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Abstract. For fixed integers k > 3 and hypergraphs G on N vertices,
which contain edges of cardinalities at most k, and are uncrowded, i.e.,
do not contain cycles of lengths 2,3, or 4, and with average degree for

the i-element edges bounded by O(T'~! - (InT)*=9/*k=1y ;i —3 K,
for some number 7" > 1, we show that the independence number a(G)
satisfies a(G) = 2((N/T) - (InT)"/*=1). Moreover, an independent set
I of size |I| = 2((N/T) - (InT)"/ =) can be found deterministically in
polynomial time. This extends a result of Ajtai, Komlds, Pintz, Spencer
and Szemerédi for uncrwoded uniform hypergraphs. We apply this result
to a variant of Heilbronn’s problem on the minimum area of the convex

hull of small sets of points among n points in the unit square [0, 1]2.

1 Introduction

An independent set I in a graph or hypergraph G = (V,€) with vertex-set V
and edge-set £ is a subset of the vertex-set V', which does not contain any edges,
ie., E ¢ I for each edge E € £. The largest size of an independent set in G
is the independence number «(G). For graphs G = (V, E) with average degree
t:=2-|E|/|V| > 1 Turdn’s theorem gives a(G) > |V|/(2 - t). Turdn’s theorem
for hypergraphs says, see [20]: If G = (V, &) is a k-uniform hypergraph, i.e.,
all edges have cardinality k, with average degree t*~1 := k. ||/|V| > 1, then
a(G) > (k—=1)/k)-(|[V]/t). An independent set I C V in G achieving this lower
bound can be found deterministically in time O(|V| + |€|). For uncrowded k-
uniform hypergraphs G = (V, &), i.e., G contains no cycles of length 2,3, or 4,
Ajtai, Komlds, Pintz, Spencer and Szemerédi [1] improved this lower bound by a
factor of @((logt)'/(*=1)). Several applications of this result have been found, see
[5]. Here we extend this result from [1] to non-uniform uncrowded hypergraphs:

Theorem 1. Let k > 3 be a fized integer. Let G = (V,E5 U --- U &) be an
uncrowded hypergraph on |V| = N vertices, where &; is the set of all i-element
edges in G, such that the average degrees t.* := i -|&;|/|V| for the i-element
edges satisfy t:7" < ¢; - T - (InT)*=D/*=1) for some number T > 1 with
constants c¢;, where 0 < ¢; <1/8- (’;:11)/(10<3<’f—i>>/<’f—1> “k?),i=3,...,k.
Then, for some constant Cy > 0 the independence number a(G) satisfies

a(G) > Cr - (N/T) - (InT)V/ 1, (1)

An independent set I C V with |I| = Q((N/T) - InT)"/*=D) can be found
deterministically in time o(N - T**=4).



The corresponding result also holds for linear hypergraphs G, which have the
property that they do not contain cycles of length 2, i.e., each two distinct
edges have at most one vertex in common, provided that G does not contain
any 2-element edges. Theorem 1 is best possible up to a constant factor for a
certain range k < T < N, as can be seen by considering random non-uniform
hypergraphs G = (V,& U ---U &) on |V]| = N vertices.

As an application we consider a variant of Heilbronn’s problem for the convex
hull of sets of points in the unit square [0, 1]%. The original problem of Heilbronn
asks for a distribution of n points in [0, 1]* such that the minimum area of a
triangle determined by three of these n points achieves its largest value. For
this problem, the points 1/n - (i mod n,i?> mod n), i = 0,...,n — 1, where n is
a prime, give the lower £2(1/n?) on the minimum area of a triangle. This lower
bound has been improved in [12] by a factor £2(logn), see [6] for a deterministic
polynomial time algorithm. Upper bounds on the minimum area of a triangle
among n points in [0, 1]? were given by Roth [15-18] and Schmidt [19] and, the
currently best upper bound O(QCm/ngﬁ), ¢ > 0 a constant, is due to Koml6s,
Pintz and Szemerédi [11].

Variants of Heilbronn’s triangle problem in higher dimensions were investigated
in [2-4,7,8,13]. A generalization of Heilbronn’s triangle problem to k points, see
Schmidt [19], asks, given an integer k > 3, for the supremum Ag(n) over all dis-
tributions of n points in [0, 1]? of the minimum area of the convex hull determined
by some k of n points. In [6] it has been shown that Ay (n) = 2(1/nk~1)/(k=2))
for fixed k > 3, and any integers n > k; for k = 4 this was proved in [19]. This
has been improved in [14] to Ag(n) = 2((logn)*/* =1/ /nk=1/(k=2)) for fixed
k > 3. Currently, for k£ > 4 only the upper bound Ag(n) = O(1/n) is known.
Here we show for fixed integers k > 3, that one can achieve these lower bounds
simultaneously for j = 3,...,k by a single configuration of n points in [0, 1]?.

Theorem 2. Let k > 3 be a fized integer. For integers n > k there exists a
configuration of n points in [0,1]%, such that, simultaneously for j = 3,... .k, the
area of the convex hull of any j of the n points is 2((logn)*/ =1 /p—1)/(=2)),

By considering the standard L x L-grid for a suitable integer L > n one can
also give a polynomial time algorithm which achieves the lower bounds from
Theorem 2 on the areas of the convex hulls. (Details are omitted.)

2 Uncrowded and Linear Hypergraphs

Definition 1. A hypergraph is a pair G = (V,E) with vertez-set V and edge-
set £, where E C V for each edge E € £. For a hypergraph G the notation
G = (V,E U---UCE&) indicates that & is the set of all i-element edges in G,
i=2,...,k. For a vertexv € V let d;(v) denote the number of i-element edges
E € &; which contain v, i.e., d;(v) is the degree of v for the i-element edges in
G. The independence number a(G) of G = (V, &) is the largest size of a subset
I C V which contains no edges from E. A j-cycle in a hypergraph G = (V, &)
is a sequence Ey,...,E; of distinct edges from &, such that E; N Eiyq # 0,



i=1...,j—1, and E; N E; # 0, and a sequence v1,...,v; of distinct vertices
with viy1 € EyNEiyq,1=1,...,7 =1, and vi € E; N E;. An unordered pair
{E,E'} of distinct edges E,E' € £ with |[ENE'| > 2 is a 2-cycle. A 2-cycle
{E,E'} inG = (V,EoU---U&;,) with E € & and E' € &; is called (2;(g,1,7))-
cycle if and only if |[ENE'|=g,2< g <i<j but g <j. The hypergraph G is
called linear if it does mot contain any 2-cycles, and G is called uncrowded if it
does not contain any 2-, 3-, or 4-cycles.

For uncrowded k-uniform hypergraphs with average degree t*~! the Turan bound
on the independence number has been improved in [1] by a factor @((log ¢)'/(F=1),
see [5] and [10] for a deterministic polynomial time algorithm.

Theorem 3. Let k > 3 be a fized integer. Let G = (V,&) be an uncrowded
k-uniform hypergraph on |V| = N wvertices and with average degree t*~! :=
k- |E|/N. Then, for some constant Cy > 0, the independence number a(G)
satisfies a(G) > Cy, - (N/t) - (log )Y/ (*=1),

To prove Theorem 3, in [1] the following central lemma has been used to con-
struct iteratively a large independent set in a hypergraph, which we use in our
arguments too; see [10] for a deterministic polynomial time algorithm.

Lemma 1. Let T and N be large positive integers. Let s be an integer with
0<s<(InT)/10%. Let wy := (s + 1)/E=D — s1/==1) gnd e :=1075/InT. Let
N/(2-e®) <n<N/e* and T/(2-¢€°) <t <T/es.

Let G = (V,E U ---U &) be an uncrowded hypergraph with |V| = n vertices,
where for each vertex v € V the degrees d;(v) for the i-element edges satisfy
di(v) < (K1) - sk=D/0=1) gimt g —g )

Then, one can find in time O(n-t4(k_1)) an independent set I CV in G, a subset
V*CV withV*N1I =0, and a hypergraph G* = (V*,E5U---UE}) such that

(i) a(G) > |I| +a(G*) and (i) |I| > 099 =% and (i) [V*| > “1==)

(iv) df(v) < (¥7])-(s+1)*=D/=1) (1. (14¢) /e)'~! for each vertexv € V*, where
d?(v) denotes the degree of v for the i-element edges in G*, i =2,...,k.

Lemma 2. Let k > 3 be a fized integer. Let G = (V,Eo U --- U &) be a hy-
pergraph with |V| = N and N > 65 - (Ink)'00%/99% yhere the average de-
grees ti' = i - |&|/N for the i-element edges in & fulfill t:' < ¢; - T7'.
(InT)*=D/E=1) for some number T > 1 and for some constants ¢; > 0 with
¢ <1/8- (¥21)/(10GER=D/ k=1 J2) =2 . k.

Then, for s := 1073 -InT, one can find in time O(|V| + Zfﬁ |€:]) an induced
subhypergraph G* = (V*,E3U---U&F) on |V*| = n vertices with £ := &;N[V*]",
i=2,...,k, such that (3/4) - N/e®* <n < N/e® and for each vertex v € V* the
degrees d} (v) for the i-element edges in G* satisfy

dio < (§2]) st ey )



Proof. We pick vertices with probability p := 1/e® uniformly at random and
independently of each other from the vertex-set V in G. Let V* be the random
set of chosen vertices of expected size E[|[V*|] =p- N. With s = 1072 -InT and
T = O(N), we have by Chernoff’s inequality for N > 65 - (In k)1000/998;

_ NZ%/(64-¢3%%)
N

Prob (E[|V*|] = |V*| > N/(8-¢%)) <e = e N/(64¢%) < 1/k (3)
Let & =& N[V*), i=2,...,k and let G* = (V*,E5 U---UE;) be the on V*
induced random subhypergraph of G. For i = 2,...,k, we have for the expected
numbers E[|}]] = p!-|&| = p' N -ti71 )i < plocg- T~ (In T)*k=9/(k=1). N /i. By
Markov’s inequality it is Prob (|| > k- E[|E/|]) < 1/k, hence with (3) there
exists a subhypergraph G* = (V*,&3 U--- U &L) of G such that for i =2,...,k:

[V*| > (7/8) - N/e* and |&| <k-p'-c¢;- T (InT)F=D/==D . Nyj o (4)

Let n; be the number of vertices v € V* with degree df(v) > 8-e®-k? - p -
ci - T (InT)*=9/(:=1) for the i-element-edges in G*, i = 2,...,k. By (4) we
infer n; < N/(8-k-e®) < |V*|/(7-k), thus 33, n; < [V*|/7. We delete these
vertices from V* and obtain a subset V>** C V* with |[V**| > (6/7)-|V*|. For the
induced subhypergraph G** = (V**,£3*U---UE™) of G* with £ := &N [V ],
i=2,...,k, we infer with (4) for each vertex v € V**:

Hk X s ok L2 syi—1 | (k—1)/(k—1)
il — (2 Y
[V**| > (3/4) - N/e® and d}*(v) < 8-k“ -¢; - (T/e?) (InT)

where d*(v) is the degree of v for the i-element edges in G**. For s := 107%-InT
and ¢; < 1/8- (¥21) /(10GG=D/k=1) . k2) j =2 ...k, we have

. . —i k—1 —i .

G <8R @y ) < (P ey,
which proves (2). By possibly deleting some more vertices and all incident edges
we obtain (3/4) - N/e® < |V**| < N/e®. This probabilistic argument can be
derandomized by using the method of conditional probabilities and yields a
deterministic algorithm with running time O(|V| + S5, |&]). O

We prove Theorem 1 with an approach similar to that in [1]. The difference
between their arguments and ours is, that we do not apply Lemma 1 step by step
from the beginning, but use first Lemma 2 to jump to a suitable subhypergraph:

Proof. Apply Lemma 2 with s := 1073 -InT to the hypergraph G = (V, & U---U
&) on N vertices and obtain an induced subhypergraph G,_1 := (Vi_1,&2,5-1 U
-+ :U&p,s—1) on n vertices with &5 1 := &N[Vs_1]}, i = 2,..., k, and with (3/4)-
N/e* <n < N/e®, and for each vertex v € V,_; its degree d;;s—1(v) in G,_; for
the i-element edges in ;.51 satisfies d;.s_1(v) < (’;:11) - s(k=0)/(k=1) (T /es)i-1,
Set ns_q :=n and t,_; := T'/e®. By iteratively applying Lemma 1 as in [1] with
g := 107%/InT to the hypergraphs G, 1, we obtain for r = s,...,1072 - InT
independent sets I, C V,_; and hypergraphs G, = (V,, &, U - U &) with



V.| = n,, where (3/4) - N - (1 — g)"t1=%/er Tl < p,. < N/e™ with numbers
tr <T-(1+e) 175 /e such that

a(Gy) > || + a(Grr1) and  |I| > (0.99-1,_1 - w,)/(e-ty_1)
Vol > (o - (1= €))/e

din(v) < (’“:j) (DR ()

for each v € V,., where d;,.(v) is the degree for the i-element edges in G, of v.
With (1+€)" >1+4+e-n,1+e<e®,r <10 2-InT and e = 107%/InT we have

(3/4)-N-(L—g)+'=s/e+!  (3/4)-N (1—¢e) N
T. (]_ +6)r+1 s/er+1 Z T ' (1 n E)T Z 0.74 - ?

- >

ok

Hence, with w, = (r + 1)/# =1 —¢1/(k=1) and s = 1073 - InT, we obtain for
some constant Cy > 0 an independent set [ = I; U---U I, 1y/102 in G with

(InT)/102 (InT)/102
074 N
> 1l = L] >099- — = . rZ
a(0) > 1| Z 1| e T L W=
(In )/102
ZOZ3 % ; r-}-lkl—rk 1)26%.%-(1111—')1@117

which gives the lower bound (1) in Theorem 1. The time bound for the cor-
responding deterministic algorlthm can be estimated as follows: Lemma 2 is
applied in time O(|V| + ZZ »|&i]) and all applications of Lemma 1 are done in

time O(S MDA o (N/er) - (T - (14 )12 fert)Ak=1)) = (N . T4(k=1)),

compare Lemma 1, hence we have the time bound o(N - T4*~1)), O

In [9] it has been shown that one may relax in Theorem 3 the assumptions: it
suffices to have a linear hypergraph. Similarly, one can show:

Theorem 4. Let k > 3 be a fized integer. Let G = (V,E3 U - U &) be a linear
hypergraph with |V| = N such that the average degrees t'™" := i -|&]|/|V| for
the i-element edges satisfy t:ifl <c¢ T (ln T)(k’i)/(k’l) for some number
T > 1, where ¢; > 0 are constants with ¢; < 1/32- (¥}) /(10B(k=)/(k=1) . 6)
Then, for some constant Cy, > 0, one can find deterministically in time O(N
T*=2) an independent set I CV such that |I| = Q((N/T) - (InT)*/(k=1)).

3 Areas of the Convex Hull of 3 Points

For distinct points P,Q € [0,1]? let PQ denote the line through P and @,
and let [P,Q] be the segment between P and (. Let dist (P,Q) denote the
Euclidean distance between the points P and Q. For points Pi,..., P, € [0,1]?



let area (P, ..., ;) be the area of the convex hull of Py, ..., P;. A strip centered
at the line PQ of width w is the set of all points in R?, which are at Euclidean
distance at most w/2 from the line PQ. We define a lexicographic order <;., on
the unit square [0, 1]%: for points P = (p.,py) € [0,1]* and Q = (¢4, ¢y) € [0,1]?
let P <jex Q 1= (P2 < @) Or (P2 = ¢» and py < qy).

Lemma 3. (a) Let Py,..., P € [0,1)%, 1 > 3, be points. If area (Py,...,P;) <
A, then for any distinct points Py, P; every other point Py, k # i, j, is con-
tained in a strip centered at the line P;P; of width 4 - A/dist (P;, P;).

(b) Let P,R € [0,1]* be distinct points with P <i,, R. Then all points Q €
[0,1]? with P <jer Q <iez R and area (P,Q,R) < A are contained in a
parallelogram of area 4 - A.

In the following we prove Theorem 2.

Proof. Let k > 3 be a fixed and let n > k be any integer. For a constant 5 > 0,
which will be specified later, we select uniformly at random and independently
of each other N := n!'*f8 points Py,..., Py in [0,1]2. Set Dy := N~7 for a
constant v with 0 < v < 1 and let As,..., A; > 0 be numbers, which will be
fixed later. We form a random hypergraph G = (V, & U -+ - U &) with vertex-set
V = {1,...,N}, where vertex i € V corresponds to the random point P; €
[0,1]?, and with edges of cardinality at most k. Let {i1,i2} € & if and only if
dist(P;,, P;,) < Dg. Moreover, for j = 3,...,k, let {i1,...,i;} € &; if and only
if area (P;,,...,P;) < Aj and {i1,...,i;} does not contain any edges from &,.
We want to find a large independent set I C V in G, as I yields a subset
P(I) C[0,1)? of size |I| such that the area of the convex hull of each j distinct
points, j = 3,...,k, from P(I) is bigger than A;. To do so, first we estimate the
expected numbers EJ[|;]] of j-element edges and E[sy,(4.:.5)(9)] of (25(g,4,7))-
cycles in G, and we prove that these numbers are not too big. Then we show the
existence of a certain induced, linear subhypergraph G* = (V,&5 U---U&y) (no
2-element edges anymore) of G, which satisfies the assumptions of Theorem 4,
and then we obtain a large independent set.

Lemma 4. For j =3,...,k, there exist constants c; > 0 such that
E[|&]] < ;- A2 N, (5)

Proof. For integers i1,...,%; with 1 < 4; < .-+ < i; < N we estimate the
probability Prob (area (P;,,...,P;;) < A;). We may assume that P, <.,

* <tee Pi;. Then area (P;,...,P;;) < Aj; implies area (FP;,,P;,,P;;) < A
for g=2,...,j — 1. The points P;, and P;; with P;, <;e, P;; may be anywhere
in [0,1]%. Given P;,, P;; € [0,1]%, by Lemma 3(b) all points P; , g =2,...,j—1,
are contained in a parallelogram of area 4 - A;, which happens with probability
at most (4 - A;)772. As there are (IJV) choices for j out of N points, for some

constants ¢; > 0, j = 3,...,k, we obtain E[|£;]] < ¢; -A§72 - N7, O

Next we estimate the expected numbers E[sy,(, ;i) (G)] of (2; (9,1, j))-cycles, 2 <
g<i<j<kbutg<j,ingG=(V,E&U---U&).



Lemma 5. Let2< g<i<j<kwithi>3andg<j, andlet )< A3 < --- <
Ay. Then, there exist constants cy,g;5) > 0 such that for D >2-Ajitis

El83,(9,,) (9] < 29,15 - AT - AJ7 - N7 (log N)*. (6)

Proof. We estimate the probability that (¢ + j — g) points, which are chosen
uniformly at random and independently of each other in [0,1]?, form sets of
¢ and j points with areas of the convex hulls at most A; and A;, respectively,
conditioned on the event that distinct points have Euclidean distance bigger than
Dy. Both sets have g points in common, say P,...,P,, where P; <jop +* - <jew
P,. Let the sets of ¢ and j points be P, ..., P;and Py,..., Py,Qg41,...,Q; with
area (Pi,...,P;) < A; and area (Py,..., Py, Qgy1,...,Q;) < Aj, respectively.
The point P; may be anywhere in [0, 1]2. Given P; € [0,1]2, we have Prob (r <
dist (P1,P,) <r+ dr) <m-rdr. Given Py, P, € [0,1]* with dist (P, P,) =,
by Lemma 3(b) all points P,,..., P, 4 are contained in a parallelogram with
area 4 - A;, which happens with probability at most (4 - 4;)9~2.

Given Py,...,P, € [0,1)*> with dist (P, P,) = r, by Lemma 3(a) all points
P,iq,...,P; are contained in a strip S; of width w = 4 - 4;/r, and all points
Qg+1,.-.,Q; are contained in a strip S; of width w = 4- A;/r, where both strips
are centered at the line Py Py. Set SF := S;N[0,1]* and S} := S; N [0,1]?, which
have areas at most 4 - /2 - A;/r and 4 - /2 - A;/r, respectively.

For the convex hulls of Py,...,P; and Py,...,Py,Q441,...,Q, we denote their
extremal points by P', P"” and Q’,Q’, respectively, i.e., P',P" € {Py,...,P;}
and Q',Q" € {P1,...,Py,Qq41,--.,Q;} and, say P’ <j.p P and Q' <jep Q"
it is P’ <jeq Pr,..., P; <pee P" and Q' <yeq Py Py Qgit, 5 Qf Sien Q".
Given P; <jep -+ <iex Py, there are three possibilities each for the convex hulls
of Pi,...,P; and Pi,...,Py,Qg41,...,Q;: extremal are (i) P, and P,, or (ii)
only one point, Py or Py, or (iii) none of P; and P,.

Consider the convex hull of the points Py,..., P;. In case (i), given Py,..., P, €
[0,1]* with dist (P1, P,) =, as in the proof of Lemma 4 we infer

Prob (area (Py,...,P;) < A; | Pi,..., P, ;case (i) < (4- 4;)79. (7)

In case (ii), either P, or P, is extremal for the convex hull of P;,...,P;. By
Lemma 3(a), the second extremal point is contained in the set S}, which happens
with probability at most 4-1/2-A; /r. Given both extremal points P, P" € [0, 1],
by Lemma 3(b) all points Pyq,...,P; # P, P" are contained in a parallelogram
of area 4 - A;, hence, with dist (P, P;) = r we infer

Prob(area(P;, ..., P;) < A; | P1,..., P, ; case (i) < ((4- 4;)"79 - V2)/r(8)

In case (iii) neither point P; nor P, is extremal for the convex hull of P, ..., F;.
With area (P,...,P;) < A;, by Lemma 3(a) both extremal points P’ and P",
say P’ <jex Pi <iew Py <ies P", are contained in the strip S; of width 4 - 4;/r,
which is centered at the line P, P,. Given P, € [0,1]?, the probability that
dist (P, P') € [s,s+ ds] is at most the difference of the areas of the balls with
center Py and with radii (s+ ds) and s, respectively, intersected with the strip S;.



Since distinct points have Euclidean distance bigger than Dy, we have r, s > Dy.
A circle with center P; and radius s > Dy intersects both boundaries of the strip
S; of width 4 - A;/r in four points R <;., R' and R" <j., R"', where R, R’ are
on one boundary of the strip S; and R", R" are on the other boundary. To see
this, notice that s > 2+ A;/r follows from r,s > Dy and D3 > 2-A; > 2- A;. Let
e(s) be the angle between the lines Py R and P; R". Then, by using £/2 < sine
for e < m/2 and sin(e(s)/2) =2 A;/(r-s) < 2-A;/D2 < 1, we infer
Prob (dist (P, P’) € [s,s+ ds] | P1) < ((2-¢(s)))/(2-7)-2-m-sds <
< 8-sin(e(s)/2) - s ds = (16 - A;/r) ds.

Given P’ € [0,1]? with dist (P}, P') = s, the second extremal point P” € [0, 1]?
is contained in a strip centered at the line P; P’ of width 4 - A;/s, which occurs
with probability at most 4-+/2- A;/s. Given both points P', P", by Lemma 3(b)
all points Pyyq,...,P; # P', P" are contained in a parallelogram of area 4 - A;.
Hence, given Py, ..., P, € [0,1]?, with s > Dy = N~7 and v > 0, we infer:

Prob (area (Pi,...,P;) < A; | Pi,...,P, ; case (iii))

. V2 4.2 - Inv247-InN
§(4-Ai)z_g'/ deZ\/i’E'(ﬁl-Ai)z_g'—nf—}_’y - .

D, T°S r

(9)

Summarizing cases (i-iii) with (7)-(9), and r < /2 and 0 < 7 < 1 we obtain:
Prob (area (P1,...,P) < A; | Pi,...,Py)

iy V8+v8-(In2+2-7-InN) -

; <

Similarly, it follows Prob (area (Pi,..., Py, Qgt1,..-,Q4) < A; | P1,. ..
((4- A;)779-11-1n N)/r holds. Hence, we obtain for constants c;(g id)

11-InN

<(4-4;) (4- A7

. (10)

Py <
0:

>
Prob (Pi,...,P;and Pi,..., Py, Qgt1,.-.,Q; is a (2;(g,1,4))-cycle) <

< /ﬂ(4.Ai)g2. <(4-Ai)"9 . thN) . ((4.Aj)jg . thN) cq-r dr

Do r r

< iy AT AT79 . (logN)®  as Do=N"7,v>0is constant.  (11)

i(94,3
There are (Z._i_];f_g) choices for i + j — g out of N points, hence for constants
C2:(g,i5) > 0, = 2,...,k =1, we get with (11) the upper bound:

E[SQ;(gﬂ‘,j)(g)] < C24(9,i,) -Aﬁ*z ,A;j—g . NHi—g . (logN)?’, O

For distinct points P,Q € [0,1]?, it is Prob (dist (P,Q) < Dg) < 7 - D3. With
Dy = N7 we infer E[|E2]] < (§)-7-D3 < ea-N?~27 for some constant c; > 0. By
Markov’s inequality, using this and the estimates (5) and (6) there exist N points
Py,...,Py € [0,1)% such that the resulting hypergraph G = (V,& U --- U &)

with |V| = N satisfies for 2 < g <i < j <k but g < j:
&2] <K* .o N*727  and || <K ¢j ATTP N (12)
$25(g,i,) (9) < K’ " C2i(g,i,5) A2_2 'A;:_g - N'"=0 . (log N)*. (13)



For suitable constants c;. > 0,7 =3,...,k, which will be fixed later, we set
Aj = (c;, - (log n)l/(j—2))/n(j—1)/(j—2)_ (14)
Lemma 6. For fized v > 1/2 it is |E2] = o(]V]).

Proof. Using (12) and |V| = N, we have |&| = o(|V]) provided that N>~27 =
o(N) < N'727 = (1), which holds for v > 1/2. O

Lemma 7. For fizred 2 < g <i<j<kbutg<j and for fired constant 5 with
0<B<U=9/((G=2)-(i+j—g—1)) itis $2(9,,5)(G) = o(|V]).

Proof. By using (13) and (14) and |V| = N = n'*# with fixed 8 > 0 we have
89:(9,,j)(G) = o(|V]) for j =2,...,k — 1, provided that

AP ATT9 NS (log N)? = o(N)

= (logn)H 8 (- D)—(-)—E=51=1 )
= 1+8)-(i+j-9g-1)<i-1+((G-9)-0G-1))/0-2),
which holds for < (j —9)/((j —2)- (i +j7—g—1)). |

Fix 8:=1/(2-k%) and v := k/(2- (k — 1)). Then, with (14) and Dy = N=7 and
N = n!*F# all assumptions in Lemmas 5-7 are fulfilled. We delete one vertex
from each 2-element edge E € & and each (2;(g,i,j))-cycle,2<g<i<j<k
but g < j, in G. Let V* C V be the set of remaining vertices. The induced
subhypergraph G* = (V*,£5U---U &) of G with &7 :=&; N [V*),5=3,...,k,
is linear, and by (12), and Lemmas 6 and 7 fulfills |[V*| > N/2 and |£7] <
K -c;- A§_2 - N7. By (14), the hypergraph G* has average degree

B =G YV <2k e ()77 NI logm /™ =2 (1))

for the j-element edges. Fix a constant ¢’ > 0 such that Cy,/(2-¢')-g"/* =1 > 1
and set T := ¢ - (N/n) - (logn)*/*=1)_ Then fix constants ¢y >0,7=3,...k
n (14) such that

(t;(V) ™ =2k jej- (cj)’* - N'7F -logm) /™! <

<1/32. (k - 1) JAOGE=IN/ K1) . 18 i=1 . (log )=/ (k1)
< P

Then, the assumptions in Theorem 4 are satisfied for G*, and its independence
number «(G*) satisfies for some constant Cy, > 0:

a(G) 2 a(*) = Cy - ([V=*|/T) - (logT)*=7 > Cy. - (N/(2- 1)) - (log T) 77 >
C, - 1
>0 (log(n)) " >n.
2-¢ - (logn)*T1
The vertices of an independent set I with |I| = n yield n points among the N
points Pj,..., Py € [0,1]?, such that for j = 3,...,k the area of the convex
hull of any j distinct points of these n points is 2((logn)'/ =2 /nli=1/(i=2)) ag
desired. 0
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