Convex Hulls of Point-Sets and Non-Uniform Hypergraphs

Hanno Lefmann
Fakultät für Informatik, TU Chemnitz, D-09107 Chemnitz, Germany
lefmann@informatik.tu-chemnitz.de

Abstract

For fixed integers $k \geq 3$ and hypergraphs \mathcal{G} on N vertices, which contain edges of cardinalities at most k, and are uncrowded, i.e., do not contain cycles of lengths 2,3 , or 4 , and with average degree for the i-element edges bounded by $O\left(T^{i-1} \cdot(\ln T)^{(k-i) /(k-1)}\right), i=3, \ldots, k$, for some number $T \geq 1$, we show that the independence number $\alpha(\mathcal{G})$ satisfies $\alpha(\mathcal{G})=\Omega\left((N / T) \cdot(\ln T)^{1 /(k-1)}\right)$. Moreover, an independent set I of size $|I|=\Omega\left((N / T) \cdot(\ln T)^{1 /(k-1)}\right)$ can be found deterministically in polynomial time. This extends a result of Ajtai, Komlós, Pintz, Spencer and Szemerédi for uncrwoded uniform hypergraphs. We apply this result to a variant of Heilbronn's problem on the minimum area of the convex hull of small sets of points among n points in the unit square $[0,1]^{2}$.

1 Introduction

An independent set I in a graph or hypergraph $\mathcal{G}=(V, \mathcal{E})$ with vertex-set V and edge-set \mathcal{E} is a subset of the vertex-set V, which does not contain any edges, i.e., $E \nsubseteq I$ for each edge $E \in \mathcal{E}$. The largest size of an independent set in \mathcal{G} is the independence number $\alpha(\mathcal{G})$. For graphs $G=(V, E)$ with average degree $t:=2 \cdot|E| /|V| \geq 1$ Turán's theorem gives $\alpha(G) \geq|V| /(2 \cdot t)$. Turán's theorem for hypergraphs says, see [20]: If $\mathcal{G}=\left(V, \mathcal{E}_{k}\right)$ is a k-uniform hypergraph, i.e., all edges have cardinality k, with average degree $t^{k-1}:=k \cdot\left|\mathcal{E}_{k}\right| /|V| \geq 1$, then $\alpha(\mathcal{G}) \geq((k-1) / k) \cdot(|V| / t)$. An independent set $I \subseteq V$ in \mathcal{G} achieving this lower bound can be found deterministically in time $O\left(|V|+\left|\mathcal{E}_{k}\right|\right)$. For uncrowded k uniform hypergraphs $\mathcal{G}=\left(V, \mathcal{E}_{k}\right)$, i.e., \mathcal{G} contains no cycles of length 2,3 , or 4 , Ajtai, Komlós, Pintz, Spencer and Szemerédi [1] improved this lower bound by a factor of $\Theta\left((\log t)^{1 /(k-1)}\right)$. Several applications of this result have been found, see [5]. Here we extend this result from [1] to non-uniform uncrowded hypergraphs:
Theorem 1. Let $k \geq 3$ be a fixed integer. Let $\mathcal{G}=\left(V, \mathcal{E}_{3} \cup \cdots \cup \mathcal{E}_{k}\right)$ be an uncrowded hypergraph on $|V|=N$ vertices, where \mathcal{E}_{i} is the set of all i-element edges in \mathcal{G}, such that the average degrees $t_{i}^{i-1}:=i \cdot\left|\mathcal{E}_{i}\right| /|V|$ for the i-element edges satisfy $t_{i}^{i-1} \leq c_{i} \cdot T^{i-1} \cdot(\ln T)^{(k-i) /(k-1)}$ for some number $T \geq 1$ with constants c_{i}, where $0<c_{i}<1 / 8 \cdot\binom{k-1}{i-1} /\left(10^{(3(k-i)) /(k-1)} \cdot k^{2}\right), i=3, \ldots, k$. Then, for some constant $C_{k}>0$ the independence number $\alpha(\mathcal{G})$ satisfies

$$
\begin{equation*}
\alpha(\mathcal{G}) \geq C_{k} \cdot(N / T) \cdot(\ln T)^{1 /(k-1)} \tag{1}
\end{equation*}
$$

An independent set $I \subseteq V$ with $|I|=\Omega\left((N / T) \cdot(\ln T)^{1 /(k-1)}\right)$ can be found deterministically in time $o\left(N \cdot T^{4 k-4}\right)$.

The corresponding result also holds for linear hypergraphs \mathcal{G}, which have the property that they do not contain cycles of length 2, i.e., each two distinct edges have at most one vertex in common, provided that \mathcal{G} does not contain any 2 -element edges. Theorem 1 is best possible up to a constant factor for a certain range $k<T<N$, as can be seen by considering random non-uniform hypergraphs $\mathcal{G}=\left(V, \mathcal{E}_{3} \cup \cdots \cup \mathcal{E}_{k}\right)$ on $|V|=N$ vertices.
As an application we consider a variant of Heilbronn's problem for the convex hull of sets of points in the unit square $[0,1]^{2}$. The original problem of Heilbronn asks for a distribution of n points in $[0,1]^{2}$ such that the minimum area of a triangle determined by three of these n points achieves its largest value. For this problem, the points $1 / n \cdot\left(i \bmod n, i^{2} \bmod n\right), i=0, \ldots, n-1$, where n is a prime, give the lower $\Omega\left(1 / n^{2}\right)$ on the minimum area of a triangle. This lower bound has been improved in [12] by a factor $\Omega(\log n)$, see [6] for a deterministic polynomial time algorithm. Upper bounds on the minimum area of a triangle among n points in $[0,1]^{2}$ were given by Roth [15-18] and Schmidt [19] and, the currently best upper bound $O\left(2^{c \sqrt{\log n}} / n^{8 / 7}\right), c>0$ a constant, is due to Komlós, Pintz and Szemerédi [11].
Variants of Heilbronn's triangle problem in higher dimensions were investigated in $[2-4,7,8,13]$. A generalization of Heilbronn's triangle problem to k points, see Schmidt [19], asks, given an integer $k \geq 3$, for the supremum $\Delta_{k}(n)$ over all distributions of n points in $[0,1]^{2}$ of the minimum area of the convex hull determined by some k of n points. In [6] it has been shown that $\Delta_{k}(n)=\Omega\left(1 / n^{(k-1) /(k-2)}\right)$ for fixed $k \geq 3$, and any integers $n \geq k$; for $k=4$ this was proved in [19]. This has been improved in [14] to $\Delta_{k}(n)=\Omega\left((\log n)^{1 /(k-1)} / / n^{(k-1) /(k-2)}\right)$ for fixed $k \geq 3$. Currently, for $k \geq 4$ only the upper bound $\Delta_{k}(n)=O(1 / n)$ is known. Here we show for fixed integers $k \geq 3$, that one can achieve these lower bounds simultaneously for $j=3, \ldots, k$ by a single configuration of n points in $[0,1]^{2}$.

Theorem 2. Let $k \geq 3$ be a fixed integer. For integers $n \geq k$ there exists a configuration of n points in $[0,1]^{2}$, such that, simultaneously for $j=3, \ldots, k$, the area of the convex hull of any j of the n points is $\Omega\left((\log n)^{1 /(j-1)} / n^{(j-1) /(j-2)}\right)$.

By considering the standard $L \times L$-grid for a suitable integer $L \geq n$ one can also give a polynomial time algorithm which achieves the lower bounds from Theorem 2 on the areas of the convex hulls. (Details are omitted.)

2 Uncrowded and Linear Hypergraphs

Definition 1. A hypergraph is a pair $\mathcal{G}=(V, \mathcal{E})$ with vertex-set V and edgeset \mathcal{E}, where $E \subseteq V$ for each edge $E \in \mathcal{E}$. For a hypergraph \mathcal{G} the notation $\mathcal{G}=\left(V, \mathcal{E}_{2} \cup \cdots \cup \mathcal{E}_{k}\right)$ indicates that \mathcal{E}_{i} is the set of all i-element edges in \mathcal{G}, $i=2, \ldots, k$. For a vertex $v \in V$ let $d_{i}(v)$ denote the number of i-element edges $E \in \mathcal{E}_{i}$ which contain v, i.e., $d_{i}(v)$ is the degree of v for the i-element edges in \mathcal{G}. The independence number $\alpha(\mathcal{G})$ of $\mathcal{G}=(V, \mathcal{E})$ is the largest size of a subset $I \subseteq V$ which contains no edges from \mathcal{E}. A j-cycle in a hypergraph $\mathcal{G}=(V, \mathcal{E})$ is a sequence E_{1}, \ldots, E_{j} of distinct edges from \mathcal{E}, such that $E_{i} \cap E_{i+1} \neq \emptyset$,
$i=1, \ldots, j-1$, and $E_{j} \cap E_{1} \neq \emptyset$, and a sequence v_{1}, \ldots, v_{j} of distinct vertices with $v_{i+1} \in E_{i} \cap E_{i+1}, i=1, \ldots, j-1$, and $v_{1} \in E_{1} \cap E_{j}$. An unordered pair $\left\{E, E^{\prime}\right\}$ of distinct edges $E, E^{\prime} \in \mathcal{E}$ with $\left|E \cap E^{\prime}\right| \geq 2$ is a 2-cycle. A 2-cycle $\left\{E, E^{\prime}\right\}$ in $\mathcal{G}=\left(V, \mathcal{E}_{2} \cup \cdots \cup \mathcal{E}_{k}\right)$ with $E \in \mathcal{E}_{i}$ and $E^{\prime} \in \mathcal{E}_{j}$ is called $(2 ;(g, i, j))$ cycle if and only if $\left|E \cap E^{\prime}\right|=g, 2 \leq g \leq i \leq j$ but $g<j$. The hypergraph \mathcal{G} is called linear if it does not contain any 2 -cycles, and \mathcal{G} is called uncrowded if it does not contain any $2-, 3$-, or 4 -cycles.

For uncrowded k-uniform hypergraphs with average degree t^{k-1} the Turán bound on the independence number has been improved in [1] by a factor $\Theta\left((\log t)^{1 /(k-1)}\right)$, see [5] and [10] for a deterministic polynomial time algorithm.

Theorem 3. Let $k \geq 3$ be a fixed integer. Let $\mathcal{G}=\left(V, \mathcal{E}_{k}\right)$ be an uncrowded k-uniform hypergraph on $|V|=N$ vertices and with average degree $t^{k-1}:=$ $k \cdot\left|\mathcal{E}_{k}\right| / N$. Then, for some constant $C_{k}>0$, the independence number $\alpha(\mathcal{G})$ satisfies $\alpha(\mathcal{G}) \geq C_{k} \cdot(N / t) \cdot(\log t)^{1 /(k-1)}$.

To prove Theorem 3, in [1] the following central lemma has been used to construct iteratively a large independent set in a hypergraph, which we use in our arguments too; see [10] for a deterministic polynomial time algorithm.

Lemma 1. Let T and N be large positive integers. Let s be an integer with $0 \leq s \leq(\ln T) / 10^{2}$. Let $w_{s}:=(s+1)^{1 /(k-1)}-s^{1 /(k-1)}$ and $\varepsilon:=10^{-6} / \ln T$. Let $N /\left(2 \cdot e^{s}\right) \leq n \leq N / e^{s}$ and $T /\left(2 \cdot e^{s}\right) \leq t \leq T / e^{s}$.
Let $\mathcal{G}=\left(V, \mathcal{E}_{2} \cup \cdots \cup \mathcal{E}_{k}\right)$ be an uncrowded hypergraph with $|V|=n$ vertices, where for each vertex $v \in V$ the degrees $d_{i}(v)$ for the i-element edges satisfy $d_{i}(v) \leq\binom{ k-1}{i-1} \cdot s^{(k-i) /(k-1)} \cdot t^{i-1}, i=2, \ldots, k$.
Then, one can find in time $O\left(n \cdot t^{4(k-1)}\right)$ an independent set $I \subseteq V$ in \mathcal{G}, a subset $V^{*} \subset V$ with $V^{*} \cap I=\emptyset$, and a hypergraph $\mathcal{G}^{*}=\left(V^{*}, \mathcal{E}_{2}^{*} \cup \cdots \cup \mathcal{E}_{k}^{*}\right)$ such that
(i) $\alpha(\mathcal{G}) \geq|I|+\alpha\left(\mathcal{G}^{*}\right)$ and (ii) $|I| \geq 0.99 \cdot \frac{n \cdot w_{s}}{e \cdot t} \quad$ and \quad (iii) $\left|V^{*}\right| \geq \frac{n \cdot(1-\varepsilon)}{e}$
(iv) $d_{i}^{*}(v) \leq\binom{ k-1}{i-1} \cdot(s+1)^{(k-i) /(k-1)} \cdot(t \cdot(1+\varepsilon) / e)^{i-1}$ for each vertex $v \in V^{*}$, where $d_{i}^{*}(v)$ denotes the degree of v for the i-element edges in $\mathcal{G}^{*}, i=2, \ldots, k$.

Lemma 2. Let $k \geq 3$ be a fixed integer. Let $\mathcal{G}=\left(V, \mathcal{E}_{2} \cup \cdots \cup \mathcal{E}_{k}\right)$ be a hypergraph with $|V|=N$ and $N \geq 65 \cdot(\ln k)^{1000 / 998}$, where the average degrees $t_{i}^{i-1}:=i \cdot\left|\mathcal{E}_{i}\right| / N$ for the i-element edges in \mathcal{E}_{i} fulfill $t_{i}^{i-1} \leq c_{i} \cdot T^{i-1}$. $(\ln T)^{(k-i) /(k-1)}$ for some number $T \geq 1$ and for some constants $c_{i}>0$ with $c_{i}<1 / 8 \cdot\binom{k-1}{i-1} /\left(10^{(3(k-i)) /(k-1)} \cdot k^{2}\right), i=2, \ldots, k$.
Then, for $s:=10^{-3} \cdot \ln T$, one can find in time $O\left(|V|+\sum_{i=2}^{k}\left|\mathcal{E}_{i}\right|\right)$ an induced subhypergraph $\mathcal{G}^{*}=\left(V^{*}, \mathcal{E}_{2}^{*} \cup \cdots \cup \mathcal{E}_{k}^{*}\right)$ on $\left|V^{*}\right|=n$ vertices with $\mathcal{E}_{i}^{*}:=\mathcal{E}_{i} \cap\left[V^{*}\right]^{i}$, $i=2, \ldots, k$, such that $(3 / 4) \cdot N / e^{s} \leq n \leq N / e^{s}$ and for each vertex $v \in V^{*}$ the degrees $d_{i}^{*}(v)$ for the i-element edges in \mathcal{G}^{*} satisfy

$$
\begin{equation*}
d_{i}^{*}(v) \leq\binom{ k-1}{i-1} \cdot s^{\frac{k-i}{k-1}} \cdot\left(T / e^{s}\right)^{i-1} \tag{2}
\end{equation*}
$$

Proof. We pick vertices with probability $p:=1 / e^{s}$ uniformly at random and independently of each other from the vertex-set V in \mathcal{G}. Let V^{*} be the random set of chosen vertices of expected size $E\left[\left|V^{*}\right|\right]=p \cdot N$. With $s=10^{-3} \cdot \ln T$ and $T=O(N)$, we have by Chernoff's inequality for $N \geq 65 \cdot(\ln k)^{1000 / 998}$:

$$
\begin{equation*}
\operatorname{Prob}\left(E\left[\left|V^{*}\right|\right]-\left|V^{*}\right|>N /\left(8 \cdot e^{s}\right)\right) \leq e^{-\frac{N^{2} /\left(64 \cdot e^{2 s}\right)}{N}}=e^{-N /\left(64 \cdot e^{2 s}\right)}<1 / k \tag{3}
\end{equation*}
$$

Let $\mathcal{E}_{i}^{*}:=\mathcal{E}_{i} \cap\left[V^{*}\right]^{i}, i=2, \ldots, k$, and let $\mathcal{G}^{*}=\left(V^{*}, \mathcal{E}_{2}^{*} \cup \cdots \cup \mathcal{E}_{k}^{*}\right)$ be the on V^{*} induced random subhypergraph of \mathcal{G}. For $i=2, \ldots, k$, we have for the expected numbers $E\left[\left|\mathcal{E}_{i}^{*}\right|\right]=p^{i} \cdot\left|\mathcal{E}_{i}\right|=p^{i} \cdot N \cdot t_{i}^{i-1} / i \leq p^{i} \cdot c_{i} \cdot T^{i-1} \cdot(\ln T)^{(k-i) /(k-1)} \cdot N / i$. By Markov's inequality it is $\operatorname{Prob}\left(\left|\mathcal{E}_{i}^{*}\right|>k \cdot E\left[\left|\mathcal{E}_{i}^{*}\right|\right]\right) \leq 1 / k$, hence with (3) there exists a subhypergraph $\mathcal{G}^{*}=\left(V^{*}, \mathcal{E}_{2}^{*} \cup \cdots \cup \mathcal{E}_{k}^{*}\right)$ of \mathcal{G} such that for $i=2, \ldots, k$:

$$
\left|V^{*}\right| \geq(7 / 8) \cdot N / e^{s} \quad \text { and } \quad\left|\mathcal{E}_{i}^{*}\right| \leq k \cdot p^{i} \cdot c_{i} \cdot T^{i-1} \cdot(\ln T)^{(k-i) /(k-1)} \cdot N / i .(4)
$$

Let n_{i} be the number of vertices $v \in V^{*}$ with degree $d_{i}^{*}(v) \geq 8 \cdot e^{s} \cdot k^{2} \cdot p^{i}$. $c_{i} \cdot T^{i-1} \cdot(\ln T)^{(k-i) /(k-1)}$ for the i-element-edges in $\mathcal{G}^{*}, i=2, \ldots, k$. By (4) we infer $n_{i} \leq N /\left(8 \cdot k \cdot e^{s}\right) \leq\left|V^{*}\right| /(7 \cdot k)$, thus $\sum_{i=2}^{k} n_{i}<\left|V^{*}\right| / 7$. We delete these vertices from V^{*} and obtain a subset $V^{* *} \subseteq V^{*}$ with $\left|V^{* *}\right| \geq(6 / 7) \cdot\left|V^{*}\right|$. For the induced subhypergraph $\mathcal{G}^{* *}=\left(V^{* *}, \mathcal{E}_{2}^{* *} \cup \cdots \cup \mathcal{E}_{k}^{* *}\right)$ of \mathcal{G}^{*} with $\mathcal{E}_{i}^{* *}:=\mathcal{E}_{i} \cap\left[V^{* *}\right]^{i}$, $i=2, \ldots, k$, we infer with (4) for each vertex $v \in V^{* *}$:

$$
\left|V^{* *}\right| \geq(3 / 4) \cdot N / e^{s} \text { and } d_{i}^{* *}(v) \leq 8 \cdot k^{2} \cdot c_{i} \cdot\left(T / e^{s}\right)^{i-1} \cdot(\ln T)^{(k-i) /(k-1)}
$$

where $d_{i}^{* *}(v)$ is the degree of v for the i-element edges in $\mathcal{G}^{* *}$. For $s:=10^{-3} \cdot \ln T$ and $c_{i}<1 / 8 \cdot\binom{k-1}{i-1} /\left(10^{(3(k-i)) /(k-1)} \cdot k^{2}\right), i=2, \ldots, k$, we have

$$
d_{i}^{* *}(v) \leq 8 \cdot k^{2} \cdot c_{i} \cdot\left(T / e^{s}\right)^{i-1} \cdot(\ln T)^{\frac{k-i}{k-1}} \leq\binom{ k-1}{i-1} \cdot s^{\frac{k-i}{k-1}} \cdot\left(T / e^{s}\right)^{i-1}
$$

which proves (2). By possibly deleting some more vertices and all incident edges we obtain $(3 / 4) \cdot N / e^{s} \leq\left|V^{* *}\right| \leq N / e^{s}$. This probabilistic argument can be derandomized by using the method of conditional probabilities and yields a deterministic algorithm with running time $O\left(|V|+\sum_{i=2}^{k}\left|\mathcal{E}_{i}\right|\right)$.

We prove Theorem 1 with an approach similar to that in [1]. The difference between their arguments and ours is, that we do not apply Lemma 1 step by step from the beginning, but use first Lemma 2 to jump to a suitable subhypergraph:

Proof. Apply Lemma 2 with $s:=10^{-3} \cdot \ln T$ to the hypergraph $\mathcal{G}=\left(V, \mathcal{E}_{2} \cup \cdots \cup\right.$ $\left.\mathcal{E}_{k}\right)$ on N vertices and obtain an induced subhypergraph $\mathcal{G}_{s-1}:=\left(V_{s-1}, \mathcal{E}_{2 ; s-1} \cup\right.$ $\left.\cdots \cup \mathcal{E}_{k ; s-1}\right)$ on n vertices with $\mathcal{E}_{i ; s-1}:=\mathcal{E}_{i} \cap\left[V_{s-1}\right]^{i}, i=2, \ldots, k$, and with (3/4). $N / e^{s} \leq n \leq N / e^{s}$, and for each vertex $v \in V_{s-1}$ its degree $d_{i ; s-1}(v)$ in \mathcal{G}_{s-1} for the i-element edges in $\mathcal{E}_{i ; s-1}$ satisfies $d_{i ; s-1}(v) \leq\binom{ k-1}{i-1} \cdot s^{(k-i) /(k-1)} \cdot\left(T / e^{s}\right)^{i-1}$. Set $n_{s-1}:=n$ and $t_{s-1}:=T / e^{s}$. By iteratively applying Lemma 1 as in [1] with $\varepsilon:=10^{-6} / \ln T$ to the hypergraphs \mathcal{G}_{r-1}, we obtain for $r=s, \ldots, 10^{-2} \cdot \ln T$ independent sets $I_{r} \subseteq V_{r-1}$ and hypergraphs $\mathcal{G}_{r}=\left(V_{r}, \mathcal{E}_{2 ; r} \cup \cdots \cup \mathcal{E}_{k ; r}\right)$ with
$\left|V_{r}\right|=n_{r}$, where $(3 / 4) \cdot N \cdot(1-\varepsilon)^{r+1-s} / e^{r+1} \leq n_{r} \leq N / e^{r+1}$ with numbers $t_{r} \leq T \cdot(1+\varepsilon)^{r+1-s} / e^{r+1}$, such that

$$
\begin{aligned}
\alpha\left(\mathcal{G}_{r}\right) & \geq\left|I_{r}\right|+\alpha\left(\mathcal{G}_{r+1}\right) \quad \text { and } \quad\left|I_{r}\right| \geq\left(0.99 \cdot n_{r-1} \cdot w_{r}\right) /\left(e \cdot t_{r-1}\right) \\
\left|V_{r}\right| & \geq\left(n_{r-1} \cdot(1-\varepsilon)\right) / e \\
d_{i ; r}(v) & \leq\binom{ k-1}{i-1} \cdot(r+1)^{\frac{k-i}{k-1}} \cdot\left(t_{r}\right)^{i-1}
\end{aligned}
$$

for each $v \in V_{r}$, where $d_{i ; r}(v)$ is the degree for the i-element edges in \mathcal{G}_{r} of v. With $(1+\epsilon)^{n}>1+\varepsilon \cdot n, 1+\varepsilon \leq e^{\varepsilon}, r \leq 10^{-2} \cdot \ln T$ and $\varepsilon=10^{-6} / \ln T$ we have

$$
\frac{n_{r}}{t_{r}} \geq \frac{(3 / 4) \cdot N \cdot(1-\varepsilon)^{r+1-s} / e^{r+1}}{T \cdot(1+\varepsilon)^{r+1-s} / e^{r+1}} \geq \frac{(3 / 4) \cdot N}{T} \cdot \frac{(1-\varepsilon)^{r}}{(1+\varepsilon)^{r}} \geq 0.74 \cdot \frac{N}{T}
$$

Hence, with $w_{r}=(r+1)^{1 /(k-1)}-r^{1 /(k-1)}$ and $s=10^{-3} \cdot \ln T$, we obtain for some constant $C_{k}>0$ an independent set $I=I_{s} \cup \cdots \cup I_{(\ln T) / 10^{2}}$ in \mathcal{G} with

$$
\begin{aligned}
& \alpha(\mathcal{G}) \geq|I|=\sum_{r=s}^{(\ln T) / 10^{2}}\left|I_{r}\right| \geq 0.99 \cdot \frac{0.74}{e} \cdot \frac{N}{T} \cdot \sum_{r=s}^{(\ln T) / 10^{2}} w_{r} \geq \\
\geq & \frac{0.73}{e} \cdot \frac{N}{T} \cdot \sum_{r=s}^{(\ln T) / 10^{2}}\left((r+1)^{\frac{1}{k-1}}-r^{\frac{1}{k-1}}\right) \geq C_{k} \cdot \frac{N}{T} \cdot(\ln T)^{\frac{1}{k-1}},
\end{aligned}
$$

which gives the lower bound (1) in Theorem 1. The time bound for the corresponding deterministic algorithm can be estimated as follows: Lemma 2 is applied in time $O\left(|V|+\sum_{i=2}^{k}\left|\mathcal{E}_{i}\right|\right)$ and all applications of Lemma 1 are done in time $O\left(\sum_{r=(\ln T) / 10^{3}}^{(\ln T) / 12^{2}}\left(\left(N / e^{r}\right) \cdot\left(T \cdot(1+\varepsilon)^{r+1-s} / e^{r+1}\right)^{4(k-1)}\right)\right)=o\left(N \cdot T^{4(k-1)}\right)$, compare Lemma 1, hence we have the time bound $o\left(N \cdot T^{4(k-1)}\right)$.

In [9] it has been shown that one may relax in Theorem 3 the assumptions: it suffices to have a linear hypergraph. Similarly, one can show:

Theorem 4. Let $k \geq 3$ be a fixed integer. Let $\mathcal{G}=\left(V, \mathcal{E}_{3} \cup \cdots \cup \mathcal{E}_{k}\right)$ be a linear hypergraph with $|V|=N$ such that the average degrees $t_{i}^{i-1}:=i \cdot\left|\mathcal{E}_{i}\right| /|V|$ for the i-element edges satisfy $t_{i}^{i-1} \leq c_{i} \cdot T^{i-1} \cdot(\ln T)^{(k-i) /(k-1)}$ for some number $T \geq 1$, where $c_{i}>0$ are constants with $c_{i}<1 / 32 \cdot\binom{k-1}{i-1} /\left(10^{(3(k-i)) /(k-1)} \cdot k^{6}\right)$, $i=3, \ldots, k$.
Then, for some constant $C_{k}>0$, one can find deterministically in time $O(N$. $\left.T^{4 k-2}\right)$ an independent set $I \subseteq V$ such that $|I|=\Omega\left((N / T) \cdot(\ln T)^{1 /(k-1)}\right)$.

3 Areas of the Convex Hull of \boldsymbol{j} Points

For distinct points $P, Q \in[0,1]^{2}$ let $P Q$ denote the line through P and Q, and let $[P, Q]$ be the segment between P and Q. Let dist (P, Q) denote the Euclidean distance between the points P and Q. For points $P_{1}, \ldots, P_{l} \in[0,1]^{2}$
let area $\left(P_{1}, \ldots, P_{l}\right)$ be the area of the convex hull of P_{1}, \ldots, P_{l}. A strip centered at the line $P Q$ of width w is the set of all points in \mathbb{R}^{2}, which are at Euclidean distance at most $w / 2$ from the line $P Q$. We define a lexicographic order $\leq_{l e x}$ on the unit square $[0,1]^{2}$: for points $P=\left(p_{x}, p_{y}\right) \in[0,1]^{2}$ and $Q=\left(q_{x}, q_{y}\right) \in[0,1]^{2}$ let $P \leq_{l e x} Q: \Longleftrightarrow\left(p_{x}<q_{x}\right)$ or $\left(p_{x}=q_{x}\right.$ and $\left.p_{y}<q_{y}\right)$.

Lemma 3. (a) Let $P_{1}, \ldots, P_{l} \in[0,1]^{2}, l \geq 3$, be points. If area $\left(P_{1}, \ldots, P_{l}\right) \leq$ A, then for any distinct points P_{i}, P_{j} every other point $P_{k}, k \neq i, j$, is contained in a strip centered at the line $P_{i} P_{j}$ of width $4 \cdot A / \operatorname{dist}\left(P_{i}, P_{j}\right)$.
(b) Let $P, R \in[0,1]^{2}$ be distinct points with $P \leq_{l e x} R$. Then all points $Q \in$ $[0,1]^{2}$ with $P \leq \leq_{\text {lex }} Q \leq_{\text {lex }} R$ and area $(P, Q, R) \leq A$ are contained in a parallelogram of area $4 \cdot A$.

In the following we prove Theorem 2.
Proof. Let $k \geq 3$ be a fixed and let $n \geq k$ be any integer. For a constant $\beta>0$, which will be specified later, we select uniformly at random and independently of each other $N:=n^{1+\beta}$ points P_{1}, \ldots, P_{N} in $[0,1]^{2}$. Set $D_{0}:=N^{-\gamma}$ for a constant γ with $0<\gamma<1$ and let $A_{3}, \ldots, A_{k}>0$ be numbers, which will be fixed later. We form a random hypergraph $\mathcal{G}=\left(V, \mathcal{E}_{2} \cup \cdots \cup \mathcal{E}_{k}\right)$ with vertex-set $V=\{1, \ldots, N\}$, where vertex $i \in V$ corresponds to the random point $P_{i} \in$ $[0,1]^{2}$, and with edges of cardinality at most k. Let $\left\{i_{1}, i_{2}\right\} \in \mathcal{E}_{2}$ if and only if $\operatorname{dist}\left(P_{i_{1}}, P_{i_{2}}\right) \leq D_{0}$. Moreover, for $j=3, \ldots, k$, let $\left\{i_{1}, \ldots, i_{j}\right\} \in \mathcal{E}_{j}$ if and only if area $\left(P_{i_{1}}, \ldots, P_{i_{j}}\right) \leq A_{j}$ and $\left\{i_{1}, \ldots, i_{j}\right\}$ does not contain any edges from \mathcal{E}_{2}. We want to find a large independent set $I \subseteq V$ in \mathcal{G}, as I yields a subset $P(I) \subseteq[0,1]^{2}$ of size $|I|$ such that the area of the convex hull of each j distinct points, $j=3, \ldots, k$, from $P(I)$ is bigger than A_{j}. To do so, first we estimate the expected numbers $E\left[\left|\mathcal{E}_{j}\right|\right]$ of j-element edges and $E\left[s_{2 ;(g, i, j)}(\mathcal{G})\right]$ of $(2 ;(g, i, j))$ cycles in \mathcal{G}, and we prove that these numbers are not too big. Then we show the existence of a certain induced, linear subhypergraph $\mathcal{G}^{*}=\left(V, \mathcal{E}_{3}^{*} \cup \cdots \cup \mathcal{E}_{k}^{*}\right)$ (no 2 -element edges anymore) of \mathcal{G}, which satisfies the assumptions of Theorem 4, and then we obtain a large independent set.

Lemma 4. For $j=3, \ldots, k$, there exist constants $c_{j}>0$ such that

$$
\begin{equation*}
E\left[\left|\mathcal{E}_{j}\right|\right] \leq c_{j} \cdot A_{j}^{j-2} \cdot N^{j} . \tag{5}
\end{equation*}
$$

Proof. For integers i_{1}, \ldots, i_{j} with $1 \leq i_{1}<\cdots<i_{j} \leq N$ we estimate the probability Prob (area $\left(P_{i_{1}}, \ldots, P_{i_{j}}\right) \leq A_{j}$). We may assume that $P_{i_{1}} \leq \leq_{l e x}$ $\cdots \leq_{\text {lex }} P_{i_{j}}$. Then area $\left(P_{i_{1}}, \ldots, P_{i_{j}}\right) \leq A_{j}$ implies area $\left(P_{i_{1}}, P_{i_{g}}, P_{i_{j}}\right) \leq A_{j}$ for $g=2, \ldots, j-1$. The points $P_{i_{1}}$ and $P_{i_{j}}$ with $P_{i_{1}} \leq_{l e x} P_{i_{j}}$ may be anywhere in $[0,1]^{2}$. Given $P_{i_{1}}, P_{i_{j}} \in[0,1]^{2}$, by Lemma $3(\mathrm{~b})$ all points $P_{i_{g}}, g=2, \ldots, j-1$, are contained in a parallelogram of area $4 \cdot A_{j}$, which happens with probability at most $\left(4 \cdot A_{j}\right)^{j-2}$. As there are $\binom{N}{j}$ choices for j out of N points, for some constants $c_{j}>0, j=3, \ldots, k$, we obtain $E\left[\left|\mathcal{E}_{j}\right|\right] \leq c_{j} \cdot A_{j}^{j-2} \cdot N^{j}$.
Next we estimate the expected numbers $E\left[s_{2 ;(g, i, j)}(\mathcal{G})\right]$ of $(2 ;(g, i, j))$-cycles, $2 \leq$ $g \leq i \leq j \leq k$ but $g<j$, in $\mathcal{G}=\left(V, \mathcal{E}_{2} \cup \cdots \cup \mathcal{E}_{k}\right)$.

Lemma 5. Let $2 \leq g \leq i \leq j \leq k$ with $i \geq 3$ and $g<j$, and let $0<A_{3} \leq \cdots \leq$ A_{k}. Then, there exist constants $c_{2 ;(g, i, j)}>0$ such that for $D_{0}^{2} \geq 2 \cdot A_{j}$ it is

$$
\begin{equation*}
E\left[s_{2 ;(g, i, j)}(\mathcal{G})\right] \leq c_{2 ;(g, i, j)} \cdot A_{i}^{i-2} \cdot A_{j}^{j-g} \cdot N^{i+j-g} \cdot(\log N)^{3} . \tag{6}
\end{equation*}
$$

Proof. We estimate the probability that $(i+j-g)$ points, which are chosen uniformly at random and independently of each other in $[0,1]^{2}$, form sets of i and j points with areas of the convex hulls at most A_{i} and A_{j}, respectively, conditioned on the event that distinct points have Euclidean distance bigger than D_{0}. Both sets have g points in common, say P_{1}, \ldots, P_{g}, where $P_{1} \leq_{l e x} \cdots \leq_{l e x}$ P_{g}. Let the sets of i and j points be P_{1}, \ldots, P_{i} and $P_{1}, \ldots, P_{g}, Q_{g+1}, \ldots, Q_{j}$ with area $\left(P_{1}, \ldots, P_{i}\right) \leq A_{i}$ and area $\left(P_{1}, \ldots, P_{g}, Q_{g+1}, \ldots, Q_{j}\right) \leq A_{j}$, respectively. The point P_{1} may be anywhere in $[0,1]^{2}$. Given $P_{1} \in[0,1]^{2}$, we have Prob ($r \leq$ $\left.\operatorname{dist}\left(P_{1}, P_{g}\right) \leq r+\mathrm{d} r\right) \leq \pi \cdot r \mathrm{~d} r$. Given $P_{1}, P_{g} \in[0,1]^{2}$ with dist $\left(P_{1}, P_{g}\right)=r$, by Lemma 3 (b) all points P_{2}, \ldots, P_{g-1} are contained in a parallelogram with area $4 \cdot A_{i}$, which happens with probability at most $\left(4 \cdot A_{i}\right)^{g-2}$.
Given $P_{1}, \ldots, P_{g} \in[0,1]^{2}$ with dist $\left(P_{1}, P_{g}\right)=r$, by Lemma 3 (a) all points P_{g+1}, \ldots, P_{i} are contained in a strip S_{i} of width $w=4 \cdot A_{i} / r$, and all points Q_{g+1}, \ldots, Q_{j} are contained in a strip S_{j} of width $w=4 \cdot A_{j} / r$, where both strips are centered at the line $P_{1} P_{g}$. Set $S_{i}^{*}:=S_{i} \cap[0,1]^{2}$ and $S_{j}^{*}:=S_{j} \cap[0,1]^{2}$, which have areas at most $4 \cdot \sqrt{2} \cdot A_{i} / r$ and $4 \cdot \sqrt{2} \cdot A_{j} / r$, respectively.
For the convex hulls of P_{1}, \ldots, P_{i} and $P_{1}, \ldots, P_{g}, Q_{g+1}, \ldots, Q_{g}$ we denote their extremal points by $P^{\prime}, P^{\prime \prime}$ and Q^{\prime}, Q^{\prime}, respectively, i.e., $P^{\prime}, P^{\prime \prime} \in\left\{P_{1}, \ldots, P_{i}\right\}$ and $Q^{\prime}, Q^{\prime \prime} \in\left\{P_{1}, \ldots, P_{g}, Q_{g+1}, \ldots, Q_{j}\right\}$ and, say $P^{\prime} \leq_{l e x} P^{\prime \prime}$ and $Q^{\prime} \leq_{l e x} Q^{\prime \prime}$, it is $P^{\prime} \leq_{l e x} P_{1}, \ldots, P_{i} \leq_{l e x} P^{\prime \prime}$ and $Q^{\prime} \leq_{l e x} P_{1}, \ldots, P_{g}, Q_{g+1}, \ldots, Q_{j} \leq_{l e x} Q^{\prime \prime}$. Given $P_{1} \leq_{l e x} \cdots \leq_{l e x} P_{g}$, there are three possibilities each for the convex hulls of P_{1}, \ldots, P_{i} and $P_{1}, \ldots, P_{g}, Q_{g+1}, \ldots, Q_{j}$: extremal are (i) P_{1} and P_{g}, or (ii) only one point, P_{1} or P_{g}, or (iii) none of P_{1} and P_{g}.
Consider the convex hull of the points P_{1}, \ldots, P_{i}. In case (i), given $P_{1}, \ldots, P_{g} \in$ $[0,1]^{2}$ with dist $\left(P_{1}, P_{g}\right)=r$, as in the proof of Lemma 4 we infer

$$
\begin{equation*}
\operatorname{Prob}\left(\operatorname{area}\left(P_{1}, \ldots, P_{i}\right) \leq A_{i} \mid P_{1}, \ldots, P_{g} ; \text { case }(\mathrm{i})\right) \leq\left(4 \cdot A_{i}\right)^{i-g} \tag{7}
\end{equation*}
$$

In case (ii), either P_{1} or P_{g} is extremal for the convex hull of P_{1}, \ldots, P_{i}. By Lemma 3(a), the second extremal point is contained in the set S_{i}^{*}, which happens with probability at most $4 \cdot \sqrt{2} \cdot A_{i} / r$. Given both extremal points $P^{\prime}, P^{\prime \prime} \in[0,1]^{2}$, by Lemma $3(\mathrm{~b})$ all points $P_{g+1}, \ldots, P_{i} \neq P^{\prime}, P^{\prime \prime}$ are contained in a parallelogram of area $4 \cdot A_{i}$, hence, with dist $\left(P_{1}, P_{g}\right)=r$ we infer

$$
\operatorname{Prob}\left(\operatorname{area}\left(P_{1}, \ldots, P_{i}\right) \leq A_{i} \mid P_{1}, \ldots, P_{g} ; \text { case }(\mathrm{ii})\right) \leq\left(\left(4 \cdot A_{i}\right)^{i-g} \cdot \sqrt{2}\right) / r .(8)
$$

In case (iii) neither point P_{1} nor P_{g} is extremal for the convex hull of P_{1}, \ldots, P_{i}. With area $\left(P_{1}, \ldots, P_{i}\right) \leq A_{i}$, by Lemma $3\left(\right.$ a) both extremal points P^{\prime} and $P^{\prime \prime}$, say $P^{\prime} \leq_{l e x} P_{1} \leq_{l e x} P_{g} \leq_{l e x} P^{\prime \prime}$, are contained in the strip S_{i} of width $4 \cdot A_{i} / r$, which is centered at the line $P_{1} P_{g}$. Given $P_{1} \in[0,1]^{2}$, the probability that dist $\left(P_{1}, P^{\prime}\right) \in[s, s+\mathrm{d} s]$ is at most the difference of the areas of the balls with center P_{1} and with radii $(s+\mathrm{d} s)$ and s, respectively, intersected with the strip S_{i}.

Since distinct points have Euclidean distance bigger than D_{0}, we have $r, s>D_{0}$. A circle with center P_{1} and radius $s>D_{0}$ intersects both boundaries of the strip S_{i} of width $4 \cdot A_{i} / r$ in four points $R \leq_{l e x} R^{\prime}$ and $R^{\prime \prime} \leq_{l e x} R^{\prime \prime \prime}$, where R, R^{\prime} are on one boundary of the strip S_{i} and $R^{\prime \prime}, R^{\prime \prime \prime}$ are on the other boundary. To see this, notice that $s>2 \cdot A_{i} / r$ follows from $r, s>D_{0}$ and $D_{0}^{2}>2 \cdot A_{j} \geq 2 \cdot A_{i}$. Let $\varepsilon(s)$ be the angle between the lines $P_{1} R$ and $P_{1} R^{\prime \prime}$. Then, by using $\varepsilon / 2 \leq \sin \varepsilon$ for $\varepsilon \leq \pi / 2$ and $\sin (\varepsilon(s) / 2)=2 \cdot A_{i} /(r \cdot s)<2 \cdot A_{i} / D_{0}^{2} \leq 1$, we infer

$$
\operatorname{Prob}\left(\operatorname{dist}\left(P_{1}, P^{\prime}\right) \in[s, s+\mathrm{d} s] \mid P_{1}\right) \leq((2 \cdot \varepsilon(s))) /(2 \cdot \pi) \cdot 2 \cdot \pi \cdot s \mathrm{~d} s \leq
$$

$$
\leq 8 \cdot \sin (\varepsilon(s) / 2) \cdot s \mathrm{~d} s=\left(16 \cdot A_{i} / r\right) \mathrm{d} s
$$

Given $P^{\prime} \in[0,1]^{2}$ with dist $\left(P_{1}, P^{\prime}\right)=s$, the second extremal point $P^{\prime \prime} \in[0,1]^{2}$ is contained in a strip centered at the line $P_{1} P^{\prime}$ of width $4 \cdot A_{i} / s$, which occurs with probability at most $4 \cdot \sqrt{2} \cdot A_{i} / s$. Given both points $P^{\prime}, P^{\prime \prime}$, by Lemma 3(b) all points $P_{g+1}, \ldots, P_{i} \neq P^{\prime}, P^{\prime \prime}$ are contained in a parallelogram of area $4 \cdot A_{i}$. Hence, given $P_{1}, \ldots, P_{g} \in[0,1]^{2}$, with $s>D_{0}=N^{-\gamma}$ and $\gamma>0$, we infer:

$$
\begin{align*}
& \operatorname{Prob}\left(\operatorname{area}\left(P_{1}, \ldots, P_{i}\right) \leq A_{i} \mid P_{1}, \ldots, P_{g} ; \text { case (iii) }\right) \\
\leq & \left(4 \cdot A_{i}\right)^{i-g} \cdot \int_{D_{0}}^{\sqrt{2}} \frac{4 \cdot \sqrt{2}}{r \cdot s} \mathrm{~d} s=\sqrt{32} \cdot\left(4 \cdot A_{i}\right)^{i-g} \cdot \frac{\ln \sqrt{2}+\gamma \cdot \ln N}{r} \tag{9}
\end{align*}
$$

Summarizing cases (i-iii) with (7)-(9), and $r \leq \sqrt{2}$ and $0<\gamma<1$ we obtain:

$$
\begin{align*}
& \text { Prob }\left(\operatorname{area}\left(P_{1}, \ldots, P_{i}\right) \leq A_{i} \mid P_{1}, \ldots, P_{g}\right) \\
\leq & \left(4 \cdot A_{i}\right)^{i-g} \cdot \frac{\sqrt{8}+\sqrt{8} \cdot(\ln 2+2 \cdot \gamma \cdot \ln N)}{r} \leq\left(4 \cdot A_{i}\right)^{i-g} \cdot \frac{11 \cdot \ln N}{r} \tag{10}
\end{align*}
$$

Similarly, it follows Prob (area $\left.\left(P_{1}, \ldots, P_{g}, Q_{g+1}, \ldots, Q_{g}\right) \leq A_{j} \mid P_{1}, \ldots, P_{g}\right) \leq$ $\left(\left(4 \cdot A_{j}\right)^{j-g} \cdot 11 \cdot \ln N\right) / r$ holds. Hence, we obtain for constants $c_{2 ;(g, i, j)}^{*}>0$:

$$
\begin{align*}
& \operatorname{Prob}\left(P_{1}, \ldots, P_{i} \text { and } P_{1}, \ldots, P_{g}, Q_{g+1}, \ldots, Q_{j} \text { is a }(2 ;(g, i, j)) \text {-cycle }\right) \leq \\
\leq & \int_{D_{0}}^{\sqrt{2}}\left(4 \cdot A_{i}\right)^{g-2} \cdot\left(\left(4 \cdot A_{i}\right)^{i-g} \cdot \frac{11 \cdot \ln N}{r}\right) \cdot\left(\left(4 \cdot A_{j}\right)^{j-g} \cdot \frac{11 \cdot \ln N}{r}\right) \cdot \pi \cdot r \mathrm{~d} r \\
\leq & c_{2 ;(g, i, j)}^{*} \cdot A_{i}^{i-2} \cdot A_{j}^{j-g} \cdot(\log N)^{3} \quad \text { as } D_{0}=N^{-\gamma}, \gamma>0 \text { is constant. } \tag{11}
\end{align*}
$$

There are $\binom{N}{i+j-g}$ choices for $i+j-g$ out of N points, hence for constants $c_{2 ;(g, i, j)}>0, j=2, \ldots, k-1$, we get with (11) the upper bound:

$$
E\left[s_{2 ;(g, i, j)}(\mathcal{G})\right] \leq c_{2 ;(g, i, j)} \cdot A_{i}^{i-2} \cdot A_{j}^{j-g} \cdot N^{i+j-g} \cdot(\log N)^{3} .
$$

For distinct points $P, Q \in[0,1]^{2}$, it is $\operatorname{Prob}\left(\operatorname{dist}(P, Q) \leq D_{0}\right) \leq \pi \cdot D_{0}^{2}$. With $D_{0}=N^{-\gamma}$ we infer $E\left[\left|\mathcal{E}_{2}\right|\right] \leq\binom{ N}{2} \cdot \pi \cdot D_{0}^{2} \leq c_{2} \cdot N^{2-2 \gamma}$ for some constant $c_{2}>0$. By Markov's inequality, using this and the estimates (5) and (6) there exist N points $P_{1}, \ldots, P_{N} \in[0,1]^{2}$ such that the resulting hypergraph $\mathcal{G}=\left(V, \mathcal{E}_{2} \cup \cdots \cup \mathcal{E}_{k}\right)$ with $|V|=N$ satisfies for $2 \leq g \leq i \leq j \leq k$ but $g<j$:

$$
\begin{align*}
& \left|\mathcal{E}_{2}\right| \leq k^{3} \cdot c_{2} \cdot N^{2-2 \gamma} \quad \text { and } \quad\left|\mathcal{E}_{j}\right| \leq k^{3} \cdot c_{j} \cdot A_{j}^{j-2} \cdot N^{j} \tag{12}\\
& s_{2 ;(g, i, j)}(\mathcal{G}) \leq k^{3} \cdot c_{2 ;(g, i, j)} \cdot A_{i}^{i-2} \cdot A_{j}^{j-g} \cdot N^{i+j-g} \cdot(\log N)^{3} . \tag{13}
\end{align*}
$$

For suitable constants $c_{j}^{\prime}>0, j=3, \ldots, k$, which will be fixed later, we set

$$
\begin{equation*}
A_{j}:=\left(c_{j}^{\prime} \cdot(\log n)^{1 /(j-2)}\right) / n^{(j-1) /(j-2)} \tag{14}
\end{equation*}
$$

Lemma 6. For fixed $\gamma>1 / 2$ it is $\left|\mathcal{E}_{2}\right|=o(|V|)$.
Proof. Using (12) and $|V|=N$, we have $\left|\mathcal{E}_{2}\right|=o(|V|)$ provided that $N^{2-2 \gamma}=$ $o(N) \Longleftrightarrow N^{1-2 \gamma}=o(1)$, which holds for $\gamma>1 / 2$.
Lemma 7. For fixed $2 \leq g \leq i \leq j \leq k$ but $g<j$ and for fixed constant β with $0<\beta<(j-g) /((j-2) \cdot(i+j-g-1))$ it is $s_{2 ;(g, i, j)}(\mathcal{G})=o(|V|)$.
Proof. By using (13) and (14) and $|V|=N=n^{1+\beta}$ with fixed $\beta>0$ we have $s_{2 ;(g, i, j)}(\mathcal{G})=o(|V|)$ for $j=2, \ldots, k-1$, provided that

$$
\begin{aligned}
& A_{i}^{i-2} \cdot A_{j}^{j-g} \cdot N^{i+j-g} \cdot(\log N)^{3}=o(N) \\
\Longleftrightarrow & (\log n)^{4+\frac{j-g}{j-2}} \cdot n^{(1+\beta)(i+j-g-1)-(i-1)-\frac{(j-g)(j-1)}{j-2}}=o(1) \\
\Longleftrightarrow & (1+\beta) \cdot(i+j-g-1)<i-1+((j-g) \cdot(j-1)) /(j-2),
\end{aligned}
$$

which holds for $\beta<(j-g) /((j-2) \cdot(i+j-g-1))$.
Fix $\beta:=1 /\left(2 \cdot k^{2}\right)$ and $\gamma:=k /(2 \cdot(k-1))$. Then, with (14) and $D_{0}=N^{-\gamma}$ and $N=n^{1+\beta}$ all assumptions in Lemmas $5-7$ are fulfilled. We delete one vertex from each 2-element edge $E \in \mathcal{E}_{2}$ and each $(2 ;(g, i, j))$-cycle, $2 \leq g \leq i \leq j \leq k$ but $g<j$, in \mathcal{G}. Let $V^{*} \subseteq V$ be the set of remaining vertices. The induced
 is linear, and by (12), and Lemmas 6 and 7 fulfills $\left|V^{*}\right| \geq N / 2$ and $\left|\mathcal{E}_{j}^{*}\right| \leq$ $k^{3} \cdot c_{j} \cdot A_{j}^{j-2} \cdot N^{j}$. By (14), the hypergraph \mathcal{G}^{*} has average degree

$$
t_{j}^{j-1}=j \cdot\left|\mathcal{E}_{j}^{*}\right| /\left|V^{*}\right| \leq 2 \cdot k^{3} \cdot j \cdot c_{j} \cdot\left(c_{j}^{\prime}\right)^{j-2} \cdot N^{j-1} \cdot \log n / n^{j-1}=:\left(t_{j}(1)\right)^{j-1}
$$

for the j-element edges. Fix a constant $c^{\prime}>0$ such that $C_{k} /\left(2 \cdot c^{\prime}\right) \cdot \beta^{1 /(k-1)}>1$ and set $T:=c^{\prime} \cdot(N / n) \cdot(\log n)^{1 /(k-1)}$. Then fix constants $c_{j}^{\prime}>0, j=3, \ldots, k$, in (14) such that

$$
\begin{aligned}
\left(t_{j}(1)\right)^{j-1} & =\left(2 \cdot k^{3} \cdot j \cdot c_{j} \cdot\left(c_{j}^{\prime}\right)^{j-2} \cdot N^{j-1} \cdot \log n\right) / n^{j-1} \leq \\
& \leq 1 / 32 \cdot\binom{k-1}{j-1} /\left(10^{(3(k-j)) /(k-1)} \cdot k^{6}\right) \cdot T^{j-1} \cdot(\log T)^{(k-j) /(k-1)}
\end{aligned}
$$

Then, the assumptions in Theorem 4 are satisfied for \mathcal{G}^{*}, and its independence number $\alpha\left(\mathcal{G}^{*}\right)$ satisfies for some constant $C_{k}>0$:

$$
\begin{aligned}
\alpha(\mathcal{G}) \geq \alpha\left(\mathcal{G}^{*}\right) & \geq C_{k} \cdot\left(\left|V^{* *}\right| / T\right) \cdot(\log T)^{\frac{1}{k-1}} \geq C_{k} \cdot(N /(2 \cdot T)) \cdot(\log T)^{\frac{1}{k-1}} \geq \\
& \geq \frac{C_{k} \cdot n}{2 \cdot c^{\prime} \cdot(\log n)^{\frac{1}{k-1}}} \cdot\left(\log \left(n^{\beta}\right)\right)^{\frac{1}{k-1}} \geq n .
\end{aligned}
$$

The vertices of an independent set I with $|I|=n$ yield n points among the N points $P_{1}, \ldots, P_{N} \in[0,1]^{2}$, such that for $j=3, \ldots, k$ the area of the convex hull of any j distinct points of these n points is $\Omega\left((\log n)^{1 /(j-2)} / n^{(j-1) /(j-2)}\right)$ as desired.

References

1. M. Ajtai, J. Komlós, J. Pintz, J. Spencer and E. Szemerédi, Extremal Uncrowded Hypergraphs, Journal of Combinatorial Theory Ser. A, 32, 1982, 321-335.
2. G. Barequet, A Lower Bound for Heilbronn's Triangle Problem in d Dimensions, SIAM Journal on Discrete Mathematics 14, 2001, 230-236.
3. G. Barequet and J. Naor, Large $k-D$ Simplices in the D-Dimensional Unit Cube, Proceedings '17th Canadian Conference on Computational Geometry', 2005, 3033.
4. G. Barequet and A. Shaikhet, The On-Line Heilbronn's Triangle Problem in d Dimensions, Proceedings ' 12 th Annual Computing and Combinatorics Conference COCOON'06', Springer Verlag, LNCS 4112, 2006, 408-417.
5. C. Bertram-Kretzberg and H. Lefmann, The Algorithmic Aspects of Uncrowded Hypergraphs, SIAM Journal on Computing 29, 1999, 201-230.
6. C. Bertram-Kretzberg, T. Hofmeister and H. Lefmann, An Algorithm for Heilbronn's Problem, SIAM Journal on Computing 30, 2000, 383-390.
7. P. Brass, An Upper Bound for the d-Dimensional Analogue of Heilbronn's Triangle Problem, SIAM Journal on Discrete Mathematics 19, 2005, 192-195.
8. B. Chazelle, Lower Bounds on the Complexity of Polytope Range Searching, Journal of the American Mathematical Society 2, 1989, 637-666.
9. R. A. Duke, H. Lefmann and V. Rödl, On Uncrowded Hypergraphs, Random Structures \& Algorithms 6, 1995, 209-212.
10. A. Fundia, Derandomizing Chebychev's Inequality to find Independent Sets in Uncrowded Hypergraphs, Random Structures \& Algorithms, 8, 1996, 131-147.
11. J. Komlós, J. Pintz and E. Szemerédi, On Heilbronn's Triangle Problem, Journal of the London Mathematical Society, 24, 1981, 385-396.
12. J. Komlós, J. Pintz and E. Szemerédi, A Lower Bound for Heilbronn's Problem, Journal of the London Mathematical Society, 25, 1982, 13-24.
13. H. Lefmann, Distributions of Points in the d Dimensions and Large k-Points Simplices, Proceedings ' 11 th Annual Computing and Combinatorics Conference COCOON'05', Springer Verlag, LNCS 3595, eds. Lusheng Wang, 2005, 514-523.
14. H. Lefmann, Distributions of Points in the Unit-Square and Large k-Gons, Proceedings ' 16 th ACM-SIAM Symposium on Discrete Algorithms SODA', ACM and SIAM, 2005, 241-250.
15. K. F. Roth, On a Problem of Heilbronn, Journal of the London Mathematical Society 26, 1951, 198-204.
16. K. F. Roth, On a Problem of Heilbronn, II, and III, Proc. of the London Mathematical Society (3), 25, 1972, 193-212, and 543-549.
17. K. F. Roth, Estimation of the Area of the Smallest Triangle Obtained by Selecting Three out of n Points in a Disc of Unit Area, Proc. of Symposia in Pure Mathematics, 24, 1973, AMS, Providence, 251-262.
18. K. F. Roth, Developments in Heilbronn's Triangle Problem, Advances in Mathematics, 22, 1976, 364-385.
19. W. M. Schmidt, On a Problem of Heilbronn, Journal of the London Mathematical Society (2), 4, 1972, 545-550.
20. J. Spencer, Turán's Theorem for k-Graphs, Discrete Mathematics, 2, 1972, 183186.
