same matrices with the same relative
frequencies. (security condition).

In Definition 1 the parameter d is called threshold, as black pixels are identified
by the occurrence of at least d black subpixels, while white pixels are identified
by at most d− αm black subpixels. The parameter α is called contrast. The larger
the contrast α is, the better is the discrimination between black and white pixels.
The general goal is to determine (k, n)-schemes with largest possible contrast.

Naor and Shamir [7] constructed (k, k)-schemes with optimal contrast 2−(k−1)

for any k ≥ 2, which is also an upper bound on the optimal contrast of any
(k, n)-scheme. Extending work of Droste [3], Hofmeister, Krause, and Simon [4]
determined the optimal contrast of (2, n)-schemes to be n/(4(n− 1)) for n even.
For (3, n)-schemes (n divisible by 4) they proved that the optimal contrast is
n2/(16(n− 1)(n− 2)). In [4] it is shown that one can restrict attention to families
of totally symmetric matrices. A matrix is totally symmetric if all columns with
the same weight occur with the same frequency. They were able to transform
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the problem of determining optimal (k, n)-schemes to the problem of solving
the following linear program.

Definition 2 The linear program L(k, n) with n ≥ 2 und k ∈ {2, . . . , n} for the
variables (x, y) = ((x0, . . . , xn), (y0, . . . , yn)) is given by the target function

L(k, n) =
n−k
∑

j=0
(n−k

j ) · (n
j)
−1 · (xj − yj) −→ maximize

subject to the feasibility conditions:

1. x and y are probability distributions on {0, . . . , n}

2.
n−k+`+1

∑
j=`

(n−k+1
j−` ) · (n

j)
−1 · (xj − yj) = 0 ` = 0, . . . , k− 1.

Any solution ((x0, . . . , xn), (y0, . . . , yn)) to L(k, n) determines the families C0 and
C1 of all totally symmetric matrices, for which any boolean column vector of
weight j occurs with relative frequency xj (yj, resp.) in every matrix from C0
(C1, resp.), j = 0, . . . , n. The contrast of this (k, n)-scheme is equal to the value
of the target function of L(k, n), compare [4].

No closed expression for the optimal target value Lopt(k, n) of L(k, n) is known.
In [4] it has been conjectured that limn→∞ Lopt(k, n) = 4−(k−1) for fixed k ≥ 2.
Using Chebyshev polynomials and results from approximation theory, Krause
and Simon [6] have shown that for any 2 ≤ k ≤ n:

4−(k−1) ≤ Lopt(k, n) ≤ 4−(k−1) · nk

n(n− 1) · · · (n− k + 1)
.

However, for k close to n these lower and upper bounds are quite apart.

Blundo et al. [2] determined the optimal contrast of (n − 1, n)-schemes and
(3, n)-schemes for any n ≥ 4. They also presented (4, n)- and (5, n)-schemes
of contrast asymptotically equal to 1/64 and 1/256, respectively, for which they
conjectured optimality. All these calculations are rather lengthy.

Here we use another approach. The algebraic dependencies in the security con-
dition (2.) of the linear program L(k, n) will be transformed using hypergeo-
metric functions to get some “nice” representation of the variables in terms of
basis variables. With this one can derive certain properties of optimal solutions
to L(k, n). In this work in progress, having developed this machinery, we ap-
ply our approach to (k− j, k)-schemes for j = 0, 1, 2. It turns out that the cases
j = 0, 1 are now simple, while the case j = 2 still needs some further considera-
tion to determine the optimal contrast precisely.
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2 Properties of the Linear Program

We recall some properties of the linear program L(k, n) from [4].

Lemma 1 ([4]) Let (x, y) = ((x0, . . . , xn), (y0, . . . , yn)) be an optimal solution to the
linear program L(k, n). Then the target value of L(k, n) is positive and the vectors x, y
are orthogonal.

Setting z = x − y (component-wise) we recover x and y from z by x = z+ =

max(z, 0), y = z− = −min(z, 0) (component-wise), where 0 is the zero vector.
This allows us to reformulate the linear program L(k, n) using the z-variables:

Definition 3 The linear program L(k, n)z with n ≥ 2 und k ∈ {2, . . . , n} for the
variables (z0, . . . , zn) is given by the target function

L(k, n)z =
n−k

∑
j=0

(
n− k

j

)
·
(

n
j

)−1
· zj −→ maximize

subject to the feasibility conditions:

1. z+ and z− are probability distributions on {0, . . . , n}

2.
n−k+`+1

∑
j=`

(n−k+1
j−` ) · (n

j)
−1 · zj = 0 ` = 0, . . . , k− 1.

Optimal solutions z to L(k, n)z then can be transformed into optimal solutions
(x, y) to L(k, n) by setting x = max(z, 0), y = −min(z, 0).

In the following we will only deal with the linear program L(k, n)z, and we
derive some crucial properties of it. We will make use of tools from the field of
hypergeometric functions, see, e.g., [1] for details.

Definition 4 Let a1, . . . , ap, b1, . . . , bq, z ∈ C with bi /∈ {0,−1 − 2, . . .} for i =

1, . . . , q. The hypergeometric function pFq is defined as the formal series

pFq

(
a1, . . . , ap
b1, . . . , bq

; z
)

:=
∞

∑
n=0

(a1)n · . . . · (ap)n

(b1)n · . . . · (bq)n
· zn

n!
,

where (c)n := c · (c + 1) · . . . · (c + n− 1) is the Pochhammer symbol.

The following facts are needed in our computations.



An Approach for Determining Optimal Contrast in Visual Cryptography 5

Lemma 2 (Chu-Vandermonde) Let b, c ∈ C and m ∈N. Then

2F1

(
−m, b

c
; 1
)
=

(c− b)m

(c)m
.

Lemma 3 (Pfaff-Saalschütz) Let a, b, c, d ∈ C, m ∈ N and let d = 1 + a + b− c−
m. Then

3F2

(
a, b,−m

c, d
; 1
)
=

(c− a)m · (c− b)m

(c)m · (c− a− b)m
.

Proofs of these identities can be found in [1]. Theorem 3 is only applicable if
d = 1 + a + b− c−m holds. As this is not always the case, transformations are
necessary. We need the following one.

Lemma 4 (Gauss’ contiguous relation) Let a1, a2, a3, b1, b2, z ∈ C. Then

(a2 − a3) · 3F2

(
a1, a2, a3

b1, b2
; z
)
=

a2 · 3F2

(
a1, a2 + 1, a3

b1, b2
; z
)
− a3 · 3F2

(
a1, a2, a3 + 1

b1, b2
; z
)

.

In our computations we also use the following lemma.

Lemma 5 Let c(t) = ∑j≥0 cj · tj be a formal series and let

(1 + t)k+1 · c(t) =
k

∑
j=0

pj · tj + ∑
j≥n+1

pj · tj

for some k ≥ 0 and n > k, thus pk+1 = . . . = pn = 0. Then the series coefficients cm,
m = k + 1, . . . , n, can be expressed in terms of the ci, i = 0, . . . , k, as follows:

cm = (−1)m−k ·
(

m
k + 1

)
·

k

∑
i=0

ci ·
k + 1− i

m− i
·
(

k + 1
i

)
.

These technical Lemmas 2–5 allow to represent the variables of the linear pro-
gram L(k, n)z as follows.
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Proposition 1 The structure of the feasible solutions z = (z0, . . . , zn) to the linear
program L(k, n)z for ` = 0, . . . , n is given by

z` = (−1)`−n+k ·
(

k− 1
n− `

)
·

n−k

∑
j=0

(
n− j
k− 1

)
· zj ·

n− k + 1− j
`− j

(` ≥ n− k + 1)

= (−1)`−(n−k) ·
(

n
`

)
·

n−k

∑
j=0

(`− (n− k))n−k−j · (`+ 1− j)j

(n + 1− j)j · (n− k− j)!
· zj (` ≥ 0).(1)

With Proposition 1 we see that the feasibility of Definition 3 can be replaced by
(1), which we will use in Section 3.

Concerning the optimization in L(k, n)z, we have the following.

Lemma 6 Let z′ = (z′0, . . . , z′n) and z′′ = (z′′0 , . . . , z′′n) be two feasible solutions to the
linear program L(k, n)z with the same target value α. The for any convex combination
z′′′ = (z′′′0 , . . . , z′′′n ) with z′′′i = λ · z′i + (1− λ) · z′′i , i = 0, . . . , n and 0 ≤ λ ≤ 1,

1. either z′′′ is feasible with the same target value α as for z′ and z′′, or

2. z′′′ is not feasible, but from it one can construct a feasible solution z′′′′, that yields
a target value α∗ > α.

Proposition 2 Let z = (z0, . . . , zn) be a feasible solution to L(k, n)z with target value
α. Then, z′ = (z′0, . . . , z′n) with z′i := (−1)k · zn−i, i = 0, . . . , n, is also a feasible
solution to L(k, n)z with the same target value.

From Lemma 6 and Proposition 2 we obtain:

Corollary 1 For the linear program L(k, n)z there always exists an optimal solution
z = (z0, . . . , zn) with zi = (−1)k · zn−i, i = 0, . . . , n.

Corollary 1 allows us to reduce the number of variables in L(k, n)z by a factor of
approximately 2. We will make use of this in Section 3.
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3 Applications

3.1 The Linear Program L(k, k)z

For the linear program L(k, k)z, by Proposition 1, for ` = 0, . . . , k, we get

z` = (−1)` ·
(

k
`

)
·

0

∑
j=0

(`)−j · (`+ 1− j)j

(k + 1− j)j · (−j)!
· zj = (−1)` ·

(
k
`

)
· z0. (2)

Thus, the linear program L(k, k)z can be formulated as

L(k, k)z = z0 −→ maximize

subject to
k
∑

j=0
zj>0

zj = 1 and z` = (−1)` · (k
`) · z0 ` = 0, . . . , k.

As L(k, k)z = z0, in an optimal solution z we have z0 > 0, hence, using that the
sum of the positive variables has to be equal to 1, we infer that

1 !
=

k

∑
j=0

j even

zj = z0 ·
k

∑
j=0

j even

(
k
j

)
= z0 · 2k−1, (3)

thus z0 = 2−k+1, which is the (unique) optimal value of the target function.

Naor and Shamir [7] already gave a proof of the optimality of this contrast for
L(k, k)z by using approximate inclusion-exclusion. A simpler argument than
that in [7] for the optimal target value of L(k, k) has been given in [4].

3.2 The Linear Program L(k − 1, k)z

For the linear program L(k− 1, k)z we have by Proposition 1 for ` = 0, . . . , k:

z` = (−1)`−1 ·
(

k
`

)
·

1

∑
j=0

(`− 1)1−j · (`+ 1− j)j

(k + 1− j)j · (1− j)!
· zj

= (−1)`−1 ·
(

k
`

)
·
(z1

k
+ (`− 1) ·

(
z0 +

z1

k

))
. (4)

Identity (4) has already been shown in [5] by another argument.

Thus, the linear program L(k− 1, k)z is given by

L(k− 1, k)z = z0 +
z1

k
−→ maximize
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subject to:
k
∑

j=0
zj>0

zj = 1 and

z` = (−1)`−1 ·
(

k
`

)
·
(z1

k
+ (`− 1) ·

(
z0 +

z1

k

))
` = 0, . . . , k.

By Corollary 1 there must exist an optimal solution z to L(k − 1, k)z with z` =

(−1)k−1 · zk−`, ` = 0, . . . , n, and we infer

0 = (−1)k−1 · zk−` − z`

= (−1)k−1 · (−1)k−`−1 ·
(

k
k− `

)
·
(z1

k
+ (k− `− 1) ·

(
z0 +

z1

k

))
− (−1)`−1 ·

(
k
`

)
·
(z1

k
+ (`− 1) ·

(
z0 +

z1

k

))
(by (4))

= (−1)` ·
(

k
`

)
·
(

2z1

k
+ (k− 2) ·

(
z0 +

z1

k

))
⇐⇒ z0 = − z1

k− 2
. (5)

By (4) and (5) we obtain for ` = 0, . . . , k:

z` = (−1)`−1 ·
(

k
`

)
· z1 ·

k− 2`
(k− 2) · k , (6)

and by (5) the target function of L(k− 1, k)z becomes

z0 +
z1

k
· z1 = z1 ·

(
1
k
− 1

k− 2

)
= − 2z1

(k− 2) · k ,

hence z1 < 0 due to the assumption on the optimality of z.

To satisfy the first feasibility condition, we determine the sum of all positive
variables z` by using (6). Let k be even (the case of odd k is quite similar). From
(6) we see that for ` < k/2 each z` is positive if ` is even, as z1 < 0. For ` > k/2
however, those z` are positive when ` is odd. Using z` = (−1)k−1 · zk−` =

−zk−`, ` = 0, . . . , n, the sum of the positive z` for ` > k/2 is equal to the absolute
values of the sum of all negative z` for ` < k/2. Hence, the sum of all positive
z` can be replaced by the negative sum of all negative z`, which simplifies the
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calculations, and we obtain by using (4) and (5):

1 !
=

k

∑
j=0

zj>0

zj =
k/2

∑
j=0

j even

zj −
k/2

∑
j=1
j odd

zj = −
k/2

∑
j=0

(
z1

k
+ (j− 1)

(
− z1

k− 2
+

z1

k

))
·
(

k
j

)

= −z1 ·
[

1
k
·

k/2

∑
j=0

(
k
j

)
· j− 1

k− 2
·

k/2

∑
j=0

(
k
j

)
· j + 1

k− 2
·

k/2

∑
j=0

(
k
j

)]

= −z1 ·
[

1
k
· k · 2k

4
− 1

k− 2
· k · 2k

4
+

1
k− 2

·
(

2k−1 +
1
2
·
(

k
k
2

))]

= − z1

2(k− 2)
·
(

k
k
2

)
⇐⇒ z1 = (4− 2k) ·

(
k
k
2

)−1
. (7)

With (5) and (7) we further infer

z0 = − z1

k− 2
= − 1

k− 2
· (4− 2k) ·

(
k
k
2

)−1
= 2

(
k
k
2

)−1
,

hence for the optimal value of the target function we have

z0 +
z1

k
= 2

(
k
k
2

)−1
+

4− 2k
k
·
(

k
k
2

)−1
=

4
k
·
(

k
k
2

)−1
.

By (4) an optimal solution to L(k− 1, k)z for k even is given by

z` = (−1)`−1 ·
(

k
`

)
·
(

k
k
2

)−1
·
(

4`
k
− 2
)

` = 0, . . . , k.

Lemma 7 Let k be an even positive integer, and let z = (z0, . . . , zk) be an optimal
solution to the linear program L(k− 1, k)z. Then zk/2 = 0.

Proof. Let z′ = (z′0, . . . , z′k) be an optimal solution to L(k− 1, k)z with z′k/2 6= 0.
Then, the solution z′′ = (z′′0 , . . . , z′′k ) with z′′i := −z′k−i, i = 0, . . . , k, is also
optimal by Proposition 2. These solutions are distinct as z′′k/2 = −z′k/2 6= 0.
We construct another solution z′′′ = (z′′′0 , . . . , z′′′k ) with z′′′i := (z′i + z′′i )/2,
i = 0, . . . , k. From the proof of Lemma 6 it follows, that this solution is only
feasible if there is no i such that sgn(z′i) = −sgn(z′′i ) 6= 0 holds. For i = k/2
however, sgn(z′k/2) 6= sgn(z′′k/2) holds, which implies that z′′′ is not feasible. By
Lemma 6(2.) we can construct another solution z′′′′–by scaling the solution z′′′–,
with a larger target value than that of z′ and z′′ yield and with z′′′′k/2 = 0. �
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With zk/2 = 0 we infer for each optimal solution

0 = (−1)
k
2−1 · z` = (−1)

k
2−1 ·

(
k
k
2

)
·
(

z− 1
k

+

(
k
2
− 1
)
·
(

z0 +
z1

k

))
⇐⇒ z0 = − z1

k− 2
,

thus we have (5), the optimal solution is unique for k even (but not for k odd).

The optimal contrast for (k− 1, k)-schemes has also been obtained by Blundo et
al. [2] by using a different approach via canonical matrices.

3.3 The Linear Program L(k − 2, k)z

For (k− 2, k)-schemes we have by Proposition 1 for ` = 0, . . . , k:

z` = (−1)` ·
(

k
`

)
·
[
(`− 2)(`− 1)

2
· z0 +

(`− 2)`
k

· z1 +
(`− 1)`
k(k− 1)

· z2

]
. (8)

Hence, the linear program L(k− 2, k)z is given by

L(k− 2, k)z = z0 +
2z1

k
+

2z2

k(k− 1)
−→ maximize

subject to
k
∑

j=0
zj>0

zj = 1 and

z` = (−1)`
(

k
`

) [
(`− 2)(`− 1)

2
· z0 +

(`− 2)`
k

· z1 +
(`− 1)`
k(k− 1)

· z2

]
` = 0, . . . , k.

By Corollary 1 there exists an optimal solution z with z` = (−1)k−2 · zk−`, ` =

0, . . . , k, and by (8) we have

z2 = (−1)k−2 · zk−2

=

(
k
2

) [
(k− 4)(k− 3)

2
z0 +

(k− 4)(k− 2)
k

z1 +
(k− 3)(k− 2)

k(k− 1)
z2

]
⇐⇒ z2 = −(k− 3)k

2
z0 − (k− 2)z1. (9)

For the target function we obtain with (9)

z0 +
2z1

k
+

2z2

k(k− 1)
=

2
k− 1

·
(

z0 +
z1

k

)
. (10)
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Inserting (9) into (8), for ` = 0, . . . , k we infer

z` = (−1)`
(

k
`

)
1

k− 1

(
z0 +

z1

k

)
︸ ︷︷ ︸

A

(
`2 − k`+

z0k(k− 1)
z0k + z1

)
︸ ︷︷ ︸

B

. (11)

The term A is equal to one half of the target function, thus A can be assumed to
be positive. The term B determines, which variables z` are positive or negative.
The zeros `1 and `2 of the parabola B, i.e., B = 0, are given by

`1,2 =
k
2
±

√
k2

4
− z0k(k− 1)

z0k + z1
.

To satisfy the first feasibility condition, we now need to investigate whether the
discriminant is positive, zero, or negative. We briefly discuss the observations.
In case of a negative discriminant we obtain that the target value is less than

16/(k2k). (12)

For optimal solutions, the zeros a of the parabola B, if at all, have to be in the
interval [0, k], say a ∈ [0, k/2] is such a zero of B. Then, with some computations
concerning monotonicity and taking into account the parity of a and k, the opti-
mal solution to L(k− 2, k) is given by the largest positive integer a < (k− 1)/2
such that

a

∑
j=0

(
k
j

)
< 2k−2.

However, this means that for some constant c > 0 it is a ≈ k/2− c ·
√

k by Stir-
ling’s formula, and we cannot say anything more precise currently. However,
assuming that a = (k − 2)/2, say, determining the corresponding target value
of L(k− 2, k)z gives a larger one than (12), hence for an optimal solution there is
definitely a zero of the parabola B in the interval [0, k/2].

4 Conclusion

Here we have given a new approach to determine the optimal contrast of (k, n)-
schemes in Visual Cryptography. For k = n and k = n− 1 this techniques turned
out to be quite elegant. For the case k = n − 2 this is also the case, however,
further considerations are necessary. Our approach should also be successful in
the case of k = n− 3, however, this is work in progress, and more investigations
are left for the future. It would be also of interest to see, whether these methods
apply to the case of (4, n)-schemes.
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