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Abstract. In this article, the efforts for integrating alternative FEM codes into a complex
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Performance results are shown to investigate the overhead caused by the data conversion.

Key words. FEM simulations, data conversion, component-based development, distributed
simulations

1. Introduction. The development of scientific applications for complex prob-
lems often leads to complicated program codes that are hard to maintain and less
portable in terms of their performance on different hardware platforms. Component-
based development approaches can provide means to handle this complexity, especially
if several independently developed application programs have to be integrated into a
single complex simulation [12]. Important aspects of these approaches are the imple-
mentation of new components or the integration of existing components, the efficient
data exchange between components based on various communication methods, and
the flexibly distributed execution of components on different hardware platforms. A
further major challenge is to ensure the interchangeability of specific components, for
example, to perform compute-intensive tasks, such as finite element method (FEM)
simulations, with different application programs.

Having the ability to choose flexibly between different application programs pro-
vides several advantages. Program codes with different application functionalities,
for example, might provide alternative solution methods that lead to different re-
sult precision or support specific simulation conditions. If the program codes provide
the same application functionality, then it might be preferable to use codes that re-
duce costs, for example, in terms of execution time, hardware utilisation, or software
licenses. The flexible integration of FEM codes into a component-based scientific
simulation needs support by a generic FEM simulation component that can invoke
different FEM codes. This approach would allow users of complex simulation applica-
tions, e.g. domain specialists such as mechanical engineers, to focus on the design of
their simulation problems and solution methods. The usage and integration of specific
program codes as well as their efficient execution on dedicated platforms, such as high
performance computing clusters, is then left to the application developers.

The complex simulation which we consider is an application from mechanical en-
gineering for optimising lightweight structures based on numerical simulations. This
class of applications is extensively studied in the research project MERGE1. The
goal is to perform simulation-based optimisations of the design and the manufac-
turing of fibre-reinforced plastics [10]. The overall complex simulation application
consists of various program components, such as computationally intensive numerical
simulations, control programs for implementing the optimisation process as well as
data-oriented programs for the generation, management, and visualisation of the sim-
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ulation data. FEM codes are used to simulate the cooling of the manufactured parts,
which leads to residual stresses and deformations, and for the characterisation of their
mechanical properties with specific operating load cases. To achieve an interchange-
ability of the FEM simulation component, it is required to implement data conversions
for the FEM input data formats and to utilise different FEM codes and their specific
execution platforms. The FEM input data formats are usually text-based and com-
prise information, such as the geometry and the material properties of the part to be
simulated and the boundary conditions of the desired solution. The FEM codes range
from open source codes to closed commercial or proprietary codes while as execution
platforms usually both Linux/Unix-based or Windows-based systems are used.

In this article, we present the integration of a generic FEM simulation component
into a component-based simulation application for the optimisation of lightweight
structures. The main contributions are as follows: We describe the major compo-
nents of the complex simulation application as well as the interactions between these
components based on a service-oriented approach. The integration of generic FEM
simulations is mainly achieved with a dedicated FEM data conversion component. We
present the design of this conversion component and describe its support for two differ-
ent FEM input data formats. Finally, we describe the implementation of the program
components of the simulation-based optimisation application and their interactions
based on the Simulation Component and Data Coupling (SCDC) library [12]. The
SCDC library supports different data exchange methods, such as direct function calls,
inter-process communication, and network communication. Thus, using the SCDC li-
brary allows for a flexibly distributed execution of the program components among
different hardware platforms without requiring additional programming efforts.

The rest of this article is organised as follows. Section 2 gives an overview of
the complex simulation application for optimising lightweight structures. Section 3
presents the data conversion between different input formats of FEM codes. Section 4
describes the component-based approach for implementing the distributed execution
of the program components of the complex simulation. Section 5 presents results for
estimating the overhead of the FEM data conversion in comparison to the execution of
the FEM codes. Section 6 discusses related work and Section 7 concludes the article.

2. A complex simulation application for the optimisation of lightweight
structures. The optimisation of lightweight structures to be developed in the project
MERGE is performed with numerical simulations for manufacturing and using fibre-
reinforced plastics. The simulation-based approach and the component-based imple-
mentation of the resulting complex simulation application is described in the following.

2.1. Optimising lightweight structures. The lightweight structures consid-
ered in the project MERGE are plastic parts that are manufactured by injection
moulding. Fillers, such as short glass or carbon fibres, are mixed into the plastic
to improve the mechanical properties of the parts. A computational fluid dynam-
ics (CFD) simulation is used to simulate the manufacturing process of injecting the
molten plastic and the fibres into a mould. The density and orientation of the fibres
within the manufactured parts have a strong influence on their mechanical properties.
The results of the CFD simulation characterise the fibre distribution within the parts
and are used to model the material properties of such short fibre-reinforced plastics.

The CFD simulation is finished when the mould is filled with the molten mate-
rial, thus leading also to a temperature distribution within the manufactured part. A
thermal analysis simulation uses the temperature distribution as a starting point to
simulate the cooling to room temperature. This cooling process can lead to residual
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Figure 2.1. Overview of the coarse structure of the optimisation process for designing
lightweight structures.

stresses in the solid material and to deformations of the manufactured part. The
resulting information about the geometrical and material properties of the manufac-
tured part are finally used to simulate its behaviour in different operating load cases
using structural analysis simulations. Both thermal and structural analysis (TSA)
simulations are performed with finite element method (FEM) programs.

The overall goal of the complex simulation application is to optimise the properties
of the lightweight structures. Figure 2.1 shows a coarse overview of this optimisation
process. Based on an optimisation problem defined by the user of the complex simula-
tion application, an optimisation method selects specific values for the parameters to
be optimised. For short-fibre reinforced plastics, material and manufacturing param-
eters, such as the fibre percentage or the injection position, are varied. Each selected
parameter configuration is then used to simulate the manufacturing, the cooling, and
the usage of the corresponding plastic part. In this step, usually about 10–100 simu-
lation tasks have to be computed with dedicated CFD and TSA simulation programs.
However, the specific number of tasks depends on the number of parameters to opti-
mise, the utilised optimisation method, and the load cases to consider. The simulation
results with the different parameter configurations are then evaluated, such that the
optimisation method can either select further parameter configurations to simulate or
finish with the optimised parameters. A Kriging metamodel approach is used for the
global optimisation [13]. A more detailed overview of the simulation and optimisation
approaches developed in the research project MERGE is given in [8].

In this work, we concentrate on the utilisation of FEM codes for the simulation
of operating load cases. This can be used, for example, to perform parameter studies
with successively changing loads or to compare different solution methods supported
by FEM programs. As a primary example of an FEM program, we use an in-house
adaptive FEM code called SPC-FEM [5] which has been further developed accord-
ing to the needs of the project MERGE. The input data for the FEM simulations
to perform is generated in the custom data format of the SPC-FEM code. Addi-
tional commercial FEM codes, such as ANSYS2, should be employed as alternative
or complementary FEM methods. Thus, it is required to integrate appropriate data
conversions and program executions into the complex simulation application.

2.2. Component-based application with generic FEM integration. The
optimisation of lightweight structures described in the previous section involves a va-
riety of different application programs. To achieve a sustainable solution that allows
a continuous adaption to new usage scenarios and a flexible utilisation of distributed
execution platforms, the overall complex simulation application is separated into in-
dividual software components as follows:
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Figure 2.2. Overview of the components for the service-oriented implementation of the sim-
ulation application for lightweight structures. The interactions (1)–(6) represent client accesses to
services.

• The optimisation component contains the modelling of the optimisation
problem with its parameters as well as the optimisation method to be used.
This component acts as a driver for the simulation application and generates
the input data for the FEM simulation tasks to be performed. The execution
is usually not computationally intensive and might be based on user interac-
tions. The optimisation component is thus executed on a desktop platform.

• Simulation components execute the FEM simulation tasks. Separate FEM
components are available to perform the simulations either with the SPC-
FEM or the ANSYS-FEM code. For the integration of a generic FEM sim-
ulation, an additional generic FEM component that invokes the application-
specific FEM components is provided. Since FEM simulations can be com-
putationally intensive, it might be advantageous to execute them on HPC
platforms. However, the generic FEM component might also be executed in
close cooperation with the optimisation component on a desktop platform.

• Domain-specific problems that are not directly related to the simulation-based
optimisation of lightweight structures are solved by auxiliary components.
This includes a dedicated scheduling component that determines schedules
for the efficient utilisation of HPC platforms. In [8], we have presented several
scheduling methods for assigning simulation tasks to compute resources of a
heterogeneous compute clusters such that the total time for executing all
simulation tasks is minimised.

• The data conversion between different FEM input data formats is performed
by a dedicated conversion component. The input data formats used by
the SPC-FEM and ANSYS-FEM codes and the implementation of the data
conversion is described in Section 3. Both the scheduling and the conversion
component are mainly used by the generic FEM simulation component and,
thus, are executed close to their execution platform.

• A storage component provides separate locations for storing the input and
output data of each FEM simulation. This component remains passive and
does not perform any computations. However, to support high numbers of
FEM simulations with large amounts of simulation data, the storage compo-
nent might be executed on a dedicated server with high storage capacities.

A service-oriented approach is used to model the interactions between the different
components. Within this model, each component can be both a client that accesses
other service components and a service that is accessed by other client components.
Figure 2.2 illustrates the service-oriented implementation of the simulation application
for the optimisation of lightweight structures. The optimisation component is invoked
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by the user of the simulation application and generates the FEM simulations to be
performed. Thus, this component represents a client that is activated first and then
accesses other components. The execution of several FEM simulations (e. g., with
different parameters, see Section 2.1) is then performed as follows:

• The input data of the FEM simulations is first transferred from the optimisa-
tion component to the storage service (1) and then the FEM simulation tasks
are submitted to the generic FEM service (2).

• The generic FEM service uses information about the FEM simulation tasks
and the available compute resources to set up a scheduling problem. Solving
this problem is performed by a dedicated scheduling service that is accessed
by the FEM service (3).

• The generic FEM service retrieves the input data of each FEM simulation
task from the storage service (4) and performs the required data conversions
by accessing the conversion service (5).

• The generic FEM service submits the FEM simulation tasks with its converted
input data and the scheduling information about the compute resources to
be used to either the SPC-FEM (6a) or the ANSYS-FEM (6b) service. The
utilised service then executes its specific FEM code on the given compute re-
sources. The FEM simulation results are gathered by the generic FEM service
and then transferred to the storage service. After the generic FEM service
finished all FEM simulation tasks, the submission of the FEM simulation
tasks performed by the optimisation component (2) is completed.

In [12], we have presented the SCDC library that is specifically designed for im-
plementing complex simulation applications with a component-based service-oriented
approach as described in this subsection. The usage of the SCDC library for im-
plementing the simulation application for the optimisation of lightweight structures
including the flexible use of FEM codes introduced in this work is given in Section 4.

3. Data conversions for generic FEM simulations. The integration of
generic FEM simulations into the optimisation application for lightweight structures
is based on a data conversion between different FEM input data formats. In the fol-
lowing, a generic input data of FEM simulations as well as two specific data formats
of FEM codes are described. Furthermore, the conversion between the two specific
formats and their integration in a flexible conversion tool is presented.

3.1. Generic FEM input data. The FEM input data consists of three main
parts: the geometry of the structure to be simulated, its material properties, and the
boundary conditions of the desired solution. The geometry part describes the shape
of the structure to be simulated and is assumed to be given as a mesh. The smallest
units of a mesh are nodes given by their coordinates in a three dimensional space.
Pairs of nodes can be connected to create edges. Multiple edges together form faces,
e. g. four edges form a quadrilateral face. The composition of multiple faces leads to
elements. Finally, the whole structure is represented by a set of elements.

The material part of the FEM input data specifies the properties of the materials
the structure to be simulated consists of. Each material is described by a set of
parameters of a corresponding material model. Currently, a linear elastic model is
supported and the elements of the structure can use different materials (i. e., with
different sets of parameter). Simulating the behaviour of a structure requires to
determine the solution of an equation system that describes the state of the structure.
The boundary conditions usually define constraints that need to be fulfilled by the
desired solution. For example, in the FEM input data, the boundary conditions can
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Figure 3.1. Geometry of an example structure for an FEM simulation where one side of the
structure (green) is clamped and on the opposite side (red) a load is applied.

be used to provide information about the occurring mechanical forces in an operating
load case. In this case, the FEM simulation can determine a solution that describes
the resulting deformation of the structure. Further boundary conditions can be set to
prevent that specific parts are deformed, for example, to simulate a clamped structure.

Figure 3.1 illustrates an example structure consisting of two connected cuboids
with different size in x-direction. The corresponding mesh consists of 20 vertices, 36
edges, 21 faces and 4 elements. This example structure is used in the following to
demonstrate the different FEM data formats. The boundary conditions are chosen
such that one side of the structure (green) is clamped and on the opposite side of the
structure (red) a load is applied in z-direction.

3.2. SPC-FEM format. The SPC-FEM code [5] is an in-house development
of an adaptive FEM solver. The content of the corresponding input format can be
separated into parts for geometry, material, and boundary conditions. Furthermore,
the SPC-FEM format contains a header with additional information, such as the
degrees of freedom to be used. In general, the format uses a # character followed by
a keyword to start the input data of the different parts.

The geometry part contains nodes, called vertices. After the line starting with
the keyword VERTEX, each vertex is given by an index and its coordinates in a three
dimensional space. Edges are listed after the line starting with the keyword EDGE.
Each edge is given by an index, a type (e. g., a straight line), and the two indices of
the corresponding vertices. Faces are listed after the line starting with the keyword
FACE. Each face is given by an index, a type (e. g., a plane face), and the number of
associated edges followed by the indices of these edges. Elements, called solids, are
listed after the line starting with the keyword SOLID. Each element is given by an
index, a type that specifies its material, and the number of associated faces followed
by the indices of these faces. Materials are defined after the line starting with the
keyword MATERIAL. Each single material definition comprises an index and the number
of material parameters followed by the parameters to describe the material.

The SPC-FEM format supports two different types of boundary conditions. The
first type of boundary conditions represents Dirichlet boundary conditions which are
given after the keyword DIRICHLET. Dirichlet boundary conditions can be used to pre-
define some values of the solution, e. g. to fix the position of some nodes. The second
type of boundary conditions represents Neumann boundary conditions which are given
after the keyword NEUMANN. Neumann boundary conditions can be used, for example,
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#VERSION: 2.0
#DATE: Monday , December 19, 2016
#DIMENSION: 3D
#EQN_TYPE: any equation
#DEG_OF_FREE: 3
#HEADER: 9

20 36 21 4 0 3 1 1 0
#VERTEX: 20

1 0.5 0.0 0.0
...

20 0.375 0.0 0.2
#EDGE: 36

1 1 1 2
...

36 1 13 16
#FACE: 21

1 1 4 1 22 11 21
...

21 1 4 13 14 15 36
#SOLID: 4

1 1 6 1 2 11 10 14 18
...
4 1 6 3 4 5 12 17 21

#MATERIAL: 1
1 5 10000 0.30 0 0 0

#DIRICHLET: 3
8

1 0.0
1 0.0
1 0.0

...
#NEUMANN: 1

4
1 0.0
1 0.0
1 10.0

/prep7

et , 1, 185

mp , ex , 1, 10000
mp , prxy , 1, 0.3

n, 1, 0.5, 0.0, 0.0
...
n, 20, 0.375, 0.0, 0.2

e, 1, 2, 3, 10, 11, 12, 13, 20
...
e, 3, 4, 5, 6, 13, 14, 15, 16

d, 8, UX, 0.0
d, 8, UY, 0.0
d, 8, UZ, 0.0
...
d, 19, UX, 0.0
d, 19, UY, 0.0
d, 19, UZ, 0.0

f, 4, FZ, 10.0
...
f, 15, FZ, 10.0

/solu
solve
finish

Figure 3.2. Example of FEM input data in the SPC-FEM format (left) and in the MAPDL
format (right).

to define loads on specific parts of the structure. Each boundary condition refers to a
face that is given by its index followed by one line for each degree of freedom. Each of
these lines contains a type that specifies how the boundary condition is represented
(e. g., with constant values) followed by the specific data of this representation.

Figure 3.2 (left) shows an example of FEM input data in the SPC-FEM for-
mat. The geometry part contains vertices (i. e., nodes), edges, faces, and solids (i. e.,
elements) as shown for the example structure in Fig. 3.1. The Dirichlet boundary
conditions fix the coordinates of the faces of one side of the structure (e. g., face with
index 8) and the Neumann boundary conditions define a load in the z-direction on
the face of the opposite side of the structure (i. e., face with index 4).

3.3. MAPDL format. ANSYS is a commercial engineering analysis software
including ANSYS Mechanical, a tool for FEM analysis. The Mechanical ANSYS
Parametric Design Language (MAPDL) [2] is a scripting language that is used to
describe the input data of ANSYS Mechanical. The MAPDL format can be used to
define the mesh of the structure to be simulated, the properties of the materials to be
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used, and the boundary conditions for the desired solution. Additionally, instructions
for preprocessing steps and for the solution method can be given.

The mesh of the structure to be simulated can be described by nodes and elements.
The ANSYS-FEM code supports different types of elements with various shapes and
material properties. The command et is used to select the current element type
that is used for all following definitions of elements. The material properties of the
elements are defined with the command mp followed by specific material parameters,
such as the elastic modulus ex and the Poisson ratio prxy. After the current element
properties are defined, the mesh of the structure is given as nodes and elements. A
node is defined with the command n followed by an index and its coordinates in a
three dimensional space. Elements represent collections of nodes and are defined with
the command e followed by the indices of the nodes. With the MAPDL format, the
boundary conditions can be defined for nodes. The command d is used to define
displacement constraints of nodes and the command f is used to define force loads at
nodes. Both commands require to specify the index of the node, a label that identifies
the degree of freedom, and the value to be set.

Figure 3.2 (right) shows an example of FEM input data in the MAPDL format
that corresponds to the FEM input data in the SPC-FEM format presented in Fig. 3.2
(left). The FEM input data begins by calling the preprocessor. Afterwards, the
element type and the material properties are set and the nodes and elements are
created. The boundary conditions are defined, by setting the displacement of the node
with index 8 (and several other nodes) and by setting a force load in the z-direction
for the node with index 4 (and several other nodes). Finally, the solver is started with
the command solve and after finishing the computations, the ANSYS-FEM code is
terminated with the command finish.

3.4. SPC-FEM to MAPDL format conversion. For parsing the source for-
mat of the FEM input data, we have used the Pyparsing library [16]. Pyparsing is
an open source Python module for creating grammars and parsing text according to
those grammars. For each FEM data format, a separate grammar has to be created.
The given FEM input data is then parsed with the grammar of the source format.

Figure 3.3 shows a Python code example that defines the Pyparsing grammar for
the SPC-FEM format. The grammar is build up hierarchically by defining separate
parsing objects for each entry of the SPC-FEM format. Comment lines starting
with the literal ## are matched as entries whose occurrence is ignored. Commonly
occurring entries, such as numbers, are defined once with a parsing object (e. g., inum
and fnum) and then used in the definition of further entries. The definition of each
specific FEM data entry uses its keyword as a literal and a corresponding parsing
action that is executed when the entry is matched by the parser. The utilised parsing
actions (e. g. fill_info or fill_data_vertex) store the parsed data in a dictionary-
based data structure. Finally, the entire grammar object spc_data is defined by
listing all previously defined entries that can occur within the source format.

After parsing the FEM input data given in the SPC-FEM format, the correspond-
ing MAPDL format has to be generated. Since the two formats can use different rep-
resentations for the mesh of the structure, an appropriate data transformation has to
be applied. For example, the MAPDL format defines elements as collections of nodes,
whereas the SPC-FEM format defines elements based on faces. Converting an ele-
ment from the SPC-FEM format into the MAPDL format thus requires to determine
all nodes of the element. For each element, the corresponding data transformation
iterates over all participating faces, edges, and vertices to build the required collec-
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comment = Suppress(Literal ("##")+ restOfLine)

inum = Regex(r’-?\d+’)
fnum = Regex(r’-?\d+(\.\d*)?([ eE]-?\d+)?’)

config_keys = oneOf(" VERSION DATE DIMENSION EQN_TYPE DEG_OF_FREE . . .")
config_info = Group(Suppress ("#")+ config_keys+Suppress (": ")

+restOfLine ). setParseAction(fill_info)

header_info = Group(Suppress ("#")+ Literal (" HEADER ")+ Suppress (": ")
+restOfLine ). setParseAction(fill_info)

header_data = Group(OneOrMore(inum )). setParseAction(fill_data_header)

vertex_info = Group(Suppress ("#")+ Literal (" VERTEX ")+ Suppress (": ")
+restOfLine ). setParseAction(fill_info)

vertex_data = Group(OneOrMore(fnum )). setParseAction(fill_data_vertex)

. . .

spc_data = OneOrMore(comment+lineEnd
|config_info+lineEnd
|header_info+lineEnd+LineStart ()+ header_data+lineEnd
|vertex_info+lineEnd+LineStart ()+ vertex_data+lineEnd
|. . .)

Figure 3.3. Definition of the Pyparsing grammar for the SPC-FEM format.

tion of nodes. The resulting information is also stored within the dictionary-based
data structure. After all data transformations are performed, the MAPDL format is
generated by iterating over the required entries of the dictionary-based data structure.

3.5. Flexible FEM data conversions. The conversion of FEM data formats
described in the previous subsections is closely tied to the SPC-FEM and MAPDL
format. To provide a more flexible FEM data conversion for the complex simulation
application developed in Section 2, we design the FEM data conversion as follows. A
dictionary-based data structure is used as a central data pool that stores all infor-
mation involved in the conversion. Strings are used as keys for the dictionary entries
such that both format-independent and format-specific data fields can be stored. In
general, a data conversion is then performed by executing the following operations:
Source format parsing: These operations import the given FEM input data and fill

in the corresponding data fields of the central data pool. For each supported
FEM data format, a separate parser operation is developed as demonstrated
for the SPC-FEM format. Furthermore, parsing operations might also be
implemented for importing only specific parts of the FEM input data, such
as the mesh of the structure.

Data transformation: These operations read the existing data fields of the central
data pool, translate or combine them into new information, and write them
into the corresponding data fields of the central data pool. For example,
determining the nodes for each element as described for the SPC-FEM to
MAPDL format conversion is implemented as a transformation operation. A
further example of a transformation operation is the refinement of the given
mesh of the structure by dividing each element into several smaller elements.

Target format generation: These operations use the existing data fields of the
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central data pool and export them with a specific data format. For each
supported FEM data format, a separate generator operation is developed
as demonstrated for the MAPDL format. Furthermore, generator operations
might also be implemented for exporting only specific parts of the FEM input
data, for example, to visualise the mesh of the structure with separate tools.

Performing a specific FEM data conversion is achieved by flexibly composing the
required operations. The usage of a dictionary-based data structure avoids any limi-
tations that might exist in specific FEM data formats. Additional FEM data formats
can be easily integrated by providing the implementations of the corresponding parser
or generator operations. The memory requirements of the conversion are mainly
determined by the size of the dictionary-based data structure where the geometry
information usually represent the largest entries. Currently, all operations of the con-
version are performed sequentially and one after another. While parsing the source
format and generating the target format are inherently sequential operations, data
transformations might also be performed in parallel.

4. Component-based implementation for distributed systems. The indi-
vidual software components of the complex simulation application for the optimisation
of lightweight structures need to be executed on dedicated hardware platforms, such
as desktop computers, HPC clusters, or storage servers. We utilise the Simulation
Component and Data Coupling (SCDC) library to implement the interactions be-
tween these components. In the following, we give an overview of the SCDC library
and describe their usage for implementing the client and service components described
in Section 2.2. A more detailed description of the SCDC library is given in [12].

4.1. Simulation Component and Data Coupling (SCDC) library. The
SCDC library is a programming library that can be used by an application program-
mer to implement service-oriented interactions between client and service compo-
nents. In general, the interactions supported by the SCDC library are application-
independent and proceed according to the following scheme: A service component
provides access to datasets that are managed by data providers. A client component
interacts with service components by executing commands on their provided datasets.
The execution of a command allows to transfer input data from the client to the ser-
vice and output data from the service to the client. The SCDC library provides a C
and a Python interface for its library functions. Service-side functions are used to set
up the data providers, to configure the data exchange methods to be used for data
transfers, and to keep a service component running. Client-side functions are used to
execute commands on datasets.

The datasets of an SCDC service are identified with an URI-based addressing
scheme. This address identifies the specific SCDC service to interact with, the data
access method to be used for data exchanges, and the specific dataset to be accessed.
The following data exchange methods are supported: direct function calls between
components of a single process, inter-process communication with Unix Domain Sock-
ets between components in separate processes of a single host system, and network
communication with TCP/IP sockets between components in separate host systems.
The implementation details of these different data access methods are hidden in the
SCDC library. Thus, an application can easily switch between different components
and their specific data access methods without additional programming efforts.

The functionalities of datasets and commands depend on their specific data
providers. The SCDC library contains data providers with pre-defined functionali-
ties as well as with functionalities that can be defined by the programmer. In this
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work, the following data providers are used:
• The jobrun data provider implements a job-oriented execution of arbitrary

programs. Datasets represent the jobs to be executed and commands are used
to submit jobs with their input data as well as to wait for the completion of
jobs and to retrieve their output data. The program to be executed for each
job has to be defined by the programmer either as a shell command or as
a handler function. A list of hosts can be provided for executing the jobs.
The assignment of jobs to hosts is either performed in a round-robin way or
according to a determined schedule.

• The store data provider implements a nonhierarchical folder-oriented storage
within the local file system. Datasets represent the folders and the commands
are used to store and retrieve the data items of the folders.

• The hook data provider implements a mechanism for executing arbitrary
functions whenever a dataset is accessed. All functionalities of datasets and
commands have to be defined by the programmer. This data provider rep-
resents a generic mechanism to set up a service with arbitrary functionality
while the accessibility to the service is still handled by the SCDC library.

4.2. Implementation of client and service components of the optimisa-
tion application. Each software component of the complex simulation application
for the optimisation of lightweight structures is implemented in Python as a separate
module. Thus, it is possible to execute the components flexibly combined, for ex-
ample, in a single Python program on one hardware platform or in separate Python
programs on dedicated hardware platforms. Since all interactions between the soft-
ware components are performed with the SCDC library, only the addresses used for
accessing the service components have to be changed if their execution platforms are
changed. The software components and their interactions as described in Section 2.2
are implemented with the SCDC library as follows:

• The optimisation component is implemented as a client that is started by
the user of the simulation application. The SCDC library is used to execute
commands for storing the FEM input data of the FEM simulation tasks on
the storage component, for submitting FEM simulation tasks to the generic
FEM component, and for retrieving the result data of the FEM simulation
tasks from the storage component.

• The generic FEM component is implemented as both a service and a client.
The SCDC library is used to set up a jobrun data provider that executes the
submitted FEM simulation tasks as jobs. The program to be executed for each
job is defined by a handler function that uses the SCDC library as a client to
execute further commands. These commands access the storage component
to retrieve the FEM input data, the conversion component to perform the
conversion of the FEM data formats, and the SPC-FEM or ANSYS-FEM
component to execute the FEM simulation task with the requested FEM
code. Additionally, the SCDC library is also used as a client to execute
commands that access the scheduling component to determine a schedule for
the execution of the FEM simulation tasks.

• The SPC-FEM and ANSYS-FEM components are both implemented as
services. The SCDC library is used to set them up with jobrun data providers
that execute the submitted FEM simulation tasks as jobs with the correspond-
ing FEM code configured as a shell command.

• The scheduling component is implemented as a service. The SCDC library
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is used to set up a hook data provider that computes a schedule when an ac-
cessing client requests it by executing a corresponding command. Command
parameters are used to select a specific scheduling method. The input data
of the command contains the information about the scheduling problem and
the output data returns the determined schedule.

• The conversion component is implemented as a service. The SCDC library
is used to set up a hook data provider that performs a data conversion when
an accessing client requests it by executing a corresponding command. Com-
mand parameters are used to select the specific parser, data transformation,
and generator operations as described in Section 3.5. The input data of the
command contains the FEM input data in the source format and the output
data returns the converted result in the target format.

• The storage component is implemented as a service. The SCDC library is
used to set up a storage data provider that stores the data within a configured
folder of the local file system.

5. Performance results. In this section, we present performance results of the
FEM data conversion described in Section 3 and investigate the resulting overhead in
comparison to the FEM codes.

5.1. Experimental setup. The measurements are performed on a single com-
pute node with a 4-core Intel Core i5-4440 processor with 3.10 GHz, 8 GB main
memory, and a 240 GB solid-state drive. The FEM data conversion is implemented
as a Python module and uses files in the local file system for reading and writing
the FEM input data with the different data formats. The SPC-FEM code is an
in-house FEM program implemented in Fortran that performs adaptive mesh refine-
ment based on residual type error indicators to achieve high precision solutions. The
ANSYS-FEM code is part of the commercial software package ANSYS Workbench,
version 16.2. Both FEM codes use multithreading to exploit the available cores of
the compute node. Thus, only shared-memory parallelism is used in the experiments.
All software programs are executed under the Scientific Linux 7 (64-bit) operating
system and using Python interpreter of version 2.7.5.

5.2. Data conversion performance and overhead. The example structure
shown in Section 3 is used as FEM input data for the following benchmark measure-
ments. The original mesh of the structure consists of four elements. A refinement
operation that subdivides each element into eight smaller elements has been used to
increase the data sizes. Thus, with four refinement steps, the original mesh with
four elements is refined into geometries with 32, 256, 2048, and 16384 elements. The
data conversion is performed from the SPC-FEM format to the ANSYS-FEM format.
Table 5.1 lists the resulting file sizes with the two formats.

Figure 5.1 (left) shows runtimes for parsing the source format and generating the
target format during the FEM data conversion depending on the number of elements
in the FEM input data. The results show that parsing the source format requires
significantly more runtime than generating the target format. The high computational
costs of the Pyparsing module correspond to about 80–90% of the overall runtime for
the FEM data conversion. The runtimes of both operations depend on the size of the
mesh and, thus, increase strongly for increasing numbers of elements.

Figure 5.1 (right) shows runtimes for the FEM data conversion as well as for exe-
cuting the SPC-FEM and ANSYS-FEM codes depending on the number of elements
in the FEM input data. The overhead of the FEM data conversion in comparison to
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Number of elements SPC-FEM ANSYS-FEM
4 1.5 1.6
32 7.6 4.0
256 54.4 22.6
2048 454.4 175.8
16384 3969.3 1491.1

Table 5.1
File sizes in KB for the FEM input data of the example structure with the SPC-FEM and

ANSYS-FEM formats (without multiple white spaces).
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Figure 5.1. Runtimes of the parser and the generator for the FEM data conversion (left).
Runtimes of the FEM data conversion and the SPC-FEM and ANSYS-FEM codes (right).

the FEM codes depends on the size of the mesh as well as on the specific FEM code.
Up to about 256 elements, the runtime of the FEM data conversion is significantly
lower and does not lead to a noticeable overhead. However, with 2048 and more ele-
ments, the runtime of the FEM data conversion increases strongly and is about equal
or even higher than the runtime of the ANSYS-FEM code. As already shown, this
high overhead is mainly caused by the parsing of the source format with the Pyparsing
module. A direct comparison of the runtimes of the two FEM codes demonstrates
their different approaches: The SPC-FEM code has a low overhead and is faster for
small geometries. These are the preferred use cases, because its adaptive method is
designed for starting with a coarse mesh and then refining the mesh adaptively where
it is necessary. Results with 16384 elements could not be obtained for the SPC-FEM
code, because an initial mesh of this size is not supported.

6. Related work. In scientific computing, the interchangeability of single soft-
ware components represents a widely used concept that is especially used for compute-
intensive and numerical computations. Being able to switch between different software
components is used to achieve different goals. For standard libraries, such as BLAS [6]
or LAPACK [1] for linear algebra computations, various implementations that are spe-
cially adapted to specific hardware platforms exist. These different implementations
represent interchangeable software components that can be used to achieve perfor-
mance improvements. Domain-specific libraries, such as the parallel graph algorithm
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library PT-SCOTCH [7] or the ScaFaCoS library for the computation of Coulomb
interactions [3], provide different solution methods. These different methods repre-
sent interchangeable software components that can be used, for example, to exploit
the properties of specific solution methods or to improve the accuracy of the results.
The flexibility achieved with these approaches is based on the fixed programming in-
terface of the software libraries and, thus, requires that the functional properties of
all software components are the same. The approach proposed in this work is not
limited to such a fixed functionality, because the individual composition of arbitrary
transformation operations allows more flexible and extensible data conversions.

Environmental research is one of the most prominent areas for the development
of complex simulation applications, as it involves a variety of models from different
disciplines, such as atmospheric sciences, hydrology, geology, chemistry, and ecology.
These applications often consist of independently developed software components for
the different models. The interoperability and therefore also the interchangeability of
the software components is achieved through the usage of common frameworks and
toolkits. For high performance computing, this includes, for example, the Earth Sys-
tem Modelling Framework [11], the Common Component Architecture [4], and the
Model Coupling Toolkit [14]. These approaches require that all interchangeable com-
ponents implement the same interface, which often involves additional programming
efforts as well as a limitation of the component functionalities. In comparison, our
component-based approach is less invasive to existing application codes and allows to
flexibly exploit the varying functionalities of different FEM codes.

Performing explicit data conversions as proposed in this work might also be
achieved with dedicated data conversion tools. However, these tools usually sup-
port only specific parts of FEM data formats, such as the geometry of the structure.
For example, the mesh generator Gmsh [9] supports the conversion between different
mesh formats. The parser codes of these tools are either manually constructed or au-
tomatically created with parser generators, such as Lex and Yacc [15]. For standard
formats, such as XML or VTK, existing programming libraries, such as libxml [18] or
the Visualization Toolkit [17], can be used for parsing the source format or even for
generating the target format. The proposed approach for the FEM data conversion
can incorporate these existing tools and libraries for the implementation of specific
parser, data transformation, or generator operations.

7. Conclusion. We have demonstrated that an integration of generic FEM sim-
ulations can be performed with different FEM codes and built into a complex simu-
lation application. A component-based approach was presented to achieve a flexible
implementation with interchangeable software components. A dedicated conversion
component was developed and the FEM data conversion between data formats of
two specific FEM codes was shown. The proposed method allows a flexible data
conversion based on the composition of individual operations for parsing the source
format, performing additional data transformations, and generating the target for-
mat. We demonstrated the overall approach with a complex simulation application
for the simulation-based optimisation of lightweight structures. Performance results
were shown to investigate the computational effort for the FEM data conversion and
to compare their overhead with the FEM codes. The results have shown that espe-
cially the parsing of the source format can lead to a high overhead. Thus, it is highly
required to provide a flexible data conversion approach where single operations can
be easily replaced or optimised.
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