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A structural result for hypergraphs with many
restricted edge colorings

Hanno Lefmann,
Yury Person∗ and Mathias Schacht

For k-uniform hypergraphs F and H and an integer r ≥ 2, let
cr,F (H) denote the number of r-colorings of the set of hyper-
edges of H with no monochromatic copy of F and let cr,F (n) =
maxH∈Hn

cr,F (H), where the maximum runs over the family Hn of
all k-uniform hypergraphs on n vertices. Moreover, let ex(n, F ) be
the usual Turán function, i.e., the maximum number of hyperedges
of an n-vertex k-uniform hypergraph which contains no copy of F .

In this paper, we consider the question for determining cr,F (n)
for arbitrary fixed hypergraphs F and show

cr,F (n) = rex(n,F )+o(nk)

for r = 2, 3. Moreover, we obtain a structural result for r = 2, 3 and
any H with cr,F (H) ≥ rex(|V (H)|,F ) under the assumption that a
stability result for the k-uniform hypergraph F exists and |V (H)|
is sufficiently large. We also obtain exact results for cr,F (n) when
F is a 3- or 4-uniform generalized triangle and r = 2, 3, while
cr,F (n)� rex(n,F ) for r ≥ 4 and n sufficiently large.

1. Introduction and results

1.1. Introduction

For real constants α, β, and a non-negative constant ξ we sometimes write
α = β±ξ if β−ξ ≤ α ≤ β+ξ . For a positive integer `, we denote by [`] the
set {1, . . . , `}. For a set V and an integer k ≥ 1, let [V ]k be the set of all k-
element subsets of V . We may drop one pair of brackets and write [`]k instead

of
[
[`]
]k

. A subset H(k) ⊆ [V ]k is a k-uniform hypergraph on the vertex set V .
We identify hypergraphs with their sets of hyperedges. For a given k-uniform
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hypergraph H(k), we denote by V (H(k)) and E(H(k)) its vertex set and its
set of hyperedges, respectively. For U ⊆ V (H(k)), we denote by H(k)[U ] the
subhypergraph of H(k) induced on U (i.e., H(k)[U ] = H(k) ∩ [U ]k). We set
e(H(k)) := |E(H(k))| to be the number of hyperedges of H(k). We also say
H instead of H(k) to simplify the notation.

For k-uniform hypergraphs F and H and an integer r let cr,F (H) denote
the number of r-colorings of the set of hyperedges of H with no monochro-
matic copy of F and let

cr,F (n) = max
H∈Hn

cr,F (H) ,

where the maximum runs over Hn, the set of all k-uniform hypergraphs on
n vertices. We call H an F -free hypergraph if H contains no subhypergraph
isomorphic to F . Moreover, let ex(n, F ) be the Turán function, i.e., the max-
imum number of hyperedges of an F -free n-vertex k-uniform hypergraph.
We say also that an F -free hypergraph H on n vertices is extremal for F if
e(H) = ex(n, F ). Further set

πF := lim
n→∞

ex(n, F )/

(
n

k

)
,

and call πF Turán density of F .

Clearly, every coloring of the set of hyperedges of any extremal hyper-
graph H for F contains no monochromatic copy of F and, consequently,

cr,F (n) ≥ rex(n,F )

for all r ≥ 2. On the other hand, if ForbF (n) denotes the family of all labeled
hypergraphs on the vertex set [n] which contain no copy of F as a subhy-
pergraph, since every 2-coloring of the set of hyperedges of a hypergraph
H, which contains no monochromatic copy of F , gives rise to a member of
ForbF (n), e.g., consider always the subhypergraph in one of the two colors,
we have

c2,F (n) ≤ |ForbF (n)| .

The family ForbF (n) was studied by several researchers (see [8, 17, 18,
7, 3, 2, 22, 23, 24, 4]). For example, it was shown in [23] that |ForbF (n)| ≤
2ex(n,F )+o(nk) for every fixed k-uniform hypergraph F , consequently,

2ex(n,F ) ≤ c2,F (n) ≤ 2ex(n,F )+o(nk) . (1)
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In the graph case, when F = K` is a graph clique, Yuster [33] (for
` = 3) and Alon, Balogh, Keevash and Sudakov [1] (for arbitrary fixed
`) closed the gap in (1) and showed, that the lower bound is the correct
order of c2,K`

(n), i.e., c2,K`
(n) = 2ex(n,K`) for n sufficiently large, which was

conjectured by Erdős and Rothschild (see [6]). Moreover, Alon et al. showed
that c3,K`

(n) = 3ex(n,K`) for n sufficiently large and in both cases r = 2, 3
we have

cr,K`
(H) = cr,K`

(n) = rex(n,K`)

only when H is the (`− 1)-partite Turán graph, ` ≥ 3. In fact, it was shown
in [1] that the same result holds for `-chromatic graphs which contain a color-
critical edge. Furthermore, it was observed in [1] that cr,K`

(n) � rex(n,K`)

for r ≥ 4. Recently, Pikhurko and Yilma [27] determined the graphs that
yield c4,K3

(n) and c4,K4
(n).

Rödl and the authors [21] showed that a similar result holds, when F
is the 3-uniform hypergraph of the Fano plane, i.e., the unique 3-uniform
hypergraph with 7 hyperedges on 7 vertices in which every pair of vertices
is contained in precisely one hyperedge. More precisely, it was shown that
for large n and r = 2, 3 one has for every 3-uniform hypergraph H on n
vertices that cr,F (H) ≤ rex(n,F ). Moreover, the only 3-uniform hypergraph
H on n vertices with cr,F (H) = rex(n,F ) is the extremal hypergraph for F ,
i.e., H is isomorphic to Bn, the balanced, complete, bipartite hypergraph on
n vertices (see [14, 12]).

1.2. Main results

We continue to study cr,F (n) for hypergraphs F . We obtain a general result
related to (1). Roughly speaking, we show that for a natural class of hyper-
graphs F , any hypergraph H for which many F -free colorings exist must
disclose a special structure. To state this result precisely, we use the notions
of ε-closeness and s-stability.

We say that two k-uniform hypergraphs H1 and H2 on n vertices are
ε-close if there exists a bijective function ϕ : V (H1) −→ V (H2) such that
|E(H1)∆ϕ(E(H2))| ≤ εnk, where ∆ denotes the symmetric difference.

Recall the notion of s-stability as introduced by Pikhurko [25].

Definition 1 (s-stability). Let F be a k-uniform hypergraph. Call F s-stable,
if for every ε > 0 there exists an ω > 0 and an integer n0 such that for
arbitrary F -free k-uniform hypergraphs H1, . . . ,Hs+1 each of the same order
n ≥ n0 and each having at least πF

(
n
k

)
−ωnk hyperedges, there are two which

are ε-close.
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In the graph case, every F -free graph on n vertices with roughly πF
(
n
2

)
many edges is ε-close to its extremal graph, which is a result of Erdős and
Simonovits [31]. In particular, 1-stability summarizes this scenario. However,
for hypergraphs such a result was not obtained and it is believed that in
general it even fails for k ≥ 3 and k-uniform hypergraphs. We consider
those hypergraphs F for which such a stability result exists.

The structural result which we prove in this paper is the following.

Theorem 2. Let k, s ∈ N, k ≥ 2 and r = 2 or 3. Let F be a k-uniform
hypergraph, such that πF > 0.

Then, for every ε > 0 there exists an n0 ∈ N such that for every n ≥ n0

it is

cr,F (n) ≤ rex(n,F )+εnk

. (2)

Furthermore, suppose that F is s-stable. Then, among any s + 1 k-
uniform hypergraphs H1, . . . ,Hs+1 on n ≥ n0 vertices that satisfy cr,F (Hi) ≥
rex(n,F ) for every i ∈ [s+ 1], there exist two which are ε-close.

Note that for the general upper bound (2) on the number cr,F (n), the
property s-stability is not required. This upper bound (2) also holds for
those hypergraphs F with πF = 0 and an arbitrary fixed number of colors.
This is a triviality due to the assumption πF = 0.

For certain hypergraphs we also obtain a precise result in the spirit
of [1, 33, 21]. For any positive integers n ≥ ` ≥ k, we define the Turán

hypergraph T (k)
` (n) as follows. Partition the vertex set [n] into ` mutually

disjoint subsets V1, . . . , V` of sizes as equal as possible, i.e., they differ in size
by at most 1. Then, consider as hyperedges all k-element subsets of [n] that
intersect every partition class Vi, i ∈ [`], in at most one vertex. It is easy to

check that the Turán hypergraph T (k)
` (n) contains the maximum possible

number of hyperedges with the property that every hyperedge intersects
every class Vi, i ∈ [`], in at most one vertex, and is unique up to isomorphism.

For an integer k ≥ 2 define the generalized triangle Tk as follows. This
k-uniform hypergraph Tk = (V,E) has the vertex set V = [2k − 1] and its
set E of three hyperedges is given by

E = {{1, . . . , k}, {1, . . . , k − 1, k + 1}, {k, k + 1, . . . , 2k − 1}}.

Thus, the first two hyperedges have (k−1) common vertices, while the third
hyperedge contains the symmetric difference of the first two, and intersects
each of these in precisely one vertex. Clearly, if k = 2, then T2 is a graph
triangle K3. For k = 3 it was shown by Frankl and Füredi [9] and for
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k = 4 by Pikhurko [26], that the Turán hypergraph T (k)
k (n) is the unique

extremal Tk-free hypergraph for n sufficiently large. Moreover, Keevash and
Mubayi [13] (case k = 3) and Pikhurko [26] (case k = 4) showed that Tk
is 1-stable. Our second result shows that for these cases we obtain precise
results for cr,Tk

(n) for r = 2, 3 and k = 3, 4.

Theorem 3. Let k = 3 or 4 and r = 2 or 3. There exists an integer nr,k,
such that

cr,Tk
(H) ≤ rex(n,Tk)

for any k-uniform hypergraph H on n ≥ nr,k vertices. Moreover, if

cr,Tk
(H) = rex(n,Tk)

then H is isomorphic to the Turán hypergraph T (k)
k (n).

For k = 5, 6, the hypergraph T (k)
k (n) is not extremal for Tk anymore [10].

Furthermore one can also extend the constructions from [10] to show that

for k ≥ 7, T (k)
k (n) is not extremal for Tk as well.

1.3. Overview of the proof

Our motivation is a better understanding of the approach of Alon, Balogh,
Keevash and Sudakov [1]. Their proof strategy can be described as follows.
One splits the proof into two parts. In the first part they obtain the following
structural result. If, say, a graph G on n vertices admits at least rex(n,K`)

many edge colorings without a monochromatic complete graph K`, then

G looks almost like the Turán graph T (2)
`−1(n). In the second part of the

argument they use backward induction. Assuming that G is not the Turán
graph, one consecutively removes vertices to derive an impossible fact about

some subgraph G′ ⊆ G. Namely, that cr,K`
(G′) > r(

|V (G′)|
2 ), which is clearly

a contradiction, as any graph on |V (G′)| vertices may have at most
(|V (G′)|

2

)
edges.

We generalize the first part of the argument for stable hypergraphs F .
Before we sketch our approach, we discuss the idea of Alon et al. [1]. To
prove such a structural result one fixes some edge-coloring of G without a
monochromatic copy of F , and one applies the colored version of the regular-
ity lemma to G (see for example [19]). Then, almost all edges are contained
in ε-regular pairs of sufficiently large density. This allows to concentrate on
the cluster graphs defined for every color. The idea now is to consider the
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new cluster graph that consists of the ε-regular pairs in all colors. Further-
more, if one could apply to that cluster graph a stability-type result of Erdős
and Simonovits [31], then this would give also a partition of the underlying
graph, as then the number of the other ε-regular pairs that are contained
inside the partition classes would be small. However, being unable to apply
the stability result for any coloring, as the cluster graph contains too few
edges, one can then derive a contradiction by bounding cr,K`

(G) from above
by rex(|V (G)|,K`)−1.

To get an approximate result for 3-uniform hypergraphs with F being
the Fano plane, we used the so-called weak hypergraph regularity lemma
(see e.g. [5, 11, 32]), which is a straightforward generalization of Szemerédi’s
regularity lemma for graphs. This version has recently been proved [15]
to be compatible (i.e., admits a counting lemma) with linear hypergraphs,
i.e., those hypergraphs whose hyperedges intersect pairwise in at most one
vertex. In this setting the notion of the cluster hypergraph is the same as
for graphs.

For the general hypergraph case, we use the regularity lemma of Rödl
and Schacht from [29] together with some form of the corresponding counting
lemma proved also by these authors in [28]. However, applications of this
lemma yield partitions with a more complicated structure. In particular,
there is no such simple notion of the cluster hypergraph as in the graph
case. Nevertheless, one way to obtain a similar structural result is still to
apply some appropriate stability result, but this time not to the cluster
hypergraph, but to an underlying hypergraph. Indeed, in the approach of
Alon et al. [1] instead of applying the stability result to the cluster graph one
could do the following. Once one can apply the stability result to the cluster
graph, whose edges correspond to ε-regular pairs of sufficiently large density
in every color, one may ignore the colors, and replace each such ε-regular
pair by the complete bipartite graph, which is clearly ε-regular. Then we can
apply the stability result, unless some copy of K` suddenly appears. This is
impossible due to the fact that then the edges of this copy must correspond
to ε-regular pairs, which are ε-regular in every color. Thus, these pairs form
a copy of K` in the cluster graph which is a contradiction.

1.4. Organization

In the next section we provide the reader with notions related to the strong
regularity lemma (colored version) of Rödl and Schacht. We mainly follow
the notation from [29, 28] and include it here for completeness. Section 3
is devoted to the proof of Theorem 2. Section 4 contains further notations
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used in the proof of Theorem 3, to which Section 5 is devoted. In Section 6
we present a construction showing that cr,Tk

(n) � rex(n,Tk) for r ≥ 4 and
k = 3, 4. We close with a few concluding remarks in Section 7.

2. Regularity lemma for hypergraphs

Before we state the regularity and the counting lemmas [29, 28], we introduce
some notation.

2.1. Complexes

A k-uniform clique of order j, denoted by K
(k)
j , is a complete k-uniform

hypergraph on j ≥ k vertices consisting of all
(
j
k

)
different k-subsets. Here,

by k-subsets we mean k-element subsets.
Given integers j ≤ ` and mutually disjoint vertex sets V1, . . . , V`, we

denote byK
(j)
` (V1, . . . , V`) the complete `-partite, j-uniform hypergraph (i.e.,

the set of all j-subsets J ⊆
⋃
i∈[`] Vi satisfying |Vi ∩ J | ≤ 1 for every i ∈ [`]).

If |Vi| = m for every i ∈ [`], then an (m, `, j)-hypergraph H(j) on V1∪· · ·∪V`
is any subset of K

(j)
` (V1, . . . , V`). Note that the vertex partition V1 ∪ · · · ∪V`

is an (m, `, 1)-hypergraph H(1). For j ≤ i ≤ ` and a set Λi ∈ [`]i, we denote
byH(j)[Λi] = H(j)

[⋃
λ∈Λi

Vλ
]

the subhypergraph of the (m, `, j)-hypergraph

H(j) induced on
⋃
λ∈Λi

Vλ.

For an (m, `, j)-hypergraph H(j) and an integer i, j ≤ i ≤ `, we denote
by Ki(H(j)) the set of all i-subsets of V (H(j)) which span complete subhy-
pergraphs in H(j) on i vertices. Note that |Ki(H(j))| is the number of all

copies of K
(j)
i in H(j).

Given an (m, `, j − 1)-hypergraph H(j−1) and an (m, `, j)-hypergraph
H(j) such that V (H(j)) ⊆ V (H(j−1)), we say that a hyperedge J of H(j)

belongs to H(j−1) if J ∈ Kj(H(j−1)), i.e., J corresponds to a clique of order j
in H(j−1). Moreover, H(j−1) underlies H(j) if H(j) ⊆ Kj(H(j−1)), i.e., every
hyperedge of H(j) belongs to H(j−1). This brings us to the notion of a
complex. Let m ≥ 1 and ` ≥ h ≥ 1 be integers. An (m, `, h)-complex H is a
collection of (m, `, j)-hypergraphs {H(j)}hj=1 such that

(a ) H(1) is an (m, `, 1)-hypergraph, i.e., V (H(1)) = V1 ∪ · · · ∪ V` with
|Vi| = m for i ∈ [`], and

(b ) H(j−1) underlies H(j) for 2 ≤ j ≤ h, i.e., H(j) ⊆ Kj(H(j−1)).

Now we proceed with the notion of relative density of a j-uniform hyper-
graph with respect to a (j − 1)-uniform hypergraph on the same vertex set.
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For a given j-uniform hypergraph H(j) and a (j − 1)-uniform hypergraph
H(j−1) on the same vertex set, we define the density of H(j) with respect to
H(j−1) as

d
(
H(j)

∣∣H(j−1)
)

=

{ |H(j)∩Kj(H(j−1))|
|Kj(H(j−1))| if

∣∣Kj(H(j−1))
∣∣ > 0

0 otherwise .

We also use a notion of regularity of an (m, j, j)-hypergraph with respect
to an (m, j, j − 1)-hypergraph. Let reals ε > 0 and dj ≥ 0 be given along
with an (m, j, j)-hypergraph H(j) and an underlying (m, j, j−1)-hypergraph
H(j−1). We say H(j) is (ε, dj)-regular with respect to H(j−1) if whenever
Q(j−1) ⊆ H(j−1) satisfies∣∣Kj(Q(j−1))

∣∣ ≥ ε∣∣Kj(H(j−1))
∣∣ , then d

(
H(j)

∣∣Q(j−1)
)

= dj ± ε .

More generally, we extend the notion of (ε, dj)-regularity from (m, j, j)-
hypergraphs to (m, `, j)-hypergraphs H(j). We say that an (m, `, j)-hyper-
graph H(j) is (ε, dj)-regular with respect to an (m, `, j − 1)-hypergraph
H(j−1) if the restriction H(j)[Λj ] = H(j)

[⋃
λ∈Λj

Vλ
]

is (ε, dj)-regular with re-

spect to to the restriction H(j−1)[Λj ] = H(j−1)
[⋃

λ∈Λj
Vλ
]

for every j-subset

Λj ∈ [`]j .
We sometimes write ε-regular to mean

(
ε, d
(
H(j)

∣∣H(j−1)
))

-regular and
we also omit the m in (m, `, h)-complex and (m, `, h)-hypergraph.

Finally, we close this subsection with the notion of a regular complex.

Definition 4 ((ε,d)-regular complex). Let ε > 0 and let d = (d2, . . . , dh)
be a vector of non-negative reals. An (m, `, h)-complex H = {H(j)}hj=1 is

(ε,d)-regular if H(j) is (ε, dj)-regular with respect to H(j−1) for j = 2, . . . , h.

2.2. Partitions

The regularity lemmas [29, 28] provide a well-structured family of partitions
P = {P(1), . . . ,P(k−1)}, where P(i) is a partition of the set of all i-subsets
of some vertex set. First we define the refinement of a partition. Suppose
A ⊇ B are sets, A is a partition of A, and B is a partition of B. We say A
refines B and write A ≺ B if for every A ∈ A there either exists a B ∈ B
such that A ⊆ B or A ⊆ A \B.

Let k be a fixed integer and V be a set of vertices. Throughout this
paper we require a family of partitions P = {P(1), . . . ,P(k−1)} on V to
satisfy properties which we are going to describe below (see Definition 5).
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Let P(1) = {V1, . . . , V|P(1)|} be a partition of some vertex set V . For

every j, 1 ≤ j ≤ k, let Crossj(P(1)) be the family of all crossing j-subsets
J of V , i.e., the set of all j-subsets which satisfy |J ∩ Vi| ≤ 1 for every
Vi ∈P(1).

Suppose that partitions P(i) of Crossi(P(1)) into sets of (i, i)-hyper-
graphs, i.e., i-partite i-uniform hypergraphs, have been defined for i =
1, . . . , j − 1. Then for every (j − 1)-subset I in Crossj−1(P(1)) there ex-
ists a unique P(j−1) = P(j−1)(I) ∈P(j−1) so that I ∈ P(j−1). Moreover, for
every j-subset J in Crossj(P(1)) we define the polyad of J

P̂(j−1)(J) =
⋃{
P(j−1)(I) : I ∈ [J ]j−1

}
.

In other words, P̂(j−1)(J) is the unique collection of j partition classes of

P(j−1) in which J spans a copy of K
(j−1)
j . Observe that P̂(j−1)(J) can be

viewed as a (j, j−1)-hypergraph, i.e., a j-partite, (j−1)-uniform hypergraph.
More generally, for 1 ≤ i < j, we set

P̂(i)(J) =
⋃{
P(i)(I) : I ∈ [J ]i

}
and P(J) =

{
P̂(i)(J)

}j−1

i=1
. (3)

We also refer to P(J) as the polyad of J and it will always be clear from
the context which definition is meant.

Next, we define P̂(j−1), the family of all polyads by

P̂(j−1) =
{
P̂(j−1)(J) : J ∈ Crossj(P

(1))
}
.

Note that two polyads P̂(j−1)(J) and P̂(j−1)(J ′) are not necessarily distinct
for different j-subsets J and J ′. We view P̂(j−1) as a set and, consequently,

{Kj(P̂(j−1)) : P̂(j−1) ∈ P̂(j−1)}

is a partition of Crossj(P(1)). The structural requirement on the partition
P(j) of Crossj(P(1)) is

P(j) ≺ {Kj(P̂(j−1)) : P̂(j−1) ∈ P̂(j−1)} . (4)

In other words, we require that the set of cliques spanned by a polyad in
P̂(j−1) is sub-partitioned in P(j) and every partition class in P(j) belongs
to precisely one polyad in P̂(j−1). Note, that due to (4) we inductively infer
that P(J) defined in (3) is a (j, j − 1)-complex.
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Throughout this paper we also want to have control over the number of
partition classes in P(j), and more specifically, over the number of classes
contained in Kj(P̂(j−1)) for a fixed polyad P̂(j−1) ∈ P̂(j−1). We render this
precisely in the following definition.

Definition 5 (family of partitions). Suppose V is a set of vertices, k ≥ 2 is
an integer and a = (a1, . . . , ak−1) is a vector of positive integers. We say
P = P(k − 1,a) = {P(1), . . . ,P(k−1)} is a family of partitions on V , if it
satisfies the following:

(i ) P(1) is a partition of V into a1 classes, and
(ii ) for j = 2, . . . , k − 1, P(j) is a partition of Crossj(P(1)) satisfying:

P(j) refines {Kj(P̂(j−1)) : P̂(j−1) ∈ P̂(j−1)} and∣∣{P(j) ∈P(j) : P(j) ⊆ Kj(P̂(j−1))
}∣∣ = aj for every P̂(j−1) ∈ P̂(j−1).

Moreover, we say P = P(k − 1,a) is t-bounded, if max{a1, . . . , ak−1} ≤ t.

2.3. Equitability and regular hypergraphs

In this subsection we introduce the notion of equitability.

Definition 6 ((η, ε,a)-equitable). Suppose V is a set of n vertices, η and ε
are positive reals, a = (a1, . . . , ak−1) is a vector of positive integers, and a1

divides n.

We say a family of partitions P = P(k − 1,a) = {P(1), . . . ,P(k−1)}
on V is (η, ε,a)-equitable if it satisfies the following:

(a )
∣∣[V ]k \ Crossk(P

(1))
∣∣ ≤ η(nk), and

(b ) P(1) = {Vi : i ∈ [a1]} is an equitable vertex partition, i.e., |Vi| =
|V |/a1 for each i ∈ [a1], and

(c ) for every k-subset K ∈ Crossk(P
(1)) we haveP(K) = {P̂(j)(K)}k−1

j=1 is
an (ε,d)-regular (n/a1, k, k−1)-complex with d = (1/a2, . . . , 1/ak−1).

Note that from equitability one obtains an implicit bound a1 > 1/(2η)
for n sufficiently large.

Now we extend the definition of (ε, dj)-regularity.

Definition 7 ((δk, dk, f)-regular hypergraph). Let δk and dk be positive reals
and f be a positive integer. Suppose H(k−1) is an (m, k, k − 1)-hypergraph

spanning at least one K
(k−1)
k . We say that an (m, k, k)-hypergraph H(k) is

(δk, dk, f)-regular with respect to H(k−1) if for every collection Q(k−1) =
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{Q(k−1)
1 , . . . , Q

(k−1)
f } of not necessarily disjoint subhypergraphs of H(k−1)

which satisfy ∣∣∣∣ ⋃
i∈[f ]

Kk(Q
(k−1)
i )

∣∣∣∣ ≥ δk ∣∣∣Kk(H(k−1))
∣∣∣ > 0 ,

we have ∣∣H(k) ∩
⋃
i∈[f ]Kk(Q

(k−1)
i )

∣∣∣∣⋃
i∈[f ]Kk(Q

(k−1)
i )

∣∣ = dk ± δk .

We write (δk, ∗, f)-regular to mean
(
δk, d

(
H(k)

∣∣H(k−1)
)
, f
)
-regular. More-

over, if f = 1, then a (δk, dk, 1)-regular hypergraph is (ε, dk)-regular with
ε = δk and vice versa.

Next we say when a hypergraph is regular with respect to a given family
of partitions.

Definition 8 ((δk, ∗, f)-regular with respect to P). Let δk be a positive real
and f a positive integer. Let H(k) be a k-uniform hypergraph with vertex
set V and P = P(k − 1,a) be a family of partitions on V . We say H(k) is
(δk, ∗, f)-regular with respect to P, if∣∣∣⋃{

Kk(P̂(k−1)) : P̂(k−1) ∈ P̂(k−1)

and H(k) is not (δk, ∗, f)-regular with respect to P̂(k−1)
}∣∣∣ ≤ δk|V |k .

If H(k) is (δk, ∗, f)-regular with respect to P̂(k−1) then we call the polyad
P(J) (also P̂(k−1)) regular, where J ∈ Kk(P̂(k−1)). Note, thatP(J) = P(J ′)
for all J and J ′ in Kk(P̂(k−1)).

2.4. Regularity and counting lemma

Finally, we state the regularity lemma [29] we are going to use (see for
example Lemma 23 in [29]).

Theorem 9 (Regularity lemma). Let k ≥ 2 and c ≥ 1 be fixed integers.
For all positive constants η and δk, and all functions f : Nk−1 −→ N and
δ : Nk−1 −→ (0, 1] there are integers t0 and n0 so that the following holds.

For every k-uniform hypergraph H(k), which is an edge-disjoint union∗

of c k-uniform hypergraphs H(k) = H
(k)
1 ∪̇ . . . ∪̇H

(k)
c with |V (H(k))| = n ≥ n0

∗equivalently, one can think of the set of hyperedges of H(k) being colored with
c colors
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such that (t0)! divides n, there exists a family of partitions P = P(k−1,aP)

so that

(i ) P is (η, δ(aP),aP)-equitable and t0-bounded and

(ii ) H
(k)
i is (δk, ∗, f(aP))-regular with respect to P for every color i ∈ [c].

We use the following lemma, its proof can be derived from Theorem 1.3

in [28], we also refer the interested reader to Chapter 9 of [30].

Theorem 10 (Counting lemma). For any integer k ≥ 2, every k-uniform

hypergraph F and every positive constant dk > 0, there exists δk > 0 such

that for every dk−1, . . . , d2 > 0 with 1/di ∈ N for every i = 2, . . . , k −
1 there are constants δ = δ(d2, . . . , dk−1) > 0 and positive integers f =

f(d2, . . . , dk−1) and m0 such that the following holds.

Let H(k) be a k-uniform hypergraph on n ≥ a1m0 vertices and let P(k−
1, (a1, 1/d2, . . . , 1/dk−1)) = {P(1), . . . ,P(k−1)} be a family of partitions.

If for a copy F ′ of F in the complete k-uniform hypergraph with vertex

set as V (H(k)) the following conditions are satisfied

(i ) For every e ∈ E(F ′) the polyad Pe = {P̂(i)
e }k−1

i=1 with e ∈ Kk(P̂
(k−1)
e )

is a (δ, (d2, . . . , dk−1))-regular (n/a1, k, k − 1)-complex, and

(ii ) for every e ∈ E(F ′) the hypergraph H(k) is (δk, de, f)-regular with re-

spect to P̂(k−1)
e for some de ≥ dk,

then the hypergraph H(k) contains at least one copy of F .

Roughly speaking, this theorem says that if a collection of sufficiently

regular complexes of H is in a natural correspondence to the hyperedges of

some fixed hypergraph F , then the given hypergraph H must contain a copy

of F .

We will also use the following special case of the dense counting lemma

(see from [16, Theorem 6.5]). Theorem 11 yields good estimates on the num-

ber of hyperedges contained in polyads of an equitable family of partitions

(which will be given to us through an application of the regularity lemma,

Theorem 9).

Theorem 11 (Dense counting lemma). Fix k ≥ 2. For any γ > 0 and

any d2,. . . , dk−1 > 0, there exist δ0 and n0 ∈ N for which the following

assertion holds. If 0 < δ < δ0 and H is a (δ,d)-regular (k, k − 1)-complex

on V1∪̇ . . . ∪̇Vk, where d = (d2, . . . , dk−1) and |Vi| = n ≥ n0 for all i, then

the number of K
(k−1)
k s in H is (1± γ) · d( k

k−1)
k−1 . . . d

(k

2)
2 nk.
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2.5. Cluster hypergraphs and slices

Similarly as in the graph case, we study the “cluster hypergraph” of a given
family of partitions. However, in the hypergraph setting the natural clus-
ter hypergraph is a “multihypergraph” and for our purposes it suffices to
analyze an appropriate subhypergraph without multiple hyperedges. Such a
representative we call a slice.

In the following we describe a slice more formally. For a given family of
partitions P = P(k−1,a), for every pair (Vi, Vj) of two vertex classes from
P(1) we choose precisely one element P from P(2) such that P ⊆ K2(Vi, Vj).

More generally, for every (j, j − 1) polyad P̂(j−1) (which is a (j, j − 1)-
hypergraph) formed by elements from the slice we select precisely one (j, j)-
hypergraph P(j) with P(j) ⊆ Kj(P̂(j−1)) from P(j) for the slice. Note that
there are exactly

k−1∏
i=2

a
(a1

i )
i (5)

slices in the family P(k − 1,a).
Define for every slice S a |P(1)|-partite k-uniform hypergraph H(S)

with the vertex partition P(1) whose hyperedges are exactly those k-sets
that correspond to regular polyads P(J), contained in the slice S and such
that H(k) ∩ Kk(P̂(k−1)(J)) has sufficiently large density (with respect to
Kk(P̂(k−1)(J))), say, at least dk. Then a special case of Theorem 10 above
states that if H(S) contains some copy of F , then H(k) must contain a copy
of F too.

3. Proof of Theorem 2

We prove the result only for r = 3, as the two-color-case is similar. (In fact,
for r = 2 the first part of Theorem 2 already follows from (1).) Also note,
the first claim of the theorem stating

cr,F (n) ≤ rex(n,F )+o(nk)

does not need any assumption on the s-stability of F . However, s-stability
is only used in the last paragraph of Case 1, see below. Therefore we prove
both claims simultaneously.

Given ε > 0, let ω > 0 be given that satisfies the s-stability condition in
Definition 1 for ε/3 and the hypergraph F . We choose positive ξ and ζ such
that

4(ξ + ζ) ≤ min{ω, ε/3} and h(k!4ξ) + 4ξ ≤ πF ζ

k!2k−188
, (6)
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where h(y) := −y log y − (1 − y) log(1 − y) for 0 < y < 1 is the entropy
function. Now apply Theorem 10 with F and dk = ξ obtaining δk > 0. We
may assume that

δk ≤ ξ/3, (7)

as setting δk smaller makes the complexes we consider more regular (and
therefore the statements still hold). We choose η > 0 as follows

η ≤ 2ξ/3, (8)

so that for every a ≥ 1/(2η), if a hypergraph on a vertices has at least

πF (1 + ζ/88)

(
a

k

)
(9)

hyperedges, then it contains a copy of F . Note that because ex(n, F )/
(
n
k

)
is a monotone decreasing function, which converges to πF , such choices are
always possible. Recall also that a1 ≥ (1/2η) for an equitable family of
partitions (cf. property (a ) of Definition 6). Next choose γ > 0 so that

γ ≤ min{1/9, ζ/88}. (10)

Let δ : Nk−1 → (0, 1] and f : Nk−1 → N be the functions guaranteed by
Theorem 10. Without loss of generality, we may assume that the function δ is
smaller then the function guaranteed by Theorem 11 and hence the number
of cliques of size k that are spanned by any (δ(aP),d)-regular (n/a1, k, k−
1)-complex lie in the range

(1± γ)

(
n

a1

)k
/

k−1∏
i=2

a
(k

i)
i .

The rôle of γ will become clear later in (13). Roughly speaking, after we reg-
ularize the hypergraph under consideration, we need good estimates on the
number of hyperedges a polyad can contain. For this we apply Theorem 11
to an equitable family of partitions, in particular the last “layer” of this
family forms a very regular partition of the (k− 1)-subsets with precision δ.

Now, let m0 be given by Theorem 10 and t0 by Theorem 9. Further we
choose n0 larger than t0 ·m0 and another n0 given again by Theorem 9.

Consider a hypergraph H on n ≥ n0 vertices with c3,F (H) ≥ 3ex(n,F )

(for the “furthermore”-part we consider H ∈ {H1, . . . ,Hs+1}). We assume
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without loss of generality that (t0)! divides n, as otherwise we may delete

less than (t0)! vertices and obtain a subhypergraph H ′ ⊂ H with

c3,F (H ′) ≥ 3ex(n,F )−O(nk−1),

and it follows from the proof that the O(nk−1) term does not harm us at

all.

So fix any 3-hyperedge-coloring ϕ of H, with color classes Hgreen, Hblue,

Hred, without a monochromatic subhypergraph F . Apply Theorem 9 with

the parameters k, c = 3, δk, η and the functions f and δ specified above.

We obtain from Theorem 9 an integer t0 and a family of partitions P =

P(k−1,aP) such that the properties specified in Theorem 9 hold. Roughly

speaking, we know that Hgreen, Hblue, and Hred are (δk, ∗, f)-regular with

respect to the obtained family of partitions.

We discard from our consideration the following colored hyperedges in

H.

• all hyperedges which are not in Crossk(P
(1)), which are at most η

(
n
k

)
,

and

• all hyperedges which are contained in (δk, ∗, f(aP))-irregular polyads

with respect to one of the colors, hence at most

3δk|V |k = 3δkn
k

such hyperedges, and

• furthermore, for every color we discard all hyperedges that are con-

tained in (δk, ∗, f(aP))-regular polyads of density less than ξ, which

are at most 3ξ
(
n
k

)
.

So, in total we discard at most

η

(
n

k

)
+ 3δkn

k + 3ξ

(
n

k

)
≤ 4ξnk (11)

hyperedges, where we used (7) and (8).

There are

Np :=

(
a1

k

)
·
k−1∏
i=2

a
(k

i)
i (12)
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(k, k − 1) polyads in the partition P(k − 1,aP). Due to the choice of δ, in
every polyad P(J) there are at most

E+
p := (1 + γ)

(
n

a1

)k
/

k−1∏
i=2

a
(k

i)
i (13)

many hyperedges in each of the three colors, red, blue and green, due to
Theorem 11.

Let pgreen, pblue, pred denote the number of (δk, ∗, f(aP))-regular polyads
of density at least ξ in the colors green, blue and red, respectively. We
know that every “monochromatic” slice cannot have more than ex(a1, F )
such regular polyads, as otherwise, the counting lemma, Theorem 10, would
imply that the hypergraph H contains a monochromatic copy of F which
contradicts our choice of the coloring of the set of hyperedges of H.

Note that there are exactly

S :=

k−1∏
i=2

a
(a1

i )
i

different slices, while every polyad occurs in exactly

S ·
k−1∏
i=2

a
−(k

i)
i

many slices.
Thus, we infer by averaging for every color col ∈ {green,blue, red} that

the number pcol of polyads satisfies

pcol ≤ ex(a1, F ) ·
k−1∏
i=2

a
(k

i)
i . (14)

On the other hand, let ej for j ∈ [3] denote the number of (δk, ∗, f(aP))-
regular polyads of density at least ξ in exactly j colors. We note the following
simple identity

e1 + 2e2 + 3e3 = pgreen + pred + pblue

(14)

≤ 3 ex(a1, F ) ·
k−1∏
i=2

a
(k

i)
i . (15)

Now we split our argument into two parts.
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Case 1. Assume first that

e3 ≥ (1− ζ) ex(a1, F ) ·
k−1∏
i=2

a
(k

i)
i , (16)

which means by (12) and (15) that the number of hyperedges contained in
polyads which are regular in at most two colors is at most

3ζ ex(a1, F ) ·
k−1∏
i=2

a
(k

i)
i · E+

p ≤ 3ζ(1 + γ) · ex(a1, F )

ak1
· nk

(10)

≤ 4ζ · ex(a1, F )

ak1
· nk ≤ 4ζnk.

We also discard these hyperedges. Hence, in view of (11), we discard at most
4(ζ + ξ)nk hyperedges in this case.

For a moment we ignore the different colors. We denote by H ′ the re-
sulting hypergraph (consisting of the left-over hyperedges). The number of
hyperedges in H ′ is at least ex(n, F )−4(ζ+ξ)nk ≥ πF

(
n
k

)
−ωnk (this follows

trivially as e(H) ≥ ex(n, F ), which is again implied by c3,F (n) ≥ 3ex(n,F )).
On the other hand, H ′ itself cannot have more than ex(n, F ) hyperedges.
Otherwise, there would exist a copy F ′ of F in H ′. This is however impos-
sible as then Theorem 10 applies, which yields a copy of F even in every
color. Indeed, the hyperedges of F ′ must lie in regular polyads of density at
least ξ. Thus, conditions (i )-(ii ) are fulfilled, and we therefore find a copy
of F in H in any color, which is a contradiction. Thus, H ′ is F -free and
e(H ′) ≤ ex(n, F ).

From here, the first claim of the theorem follows immediately in view of
the fact e(H) ≤ e(H ′) + 4(ζ + ξ)nk < ex(n, F ) + εnk.

As for the second claim, we argue as follows. If (16) holds for every
H ∈ {H1, . . . ,Hs+1}, then for every i ∈ [s + 1] there exists H ′i ⊂ Hi, H

′
i is

F -free and e(H ′i) ≥ πF
(
n
k

)
− ωnk. We infer from the s-stability that there

exist i, j ∈ [s + 1], i 6= j such that H ′i and H ′j are ε/3-close. Also we surely

have that |Hi∆H
′
i| ≤ εnk/3 and |Hj∆H

′
j | ≤ εnk/3, which implies that Hi

and Hj are ε-close. This finishes the first case and we conclude the theorem
in this case.

Case 2. Now, we argue that under the assumption c3,F (H) ≥ 3ex(n,F ) there
always exists some coloring, for which inequality (16) holds. We then arrive
at a contradiction assuming that this is not the case.
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So assume that (16) does not hold for any 3-hyperedge coloring of H
without a monochromatic copy of F . We can regularize the hypergraph H
for every hyperedge coloring. Our goal is to show, that H cannot have too
many hyperedge colorings.

We first bound the number of different (η, δ(aP),aP)-equitable fami-
lies of partitions which are t0-bounded together with (δk, ∗, f(aP))-regular
polyads in every color of density at least ξ, and due to the t0-boundedness
there are at most ( k−1∏

i=1

t
(n

i)
0

)
· 23Np ≤ t2nk−1

0 (17)

of these. We also discarded at most 4ξnk (cf.(11)) many hyperedges from
irregular and “sparse” polyads, over which we had no control, thus we up-
per bound the number of ways one can additionally choose and color these
hyperedges by ( (n

k

)
4ξnk

)
· 34ξnk ≤ 2h(k!4ξ)nk · 34ξnk

. (18)

Now we are left to estimate the number of ways we can color the set of
remaining hyperedges for some fixed family of partitions P. There are at
most

(1e1 · 2e2 · 3e3)E+
p (19)

many ways, where we consider all possible hyperedges a polyad can span
and take into account in how many colors some particular polyad is regular.

Set Ta :=
∏k−1
i=2 a

(k

i)
i . By assumption, e3 < (1− ζ) ex(a1, F )Ta and hence

by (15) we have

e2 ≤
3

2
(ex(a1, F )Ta − e3).

With 2 < 37/11 we can upper bound (19) by(
2

3

2
(ex(a1,F )Ta−e3) · 3e3

)E+
p

≤
(

3(21/22) ex(a1,F )Ta+(1/22)e3

)E+
p

≤
(

3(21/22) ex(a1,F )Ta+(1/22)(1−ζ) ex(a1,F )Ta

)E+
p

=

(
3ex(a1,F )Ta−(1/22)ζ ex(a1,F )Ta

)E+
p

(13)

≤ 3(1−ζ/22)(1+γ) ex(a1,F )(n/a1)k .
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So, together with (17), (18) and (19), we upper bound the number
c3,F (H) by

t2n
k−1

0 · 2h(k!4ξ)nk · 34ξnk · 3(1−ζ/22)(1+γ) ex(a1,F )(n/a1)k

(9)

≤ t2n
k−1

0 3h(k!4ξ)nk+4ξnk+(1−ζ/22)(1+γ)(1+ζ/88)πF (a1
k )(n/a1)k

(6),(10)

≤ 3ex(n,F )−ζπFnk/(k!88),

and this contradicts the assumptions of the theorem and finishes the proof,
because we have shown that Case 2 never occurs, and therefore always Case 1
applies.

We note that, in fact, we proved here a slightly stronger result which
reads as follows:

Theorem 12. Let k, s ∈ N, k ≥ 2 and r = 2 or 3. Let F be a k-uniform
hypergraph, such that πF > 0. Furthermore suppose that F is s-stable. Then,
for every ε > 0 there exist α > 0 and n0 ∈ N such that the following holds.

Among any s+ 1 many k-uniform hypergraphs H1, . . . ,Hs+1 on n ≥ n0

vertices that satisfy cr,F (Hi) ≥ rex(n,F )−αnk

for every i ∈ [s+ 1], there exist
two which are ε-close.

4. Useful notations for Theorem 3

Let H = (V,E) be a k-uniform hypergraph and let V1, . . . , Vk ⊆ V be k
mutually disjoint subsets of V . We denote by EH(V1, . . . , Vk) the set of all
hyperedges in H that intersect every subset Vi, i ∈ [k], in exactly one vertex,
and its cardinality is denoted by e(V1, . . . , Vk) := |EH(V1, . . . , Vk)|. For a t-
element set {v1, . . . , vt} of pairwise distinct vertices let LH(v1, . . . , vt) be the
set of all (k − t)-element subsets S ⊆ V , such that v1, . . . , vt together with
S form a hyperedge in the k-uniform hypergraph H. We occasionally call
LH(v1, . . . , vt) the (k − t)-uniform common link hypergraph (or graph).

By δ(H) we denote the minimum vertex degree of H, that is the mini-
mum possible size of the set of hyperedges in LH(v) taken over all vertices
v ∈ H.

By t
(k)
` (n) denote the number of hyperedges in the Turán hypergraph

T (k)
` (n), thus the obvious lower and upper bounds are:(

`

k

)
·
⌊n
`

⌋k
≤ t

(k)
` (n) ≤

(
`

k

)
·
⌈n
`

⌉k
, (20)
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and, moreover, we have the following lower bound on the minimum degree

δ(T (k)
` (n)):

δ(T (k)
` (n)) ≥

(
`− 1

k − 1

)
·
⌊n
`

⌋k−1
. (21)

For a given k-uniform hypergraph H, a partition V = V1∪̇ · · · ∪̇V` of its
vertex set into ` mutually disjoint classes, and any vertex, we distinguish
between three different types of hyperedges incident to this vertex. Namely,
for a vertex v ∈ Vj for some j ∈ [`] we refer to those hyperedges e ∈ E
incident to v and intersecting every class Vi, i ∈ [`], in at most one vertex
as crossing hyperedges. Furthermore, hyperedges incident to vertex v, that
intersect class Vj in exactly one further vertex different from v and else inter-
secting any other class Vi, i ∈ [`] \ {j}, in at most one vertex are referred to
as defective hyperedges. Finally, the remaining hyperedges incident to vertex
v are called bad hyperedges. More formally, crossing hyperedges incident to
vertex v form the following subset of the set E of hyperedges:

Ecross(v) := {e ∈ E : v ∈ e and ∀i ∈ [`] : |e ∩ Vi| ≤ 1},

while the set of defective hyperedges incident to vertex v ∈ Vj is

Edefect(v) := {e ∈ E : v ∈ e and |e ∩ Vj | = 2 and ∀i ∈ [`] \ j : |e ∩ Vi| ≤ 1 }.

The set of bad hyperedges incident to vertex v ∈ Vj is defined as

Ebad(v) = {e ∈ E : v ∈ e} \ (Ecross(v)∪̇Edefect(v)),

or, equivalently

Ebad(v) := {e ∈ E : v ∈ e and |e∩Vj | ≥ 3 or ∃i ∈ [`]\{j} with |e∩Vi| ≥ 2}.

Let P be a partition of the vertex set V with V = V1∪̇ · · · ∪̇V`, V1, . . . V` 6=
∅. Let τ : [`] −→ {0, 1, . . . , k} be a function such that

∑`
i=1 τ(i) = k. Then,

for a k-element subset (hyperedge) e of V we say that e is of type τ , if
|e∩Vi| = τ(i) for all i ∈ [`]. We thus may specify different types of hyperedges
via their types. Therefore, a crossing hyperedge has type τ , where exactly
k elements of [`] are mapped to 1 and the remaining (` − k) elements are
mapped to 0. Note that there are

(
k+`−1
`−1

)
different types of hyperedges with

respect to the partition V = V1∪̇ · · · ∪̇V`.
For a vertex v ∈ V and a type τ associated with v we write degτ (v) :=

|Eτ (v)|, where Eτ (v) denotes the set of all those hyperedges in H of type τ
which are incident to v.
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5. Generalized triangles T3 and T4.

Recall that Tk denotes the k-uniform generalized triangle. Here we prove
Theorem 3, namely, for k = 3 or k = 4, and r = 2 or r = 3, and n
sufficiently large it is

cr,Tk
(n) = rex(n,Tk).

However, due to the similarity of the arguments, we only give a proof in the
case of r = 3 colors and the 4-uniform generalized triangle T4. Recall that
for T4 and n sufficiently large, the extremal hypergraph on n vertices is the

balanced, complete, 4-partite, 4-uniform Turán hypergraph T (4)
4 (n).

Proof of Theorem 3. Here we only prove the case r = 3 and k = 4.
Let n0 be given by Theorem 2 (applied with δ as ε), we will specify δ

below in (27) and let nr,k = n3,4 ≥ n0 be sufficiently large.
The proof is similar to that in [21] and proceeds by contradiction. As-

sume that we are given a hypergraph H on n > n3,4 vertices with c3,T4
(H) ≥

3ex(n,T4)+m for some m ≥ 0. We show the following claim.

Claim 13. If c3,T4
(H) ≥ 3ex(n,T4)+m for some m ≥ 0 and H is not the

Turán hypergraph T (4)
4 (n), then there exists an induced subhypergraph H ′

on n′ vertices with n′ ≥ n− 2 and

c3,T4
(H ′) ≥ 3ex(n′,T4)+m+1. (22)

Using Claim 13 (notice that H ′ 6= T (4)
4 (n′)), inductively, we arrive at

some subhypergraph H0 of H on at most n0 vertices which admits at least

3ex(n0,T4)+(n0
4 )+1 monochromatic T4-free 3-colorings of the set of hyperedges,

which is impossible and yields the desired contradiction. This proves Theo-
rem 3, and thus, it is left to verify Claim 13.

Proof of Claim 13. Let H be a hypergraph on n vertices, H 6= T (4)
4 (n) and

let c3,T4
(H) ≥ 3ex(n,T4)+m with m ≥ 0. Clearly, this implies e(H) ≥ ex(n, T4).

Without loss of generality we may assume that the minimum degree of
H satisfies

δ(H) ≥ δ(T (4)
4 (n)) ≥

⌊n
4

⌋3
. (23)

Otherwise, let v be a vertex of minimum degree in H and consider the

subhypergraph H ′ := H−{v}. Since ex(n−1, T4) = ex(n, T4)−δ(T (4)
4 (n)) ≤

ex(n, T4)− (δ(H) + 1) we have

c3,T4
(H ′) ≥

c3,F (H)

3δ(H)
≥ 3ex(n,T4)−δ(H)+m ≥ 3ex(n−1,T4)+m+1, (24)
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which yields already (13). Consequently, from now on we may assume that

δ(H) ≥ δ(T (4)
4 (n)) ≥ bn/4c3.

Consider a partition P with V (H) = V1∪̇V2∪̇V3∪̇V4, which, among all

partitions of V (H) into four nonempty classes, maximizes eH(V1, V2, V3, V4),

and therefore minimizes e(H)− eH(V1, V2, V3, V4). Since the generalized tri-

angle T4 is 1-stable, as proved by Pikhurko [26], by Theorem 2 we know that

for our choice of δ > 0 we have

e(H)− eH(V1, V2, V3, V4) < δn4, (25)

which with (20) gives the upper bound e(H) ≤ dn/4e4 + δn4 on the number

of hyperedges in H. For 0 < δ ≤ 1/45 with e(H) ≥ ex(n, T4) ≥ bn/4c4,

hence eH(V1, V2, V3, V4) ≥ bn/4c4 − δn4, we obtain the following lower and

upper bounds on the sizes of the classes Vi for all i ∈ [4]:

n/4− 3δ1/4n ≤ |Vi| ≤ n/4 + 3δ1/4n. (26)

To see this, let |Vi| = n/4 + 3pn/4 for some i ∈ [4] and p ≥ 0. Then, as the

product of three positive numbers with given sum is maximal if all are the

same, we must have (neglecting the roundings)

(
n

4
+

3p

4
n

)
·
(n

4
− p

4
n
)3
≥
(n

4

)4
− δn4

⇐⇒ (1 + 3p) · (1− p)3 ≥ 1− 44δ

=⇒ 1− 3p4 ≥ 1− 44δ for p ≤ 3/4

=⇒ 4δ1/4 ≥ p,

hence |Vi| ≤ n/4 + 3δ1/4n. Moreover, since (1 + 3p)(1− p)3 is decreasing for

p ≥ 0, it is not possible that p ≥ 3/4, as

(1 + 3p) · (1− p)3 ≤ 13

4
·
(

1

4

)3

=
13

44
< 1− 44δ

for 0 < δ ≤ 1/45.

On the other hand, if |Vi| = n/4 − 3pn/4 for some i ∈ [4] and p ≥ 0,
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then as above we must have(
n

4
− 3p

4
n

)
·
(n

4
+
p

4
n
)3
≥
(n

4

)4
− δn4

⇐⇒ (1− 3p) · (1 + p)3 ≥ 1− 44δ

=⇒ 1− 3p4 ≥ 1− 44δ

=⇒ 4δ1/4 ≥ p,

hence |Vi| ≥ n/4− 3δ1/4n.
Now our argument splits into three cases depending on the link hyper-

graph of a vertex. First we assume that there exists a vertex v incident to at
least βn3 bad hyperedges with respect to the partition P of the vertex set
V (H) (Case 1). If this is not the case, then we assume that there exists a
vertex v, which is incident to at least βn3 defective hyperedges with respect
to the partition P (Case 2). Finally, if neither Case 1 nor Case 2 holds, we
deal with Case 3, where every vertex is adjacent to at most 2βn3 many defec-
tive or bad hyperedges. Thus, by assumption (23) on the minimum degree,
since we choose 0 < β � 1 we know that every vertex is adjacent mostly to
crossing hyperedges with respect to the partition P.

For that we set β, δ > 0 as follows:

β ≤ 7

11
·
(

1

32

)3

and h(β/12) ≤ 1

9 · 323

and δ ≤ min

{
(2β)4,

1

424

}
, (27)

where h(y) = −y ln y−(1−y) ln(1−y) for 0 < y < 1 is the entropy function.
However, it is sufficient to keep in mind that

0 < δ � β � 1. (28)

Case 1 (H satisfies ∃i ∈ [4] and ∃v ∈ Vi : |Ebad(v)| ≥ βn3). Assume without
loss of generality that i = 1. Let v ∈ V1 be a vertex such that |Ebad(v)| ≥
βn3. Note that there are 16 types of bad hyperedges incident to vertex
v. Thus, for at least one bad type τ we know |Eτ (v)| ≥ βn3/16. Therefore,
there exists another vertex w 6= v such that the common link graph LH(v, w)
contains at least βn2/16 edges, which are contained in some class Vj for some
j ∈ [4], that is, together with any edge from the link graph LH(v, w), the
vertices v and w form a hyperedge of type τ . Then we may find greedily
a matching M ⊆

(
Vj

2

)
and M ⊆ LH(v, w) of size at least βn/9. Note here,
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that an already constructed matching of size x can be extended as long as
2x(n/4 + 3δ1/4n) < βn2/16, hence we obtain a matching of size at least
βn/9 for 0 < δ ≤ (1/97)4.

Now consider an edge {x, y} from the matching M . For each i ∈ [4] \
{j} we may take each time one vertex vi from every class Vi \ {v, w}. Let
these vertices be v1, v2, v3. Then, for each such choice of v1, v2, v3 these
form together with vertex x or y a 4-element set. Moreover, adding the
existing hyperedge {x, y, v, w} ∈ E, we obtain a copy of T4, which is a
subhypergraph of H unless {x, v1, v2, v3} or {y, v1, v2, v3} is missing, i.e.,
is not a hyperedge in H. For δ ≤ (1/96)4 and n sufficiently large, there
are at least (n/4 − 3δ1/4n − 2)3 ≥ n3/100 possibilities to choose such a
triple (v1, v2, v3). Moreover, we may do this for any of the at least βn/9
edges in M , each time obtaining distinct pairs of 4-tuples {x, v1, v2, v3} and
{y, v1, v2, v3}, as each time we take another matching edge {x, y}. Since at
most δn4 hyperedges {x, v1, v2, v3} or {y, v1, v2, v3} are missing in H, we find
for 0 < δ ≤ β/9000, which holds by (27), at least

(n3/100)(βn/9)− δn4 ≥ βn4/1000 (29)

copies of T4, which are subhypergraphs in H.
Now, let F1 and F2 be such distinct subhypergraphs T4. Since M is a

matching, by our considerations from above we know that F1 and F2 either
are hyperedge-disjoint, or they share a single hyperedge that consists of the
vertices v, w and a certain edge e from the matching M . This hyperedge
corresponds to the “third” hyperedge in the definition of the generalized
triangle T4, i.e., this hyperedge contains the symmetric difference of the first
two. However, the point is that once the color of the hyperedge {v, w} ∪ e
is fixed, we can color the two remaining hyperedges in each subhypergraph
T4 found in the described way in at most 8 instead of 9 ways, to exclude a
monochromatic T4. Applying the same considerations to all matching edges
e ∈ M with the corresponding subhypergraphs T4, we obtain the following
possibilities for coloring the set of hyperedges of H:

• for every matching edge e ∈M the hyperedge e∪{v, w}may be colored
in at most 3 ways,
• by (29) there exist at least βn4/1000 pairwise distinct subhypergraphs
T4, and hence at least 2βn4/1000 = βn4/500 distinct hyperedges of H,
such that two hyperedges of a single subhypergraph T4 may be colored
in at most 8 instead of 9 ways,
• finally, the set of remaining hyperedges may be colored arbitrarily by

at most 3 colors.
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This way, for 0 < δ ≤ β/104, which holds by (27), and n sufficiently
large, with (25) we bound the number of 3-colorings of the set of hyperedges
of H from above by

3ex(n,T4)+δn4−βn4/500 · 8βn4/1000 � 3ex(n,T4), (30)

which contradicts the assumption c3,T4
(H) ≥ 3ex(n,T4).

Therefore, we have shown that Case 1 never holds, which we assume in
the following.

Case 2 (H satisfies ∃i ∈ [4] and ∃v ∈ Vi : |Edefect(v)| ≥ βn3). As we are
not in Case 1, we know that ∀v ∈ V : |Ebad(v)| < βn3.

Case 2 asserts a vertex v ∈ V such that |Edefect(v)| ≥ βn3 with respect
to the partition P with V (H) = V1∪̇V2∪̇V3∪̇V4. There are exactly 3 types of
defective hyperedges incident to vertex v. Therefore, there exists a defective
type τ such that |Eτ (v)| ≥ βn3/3. Without loss of generality we ssume
that v ∈ V1 and τ = (2, 1, 1, 0). Recall that this means, that any defective
hyperedge of type τ incident to vertex v intersects class V1 in another vertex
distinct from v, and intersects also classes V2 and V3, but does not intersect
class V4, as τ(4) = 0. By the minimality of e(H) − eH(V1, V2, V3, V4), we
know that

|Ecross(v)| ≥ βn3/3, (31)

otherwise, moving vertex v to class V4 would increase the number of crossing
hyperedges, yielding at least βn3/3 crossing hyperedges.

We also note that out of the 20 possible types τ of hyperedges incident
to vertex v, we are left to consider only four, namely, the 3 defective and
one crossing type of hyperedges. The amount of the other 16 types is less
than βn3.

We distinguish between two subsets of the set C of “allowed” colorings of
the set of hyperedges of H. Let C1 consist of those hyperedge-colorings such
that there exist two distinct types τ1 and τ2, either defective or crossing, with
the following property: there exist subsets Ei(v) ⊂ Eτi(v) with |Ei(v)| ≥
βn3/12 for i = 1, 2, and both, E1(v) and E2(v), are monochromatic in the
same color. Moreover, let C2 := C \ C1 be the set of remaining colorings.

We first show that |C1| ≤ 3ex(n,T4)−1, and then we concentrate on C2.
Consider a coloring from C1. By assumption, we always have at least

two distinct (defective or crossing) types τ1 and τ2 with |Eτi(v)| ≥ βn3/3
for i = 1, 2. Let us assume that τ1 = τ is the defective type described in
the beginning, and let τ2 be another type. Here we give the arguments only
when τ2 is the crossing type to simplify the presentation. The other cases
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can be easily treated in a similar way, which will be sketched at the end of
this case.

Let Ei(v) ⊂ Eτi(v) with |Ei(v)| ≥ βn3/12, i = 1, 2, be such that all
hyperedges in E1(v)∪̇E2(v) are colored by the same color, say green. Each

set Ei(v), i = 1, 2, can be chosen in at most
∑n3

i=βn3/12

(
n3

i

)
≤ 2n

3

ways.

With |E1(v)| ≥ βn3/12, and by (26) for 0 < δ ≤ (1/96)4 there exists a
pair (u,w) ∈ V2 × V3 such that v, u, w are contained in at least βn green
distinct hyperedges intersecting class V1 in another vertex different from v.
We set X := {x : {x, u, v, w} ∈ E2(v)}. Furthermore, we know that |E2(v)| ≥
βn3/12, and hence |E2(v) ∩ E(V1, V2 \ {u}, V3 \ {w}, V4)| ≥ βn3/13 for n
sufficiently large. Thus, there are at least βn3/13 green crossing hyperedges
incident to vertex v and not containing the vertices u or w. Let f be such
a crossing hyperedge and fix one of the at least βn vertices x ∈ X. Then
the 4-element set g := f \ {v}∪̇{x} together with the hyperedges f and
{x, v, u, w} forms a subhypergraph T4 unless g is missing as a hyperedge.
For 0 < δ ≤ β2/200, there are at least

(βn3/13)βn− δn4 = β2n4/13− δn4 ≥ β2n4/14 (32)

many possibilities to choose such a hyperedge g ∈ E. Moreover, g cannot
be colored green, thus we only have two remaining colors that can be used.
This way, for n sufficiently large, we estimate the cardinality of the set C1

of colorings for 0 < δ < β2/40 as follows:

|C1| ≤ 3 ·
(

4

2

)
· 22n3 · 3ex(n,T4)+δn4−β2n4/14 · 2β2n4/14

≤ 18 · 22n3 · 3ex(n,T4)+δn4−β2n4/14 · 2β2n4/14

≤ 3ex(n,T4)−1, (33)

taking into account
(

4
2

)
possibilities to choose the types τ1 and τ2, and 3

possibilities to choose the color of the hyperedges in the sets E1(v) and
E2(v), where we used (25).

We now consider the colorings in C2. The most important observation is
that, whenever we consider two different (defective or crossing) types τ1 and
τ2 of hyperedges incident to vertex v, less than βn3/12 of the hyperedges
from Eτi(v) can be colored by the same color for each i ∈ [2]. On the other
hand, there are at least two (defective or crossing) types τ1 and τ2 for which
|Eτi(v)| ≥ βn3/3. Thus, for each of these types τi, i = 1, 2, there is a color
ci, which occurs at least βn3/12 often, where c1 6= c2. But then for each
other (defective or crossing) type τ3 or τ4 each color c1 and c2 must occur



Hypergraphs with many restricted edge colorings 27

less than βn3/12 often. Moreover, the third color c, c 6= c1, c2, may occur at
least βn3/12 in at most one of the types. If this happens for type τ1 or τ2,
then taking into account the at most βn3 bad hyperedges incident to vertex
v, there are at most(

3

2

)
· 4 · 3 · 3βn3 · 2(n/4+3δ1/4n)3 ·

(
n3

βn3/12

)9

(34)

colorings of the set of hyperedges of all types incident to vertex v, where we
used

∑
0≤i<βn3/12 ≤

(
n3

βn3/12

)
.

Moreover, if color c occurs at least βn3/12 often in type either τ3 or τ4,
then there are at most (

4

3

)
· 3! · 3βn3 ·

(
n3

βn3/12

)9

(35)

such colorings of all types of hyperedges incident to vertex v. Note that we
first “choose” three types where some colors are present at least βn3/12
times and then we assign three colors to these type. Similarly it was argued
in (34).

Thus, for n sufficiently large by (34) and (35) and our choice of the
parameters β, δ > 0 in (27), we can estimate by using 211/7 < 3 the number
of ways the set of hyperedges incident to vertex v can be colored by at most

37 · 3βn3 · 2(n/4+3δ1/4n)3 ·
(

n3

βn3/12

)9

≤ 37 · 3βn3 · 2(n/4+3δ1/4n)3 · 29h(β/12)n3

≤ 37 · 3βn3 · 2(9/32)3n3 · 29h(β/12)n3

≤ 37 · 3βn3+7/11(9/32)3n3 · 3(63/11)h(β/12)n3

≤ 37 · 3(7/11)((93+2)/323)n3

≤ 3δ(T
(4)
4 (n))−1, (36)

since 7
11(93+2) < 83. Here we used the inequality

(
x
αx

)
≤ 2h(α)x, where h(y) is

the entropy function. A simple averaging argument shows, that by deleting
the vertex v and all hyperedges incident to v we obtain the hypergraph
H ′ = H − {v} with

c3,T4
(H ′) ≥ 3ex(n,T4)+m

3δ(T
(4)
4 (n))−1

= 3ex(n−1,T4)+m+1,
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which yields (22) and concludes Case 2 for τ1 and τ2 as defined above.
Now assume that both types τ1 and τ2 are defective. For convenience,

let without loss of generality τ1 = (2, 1, 1, 0) and τ2 = (2, 0, 1, 1). Similarly,
we define the sets Ei(v) ⊂ Eτi(v), i = 1, 2, of hyperedges of the same color,
but now we fix a pair (u,w) ∈ V1 × V3 such that v, u, w are contained in at
least βn green distinct hyperedges intersecting class V4. Again, let x ∈ V4 be
such a vertex that forms a green hyperedge {v, u, w, x}, then it is not hard
to see that f ∈ E1(v) together with f \ {v} ∪ {x} and {v, u, w, x} form a
potential copy of T4. The rest of the argument remains valid.

Case 3 (H satisfies ∀i ∈ [4] and ∀v ∈ Vi : |Ebad(v)∪̇Edefect(v)| ≤ 2βn3).
Here we are left with the last case, when Cases 1 and 2 do not hold, hence
most of the hyperedges incident to any vertex v are crossing. By assumption,

H 6= T (4)
4 (n) and c3,T4

(H) ≥ 3ex(n,T4), hence there exists at least one non-
crossing hyperedge e with respect to the minimal partition P with V (H) =
V1∪̇V2∪̇V3∪̇V4. Let u, v be two vertices that belong to this hyperedge e and
are contained in the same class. Recalling the minimum degree condition (23)
for H, we infer with (26) that

|Lcross(u) ∩ Lcross(v)| ≥ 2bn/4c3 − 4βn3 − (n/4 + 3δ1/4n)3, (37)

where for a vertex w ∈ V it is Lcross(w) = {e \ {w} : e ∈ Ecross(w)}.
Substracting from the right hand side of (37) the term n2, which is an

upper bound on the number of triples in Lcross(u) ∩ Lcross(v) that intersect
the hyperedge e in a vertex different from u and v, this way, for n sufficiently
large, we have identified at least

2bn/4c3 − 4βn3 − (n/4 + 3δ1/4n)3 − n2

subhypergraphs T4, each two distinct of these sharing only the hyperedge e.
We have for 0 < δ ≤ (2β)4 and δ ≤ (1/12)4 and n sufficiently large:

2bn/4c3 − 4βn3 − (n/4 + 3δ1/4n)3 − n2

≥ 2(n/4)3 − 4βn3 − (n/4 + 3δ1/4n)3 − 3n2

≥ 2(n/4)3 − 5βn3 − (n/4 + 3δ1/4n)3

= (n/4)3 − 5βn3 − (9/16)δ1/4n3 − (27/4)δ1/2n3 − 27δ3/4n3

≥ (n/4)3 − 8βn3. (38)

Given the color of the hyperedge e, the two other hyperedges of a fixed
copy of T4 may be colored in at most 8 instead of 9 ways. Therefore, for
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n sufficiently large, by our choice (27) of β, δ > 0, with (38) and, using

δ ≤ 1/424 and β ≤ 1/(12 · 46), we may estimate the number of ways of

coloring all hyperedges incident to vertex u or v from above by

3 · 34βn3 · 8(n/4)3−8βn3 · 32[(n/4+3δ1/4n)3−(n/4)3+8βn3]

= 3 · 320βn3 · 8(n/4)3−8βn3 · 32[(n/4+3δ1/4n)3−(n/4)3]

= 3 · 320βn3 · 8(n/4)3−8βn3 · 39δ1/4n3/8+27δ1/2n3/2+54δ3/4n3

≤ 3 · 312βn3+3δ1/4n3 · 8(n/4)3

≤ 3δ(T
(4)
4 (n))+δ(T (4)

4 (n−1))−1. (39)

Again, if we delete the vertices u and v, we obtain the hypergraph H ′ =

H − {u, v}, and, using a simple averaging argument, with (39) we obtain

c3,T4
(H ′) ≥ 3ex(n−2,T4)+m+1.

This finishes the proof of Claim 13 and hence of Theorem 3.

6. The Case of r ≥ 4 Colors

In this section we prove lower bounds cr,T3
(n) � rex(n,T3) and cr,T4

(n) �
rex(n,T4) for r ≥ 4.

First we consider the case of the 3-uniform generalized triangle T3. To

prove a lower bound on cr,T3
(n) we give a lower bound on cr,K3

(n), i.e., for

the case of graphs, where we forbid a monochromatic triangle [1]. Namely,

consider the following graphG = (V,E) with |V | = n vertices, where without

loss of generality n is divisibe by 4. Let V = V1∪̇V2∪̇V3∪̇V4 be a partition

of the vertex set V with |Vi| = n/4, i ∈ [4], into equally sized classes. The

edge set E of G consists of all edges e = {v, w} with v ∈ Vi and w ∈ Vj ,
where i 6= j. Given the set [r], r ≥ 4, of colors, we color the set of all edges

between classes V1 and V2, or between V3 and V4 by the colors 1, . . . , r − 1.

For the set of all edges between the classes V1 and V4, or V2 and V3 we use

the colors 1, . . . , r − 2, r. Moreover, the set of all edges between the classes

V1 and V3, or V2 and V4 are colored arbitrarily by the colors r − 1 and r.

Here every coloring gives rise to a monochromatic bipartite graph, so no

monochromatic triangle is created by the colorings described above.

The number of these colorings of the edge set of the graph G for r ≥ 4
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is precisely

cr,K3
(n) ≥ cr,K3

(G) = (r − 1)4(n

4 )
2

· 22(n

4 )
2

=
(

(r − 1) ·
√

2
)n2

4

(40)

� r
n2

4 ≥ rex(n,K3).

The lower bound (40) may be improved by using another distribution of the
set [r] of colors, namely for r divisible by 3 say, we color the set of all edges
between the classes V1 and V2, or V3 and V4 by the colors 1, . . . , 2r/3. For the
set of all edges between the classes V1 and V4, or V2 and V3 we use the colors
1, . . . , r/3, 2r/3 + 1, . . . , r. Moreover, the set of all edges between the classes
V1 and V3, or V2 and V4 are colored arbitrarily by the colors r/3 + 1, . . . , r,
which gives

cr,K3
(n) ≥

((
2r

3

) 3

2

)n2

4

� rex(n,K3) (41)

colorings.
Now we consider the 3-uniform generalized triangle T3 and the 3-uniform,

2-partite hypergraph H3 = (V,E) on |V | = n vertices, which is defined as
follows. Let V = V0∪̇V ′ be a partition with |V0| = n/3 and |V ′| = 2n/3. All
hyperedges e ∈ E contain exactly one vertex from V0 and two vertices from
V ′. On the set V ′ we place the graph G from above with m = 2n/3 vertices.
For any hyperedge e = {v0, v, w} ∈ E with e ∩ V0 = {v0} its link {v, w} has
to be an edge in the graph G. The hyperedge e = {v0, v, w} may be colored
by some color by which the edge {v, w} may be colored.

Using (40), this yields exactly

cr,T3
(n) ≥ cr,T3

(H3) =

((
(r − 1) ·

√
2
) (2n/3)2

4

)n

3

=
(

(r − 1) ·
√

2
)n3

27

� r
n3

27 ≥ rex(n,T3) (42)

colorings for r ≥ 4 and n sufficiently large. Of course, (42) may be improved
by using (41).

It remains to show that the hypergraph H3 does not contain a general-
ized triangle T3. If {a, b, c}, {b, c, d} and {a, d, e} is a subhypergraph T3 in
H3, then one of the two vertices b or c, and e must be contained in class V0,
say b, e ∈ V0. But then the union of the links of the vertices b and d forms
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a triangle in the graph G. However, due to the construction of the color-
ings, there is no monochromatic triangle T2 in G, hence no monochromatic
triangle T3.

Next we consider the 4-uniform generalized triangle T4 and the 4-uni-
form, 2-partite hypergraph H4 = (V,E) on |V | = n vertices, which is defined
as follows. Let V = V0∪̇V ′ be a partition with |V0| = n/4 and |V ′| = 3n/4.
All hyperedges e ∈ E contain exactly one vertex from V0 and three vertices
from V ′. On the set V ′ we place the hypergraph H3 from above with m =
3n/4 vertices. For any hyperedge e = {v0, v, w, x} ∈ E with e∩V0 = {v0} its
link {v, w, x} has to be a hyperedge in the hypergraph H3. The hyperedge
e = {v0, v, w, x} may be colored by some color by which the hyperedge
{v, w, x} in H3 may be colored.

With (42), this gives

cr,T4
(n) ≥ cr,T4

(H4) =

((
(r − 1) ·

√
2
) (3n/4)3

27

)n

4

=
(

(r − 1) ·
√

2
) n4

256

� r
n4

256 ≥ rex(n,T4)

colorings for r ≥ 4 and n sufficiently large.
It remains to show that the hypergraphH4 does not contain a generalized

triangle T4. If {a, b, c, d}, {e, b, c, d} and {a, e, f, g} is a subhypergraph T4 in
H4, then one of the three vertices b, c or d, and f or g must be contained in
class V0, say b, f ∈ V0. But then the union of the links of b and f forms a
generalized triangle in the hypergraph H3. However, due to the construction
of the colorings, there is no monochromatic generalized triangle T3, hence
no monochromatic generalized triangle T4.

7. Concluding Remarks

There is a recent result of Balogh and Mubayi [4], who prove that almost all
T3-free 3-uniform hypergraphs are tripartite. The first step in their approach
(and in many other approaches to derive “good” bounds on |Forb(n, F )|,
where F is some uniform hypergraph) is to apply an appropriate form of
regularity lemma to show that almost all T3-free hypergraphs are nearly tri-
partite, i.e., ε-close to some tripartite 3-uniform hypergraph. It is conceiv-
able, that we can modify the proof of Theorem 2 to yield a similar general
result for F -free hypergraphs which admit some appropriate s-stability def-
inition. In particular, we are quite confident that we can adjust the proof
of Theorem 2 to show that almost all T4-free 4-uniform hypergraphs are
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ε-close to being 4-partite. It is also conceivable, that then, using some “self-
improvement” type of the argument, see e.g. [2, 24, 4], one should be able
to show that almost all T4-free hypergraphs are in fact 4-partite.

We also would like to remark that, given Theorem 2, one needs just to
look out for those hypergraphs that have been proven to be, say 1-stable
and that, say, have unique extremal hypergraphs. There one might be able
to even prove an exact result similar to that of Theorem 3. In a forthcoming
paper of the first two authors [20], other classes of hypergraphs are studied,
and some exact results similar to that of Theorem 3 are proven there.
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