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Dresden University of Technology
Department of Computer Science

D-01062 Dresden
jork@os.inf.tu-dresden.de

Jens Markwardt
Leipzig University

Department of Computer Science
Augustusplatz 10-11, D-04109 Leipzig
jens@berta.informatik.uni-leipzig.de

Abstract

To meet the demanding time-to-market requirements in
VLSI/ULSI design, the acceleration of verification pro-
cesses is inevitable. The parallelization of cycle-based sim-
ulation at register-transfer- and gate level is one facet in
a series of efforts targeted at this objective. We introduce
dlbSIM, a parallel compiled code functional logic simulator
that has been developed to run on loosely-coupled systems.
It has the ability to balance the application-specific load of
cooperating simulator instances in dependence of the over-
all load situation on involved processor nodes. Thereby,
the load of a simulator instance is expressed in terms of
a set of circuit model parts which are to be simulated by
the corresponding instance. The centralized load manage-
ment runs simultaneously with a parallel simulation. Both
processes interact after a controllable number of simulated
clock-cycles to transmit load information and realize load
modifications. dlbSIM is successfully used to simulate IBM
S/390 processor models.

1. Introduction

Current deep-submicron design processes require a so-
phisticated system of verification tools to ensure reliable
design results under demanding time-to-market conditions.
Design verification methods divide into two classes: formal
verification [5] and simulation [7]. While the latter class
represents the traditional way of design verification, formal
methods have started to move from the research community

to the industrial domain only in the last years. There are
strong indications that both classes will fruitfully comple-
ment one another in the near future. Following [2], there is
a promising potential for the development of methods that
bring together aspects of both simulation and formal verifi-
cation.

In this paper we focus on functional logic simulation
of synchronous designs at gate- and register-transfer level.
For system simulation processes it has proven to be a good
practice to separate timing analysis from functional verifi-
cation and leave corresponding tasks to dedicated tools as
static timing verifiers and cycle-based simulators [1]. Sev-
eral efforts have been made to accelerate cycle-based sim-
ulation, including the use of BDDs to represent combina-
tional logic [9], parallelization of compiled code simulation
[3] and putting simulation activities into hardware resulting
in hardware accelerators and emulators [4]. Among the al-
ternatives mentioned, emulators by far realize the highest
performance. Their use becomes more and more attractive
because of the growing capacity of FPGA components. The
high emulation speed comes at the expense of time con-
suming model building processes and a loss in observable
details during the emulation process. To cope with the lat-
ter fact, a state dependent interaction of an emulator with
a simulator would be useful. A parallel simulator version
would allow fast evaluation during phases of tracking incor-
rect behavior inside a circuit model. In general, simulation
offers higher flexibility than emulation, both with respect to
variations of the verification algorithm and the target hard-
ware that is necessary for its realization. The successful
usage of BDDs in cycle-based simulation of large circuits



depends on overcoming memory performance problems. A
promising hybrid approach, replacing gate level representa-
tions of some functional units with predefined macros, is to
be found in [6]. This approach allows a combination of for-
mal verification methods applied to certain functional units
with traditional compiled code simulation techniques.

With dlbSIM, we introduce a parallel compiled code
functional logic simulator dedicated to run on loosely-
coupled systems and providing dynamic load balancing. It
represents the successor of parallelTEXSIM [3]. To our
knowledge, these simulators represent first approaches to
parallel compiled code simulation. During the simulation
of a circuit model with parallelTEXSIM, we have a fixed
number of cooperating simulator instances, each instance
handling exactly one part of the original model. Thereby,
the assignment of model parts to simulator instances does
not change. This is adequate to parallel simulations under
exclusive use of a parallel machine or a workstation clus-
ter. In practice, this condition is fulfilled only in individual
cases. Since additional applications and system processes
can seriously disturb the cooperation of simulator instances
that are involved in a parallel simulation, we have devel-
oped dlbSIM with an integrated load balancing mechanism
that offers the possibility of adapting the simulation pro-
cess to external influences. A similar approach for parallel
event-driven simulation can be found in [8].

Within a dlbSIM simulation, we have a fixed number of
cooperating simulator instances again, but each instance is
handling a set of model parts. In general, a model part is
assigned to several simulator instances. During simulation,
at any point of time a subset of the model parts belonging to
a simulator instance is active (under simulation). For each
model part there is exactly one simulator instance where it
is active (activity property). Then, load balancing appears
as a modification of the sets of active model parts leaving
the activity property unchanged.

The dlbSIM load management is running simultaneously
with parallel simulation. The frequency of their interac-
tion can be controlled via a parameter. An application-
based load balancing approach has the great advantage that
application-specific knowledge can be included into deci-
sions on load modifications [10]. In our case, a deci-
sion to modify simulation-specific load is based on esti-
mations of the time that would be necessary to simulate
one cycle for the considered circuit model under the as-
sumption the load modification had taken place. Besides
external perturbances caused by other applications and sys-
tem processes, the decision mechanism takes into consider-
ation simulation-specific imbalances and the possible het-
erogeneity of the loosely-coupled processor system (a clus-
ter of workstations, for instance) dlbSIM is running on.

In Section 2 we outline the parallelization approach that
is underlying dlbSIM. The starting point is represented by

the sequential simulator MVLSIM (IBM). We provide the
notion of a model partition and shortly characterize paral-
lel simulation under dlbSIM including enhanced MVLSIM
instances. In the next section, we continue with basic as-
sumptions concerning load balancing. The combination of
load management with parallel simulation is described in
Section 4. In addition, the phases of load management are
considered in more detail. Then, in Section 5 representative
experimental results with respect to simulation of a large
IBM S/390 processor model are given. The last section of
this paper contains conclusions and addresses aspects of fu-
ture work.

2. Parallelization approach

dlbSIM is based on the sequential functional logic simu-
lator MVLSIM (IBM) for synchronous designs at gate- and
register-transfer level. A corresponding structural circuit
model M is depicted schematically in Figure 1. The basic
model components are given by sets of global inputs �MI�,
global outputs �MO�, logic elements �ME� and storing ele-
ments �ML�. A set of nets representing wires that realize the
connection of circuit components is denoted by MS. There
are no feedbacks in combinational logic.

Figure 1. Structural circuit model with cone
representations (shaded)

Within MVLSIM, cycle-based simulation is realized us-
ing the levelized compiled code (LCC) technique. Logic el-
ements are evaluated according to a rank ordering followed
by the update of storing elements (for instance, latches) at
cycle boundaries. The basic idea for the parallelization of
the simulation process was to partition M in an adequate
way and assign the resulting model parts to MVLSIM in-
stances cooperating over a loosely-coupled processor sys-
tem. We consider the set Co�M� of all fan-in cones with
head elements stemming from ML or MO (see Figure 1) as



collection of basic building blocks for model partitioning.
A corresponding cone comprises all logic elements out of
ME which have the capability to influence the cone head
during the simulation of one cycle. We derive a partition
π of M from a partition π� of Co�M� that represents a set
containing cone sets as elements. Each cone set C out of a
partition π� directly allows the construction of a model part
of M for inclusion into π on the basis of the union of all el-
ements belonging to cones out of C. Different model parts
of a partition π are not necessarily disjoint, there may be
an overlap between them. Furthermore, model parts of a
partition π generally have special input and output elements
which represent communication ports for the signal transfer
from and to other model parts of π. These ports are related
to nets out of MS in the original model M which, at the
one hand, have a cone head belonging to a model part m 0

as source and, at the other hand, feed a cone belonging to a
model part m1 ��m0. In practice, model partitioning for dlb-
SIM is realized using a BOTTOM-UP clustering technique
for cones.

dlbSIM has been developed under the AIX Parallel En-
vironment (PE) making use of its Message Passing Library
(MPL). It is intended to run on IBM Scalable POWERpar-
allel (SP) machines and on RS/6000 workstation clusters.

At run-time, dlbSIM appears in the form of a master
component and a set S� �S1� � � � �Sm� of slave components.
All slave components run on different processor nodes. The
master coordinates the work of the slaves, comprises a load
management facility and provides an API. Slaves repre-
sent MVLSIM simulator instances enhanced by a commu-
nication shell and special facilities to handle circuit models
within a parallel simulation. Each slave has the capability to
manage a set of model parts. Let us assume to have a par-
tition π � �M1� � � � �Mn� of a circuit model M with n � m
in preparation for a parallel simulation run. Then, first an
initial distribution

D : π � 2S (1)

of model parts (with 2S denoting the power set of S) has
to be realized. Thereby, D�Mi� specifies the set of slaves
which have the possibility to simulate Mi in a following sim-
ulation run. In practice, that means for a slave S j to load all
model parts Mi with S j � D�Mi� before simulation. We as-
sume, that each simulator instance is included in the initial
distribution, expressed by the condition

�n
i�1 D�Mi� � S.

Furthermore, we require, that at any stage of a simulation
run, for each M j exactly one of its possibly multiple oc-
currences should be under simulation (active). We call this
activity property and represent the relation between model
parts and slaves that are currently simulating them by a
function

A : π � S. (2)

During a simulation of a sequence of clock-cycles for M,
the slaves S j execute a loop in parallel, the body of which
contains four steps in the order as given below. All slaves
synchronize each other in the TRANSFER step.

� CLOCK
Simulation of one clock-cycle for all model parts Mi

with A�Mi� � S j

� GET
Reading signal values from model-specific data struc-
tures (nets) and writing them to output ports of model
parts Mi with A�Mi� � S j

� TRANSFER
Collective communication involving all slaves belong-
ing to S to transfer signal values between model parts
at cycle boundaries

� PUT
Reading signal values from input ports of model parts
Mi with A�Mi� � S j and writing them to model-
specific data structures (nets)

3. Assumptions on load balancing

If we consider a parallel simulation run with dlbSIM,
we distinguish two kinds of load: simulation-specific load
and load caused by applications and/or system processes
running in addition to dlbSIM on processors the simulator
makes use of. Information with respect to the latter can be
obtained in different forms from the operating system. We
define simulation-specific load related to a slave S j (at a
certain time during the parallel simulation) as the set of all
model parts Mi with A�Mi� � S j according to �2�. Thus the
simulation-specific load of a slave determines the amount
of work (to be done by the corresponding slave) connected
with the execution of the four basic steps for the simula-
tion of one clock-cycle as mentioned above. The time to
realize this work depends on load influences from outside
the simulation and on the hardware configuration the slave
is running on. Because of the synchronization of all slaves
in the TRANSFER step, imbalances in the cycle simula-
tion time between the slaves that are involved in the parallel
simulation cause wait intervals. Our objective is to obtain a
short overall simulation time for sequences of clock-cycles
by balancing the cycle simulation times of the slaves. To
achieve this, dlbSIM comes with a possibility to change
simulation-specific load. Load modification appears as a
modification of the current function A restricted by the ini-
tial distribution D of model parts according to �1�. This
way, a load modification does not involve a real move of
model parts between slaves. If, for instance, it would be fa-
vorable to reduce the cycle simulation time of slave 1 in Fig-
ure 2 at the expense of the corresponding simulation time



of slave 2, the latter could take on the simulation of model
parts 1 or 2. Including both slave 2 and slave 3, even the
extreme case of completely discharging slave 1 would be
possible. Load balancing under dlbSIM avoids process mi-
gration and complete repartitioning of a circuit model under
simulation.

Figure 2. Set of 3 slaves handling a model par-
tition with 12 components, each component
initially distributed to 2 slaves

4. Load management

The dlbSIM load management is centralized in the mas-
ter component. It comprises the request of load information,
load evaluation and the modification of simulation-specific
load (depending on the result of load evaluation). A se-
quence of clock-cycles to be simulated for a given partition
of a circuit model is divided into simulation intervals, the
length of which (in terms of a number of cycles) can be
controlled via a parameter. During a simulation interval In,
slaves work independent of the master that makes use of
the time gap to evaluate load information stemming from
In�1 (see Figure 3). After termination of a simulation in-
terval In the master receives load information from every
slave with respect to In. If the load evaluation concerning
In�1 has resulted in a decision to perform a modification of
simulation-specific load, the load information related to In

becomes invalid and the load modification is initiated (af-
fecting In�1). Otherwise, there is no load modification at
this point of time. Finally, the slaves are required to start
In�1, and in case of valid load information related to In, this
information is evaluated by the master.

4.1. Load information

The determination of adequate load information is an es-
sential basis for the estimation of both a load situation at
hand and consequences of its modification. During a sim-
ulation interval, each slave accumulates the time necessary

Figure 3. Load management and simulation

for the evaluation of logic elements in the CLOCK step (per
model part) and the time necessary for reading and writ-
ing signal values to nets in the GET and PUT steps (per
slave). Measured time values represent real run-time, in-
cluding time intervals used by applications or system pro-
cesses outside the simulation. Corresponding average val-
ues are given to the master together with the ”load” value
provided by the AIX operating system.

4.2. Evaluation of load information

The ”heart” of the load management is given by the re-
cursive load balancing algorithm that is sketched in pseudo-
code notation in Figure 4. Based on a current simulation-
specific load of the slaves, the load information mentioned
above and structural information with respect to the model
parts, this algorithm investigates the effect of sequences
of virtual model moves on the estimated simulation time
for one clock-cycle of the corresponding model. Thereby,
”worst slave” means a slave that shows the highest amount
of time for the simulation of one cycle at a current state of
the execution of rec dlb. It is tried to come to better solu-
tions (for the choice of active model parts on slaves) than a
current best solution by moving models away from a current
worst slave. For being deemed better than the best solution
at the moment, it is not enough to show lower cycle simula-
tion time, the time gain must be at least of a certain amount
that is controlled by the parameter OFF and the current re-
cursion depth. The parameter maxdepth limits the recursion
depth to guarantee termination of the algorithm and to con-
tain the use of CPU and memory resources. It also restricts
the set of investigated model part distributions. Because we
allow one model move per recursion step, maxdepth cor-



relates to the maximum number of model moves per load
modification. Obviously, it is possible that no better solu-
tion than the start solution is found. In this case, no load
modification is suggested. The evaluation of load informa-
tion results in a (possibly empty) list describing moves of
model parts.

recursive procedure rec dlb (depth, maxdepth)
time := predicted cycletime
s := worst slave
for all m � π : A�m� � s do

for all r � S : r �� s�r � D�m� do
move model m to r
t := predicted cycletime
if t � �1�depth�OFF�� time then

time := t
save moves done up to now

fi
if depth � maxdepth then

call rec dlb (depth�1, maxdepth)
fi
move model m to s

od
od

Figure 4. Recursive load balancing algorithm,
depth equals 1 at the first call

4.3. Load modification

For load modification, the list of moves resulting from
the load balancing algorithm (if it is not empty) has to be
transposed into new simulation-specific loads of slaves. To
”move” a model part from slave Sk to Sl it has to be de-
activated on Sk and activated on Sl where it has been al-
ready loaded since the beginning of the parallel simulation
run. The model part’s state is extracted from Sk and trans-
ferred to Sl . There the state information is used to initial-
ize the local copy of the corresponding model part. Other
slaves (if existent) are informed of that move. This way they
can modify communication-related data structures before
the start of the next simulation interval. The time needed
to perform a model move mainly determines the OFF pa-
rameter in Figure 4.

5. Experimental results

We present first results of experiments with dlbSIM con-
ducted on a small heterogeneous cluster of workstations
consisting of three RS/6000 workstations W1 (2 GB RAM),

W2 (1 GB RAM) and W3 (64 MB RAM). These machines
are connected via a 10 MBit Ethernet network. In the fol-
lowing, we summarize further conditions which all experi-
ments under consideration had in common:

� We have simulated 30000 clock-cycles of an IBM
S/390 processor model with about 2�7 million basic el-
ements, the hierarchy level being a mixture of gate-
and register-transfer level. The model has been parti-
tioned into 8 model parts M0� ����M7 with sizes rang-
ing from 6�1 MB to 11 MB. The maximum recursion
depth of the load balancing algorithm was 3. (Previ-
ous experiments with depth 5 did not show changes
with respect to moves of model parts.)

� There have always been three slaves S1�S2�S3 with Si

running on Wi. The master component ran on W1. Fig-
ure 5 shows the initial distribution of the model parts
to the slave components.

� During the experiments there was no load stemming
from other users. ”Disturbing processes” have been
simulated in the experiments. In such cases, load has
always been added on one node after 10000 cycles and
removed after 20000 cycles.

Figure 5. Initial distribution of model parts

Before considering experiments in more detail, we want
to give some remarks related to the result representation.
The charts in the Figures 6 and 8 show the total real run-time
that was needed for each simulation interval (1000 or 500
cycles). This time includes both simulation time and time
spent to realize possible model moves. Phases of moving
models took about 1 to 2 seconds depending on the network
traffic. The tables in Figure 7 show for each model part
and given cycle intervals the slave where the model part is
active.

Experiment ”No load”

During this experiment no load outside the simulation
has been generated. Load balancing was enabled (the load
balancing capability of dlbSIM can be switched off). The
simulation interval comprised 1000 cycles. Results are
shown in Figure 6 and Table (a) of Figure 7. The total
run-time for the first 1000 cycles amounted to 460 s. Four
phases of moving models (after 2000� 4000� 6000 and 8000
cycles) resulted in a total run-time of 210 s for one simu-
lation interval. This time stayed stable until the end of the



simulation. The results show the ability of dlbSIM to com-
pensate unfavorable choices of initial simulation-specific
load on a heterogeneous system.
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Figure 6. Total real run-time for simulation in-
tervals of 1000 cycles

Experiment ”Load 4 without dlb”

This experiment started with the distribution of active
model parts that was found in the previous experiment.
Load balancing was disabled (see Table (c) of Figure 7).
On W1, where S1 was running, an additional load of 4 was
generated. The influence of the additional load is clearly to
be seen in Figure 6.

Experiments ”Load 2” and ”Load 4”

In both cases, load balancing was enabled and the simu-
lation interval comprised 1000 cycles. On W1, an additional
load of 2 and 4 was generated, respectively. Results are
shown in Figure 6 and Table (b) of Figure 7. The repre-
sentation of model moves is restricted to ”Load 2” because
there are nearly the same results as with ”Load 4”. During
the first 10000 cycles the run-times for corresponding sim-
ulation intervals were the same as in the experiment ”No
load”. Under load 2 �4� these run-times increased from
210 s to 580 s �990s�. Load information expressing the
changed load situation was available for the master com-
ponent after 11000 cycles. In parallel to the next simulation
interval, load evaluation resulted in a proposition of load
modification. This modification took place after 12000 cy-
cles, reducing the corresponding run-times to 350 s �490 s�.
After removal of the additional load, several load modifica-
tions were realized by dlbSIM. Finally, the same situation as
immediately before generating additional load was reached

(both concerning the run-time of simulation intervals and
the distribution of active model parts).

Figure 7. Slave components where model
parts are active at given cycle intervals
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Figure 8. Total real run-time for simulation in-
tervals of 500 cycles

Experiment ”Simulation interval 500”

This experiment represents a slight modification of
”Load 2” considered above. Different from the latter, the
length of the simulation intervals is set to 500 cycles. As a
consequence, there is a faster response to the generation of
additional load and a faster improvement of the initial dis-
tribution of active model parts. The corresponding results
are shown in Figure 8. There is no difference to ”Load 2”
concerning the distribution of active model parts both im-



mediately before load generation and at the end of the sim-
ulation.

The above experiments focus on the ability of dlbSIM
to adapt to additional load appearing on processor nodes
involved in simulation. In case of exclusive sequential sim-
ulation of the complete processor model on W1 (W2/W3) the
average total run-time for 1000 cycles is 41 s (445 s/195 s).
Experiments applying parallelTEXSIM to the simulation of
the same processor model on an IBM SP2 parallel machine
(under exclusive use) show the acceleration potential of par-
allel compiled code simulation. In comparison to sequen-
tial simulation, 4-way (12-way) parallel simulation runs re-
sulted in average speed-up values of 2�98 (4�7).

6. Conclusions and future work

We have introduced dlbSIM, a parallel compiled code
functional logic simulator that has been developed to run
on loosely-coupled systems. It provides the possibility of
dynamic load balancing with respect to simulation-specific
load under consideration of the overall load situation of the
processor system the simulator is running on. Experimen-
tal results concerning the parallel simulation of real pro-
cessor models have shown that the load balancing capabil-
ity of dlbSIM can significantly reduce the simulation time
under load influences stemming from outside the simula-
tion. Furthermore, dlbSIM is able to compensate unfavor-
able choices of initial simulation-specific load on a hetero-
geneous system. It raises the attractiveness of using work-
station clusters for long running simulation processes han-
dling large circuit models.

There are many factors influencing the effect of dynamic
load balancing with dlbSIM. In future work we will focus
on the investigation of model partitioning and the initial dis-
tribution of model parts to a set of slaves. Furthermore, vari-
ations of the decision strategy realized in the load balancing
algorithm will be subject of our work.
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