Original published: R. Dietze, M. Hofmann, and G. Riinger. Resource contention aware execution of multiprocessor tasks on
heterogeneous platforms. In Proceedings of the 15th International Workshop on Algorithms, Models and Tools for Parallel Computing
on Heterogeneous Platforms (Heteropar’2017), pages 390-402. Springer, August 2017. Online available at http://dx.doi.org/10.
1007/978-3-319-75178-8_32.

Resource Contention Aware Execution of
Multiprocessor Tasks on Heterogeneous Platforms

Robert Dietze™, Michael Hofmann, and Gudula Riinger

Department of Computer Science, Chemnitz University of Technology, Germany,
{dirob,mhofma,ruenger}@cs.tu-chemnitz.de

Abstract. In high performance computing (HPC), the tasks of com-
plex applications have to be assigned to the compute nodes of hetero-
geneous HPC platforms in such a way that the total execution time is
minimized. Common approaches, such as task scheduling methods, usu-
ally base their decisions on task runtimes that are predicted by cost
models. A high accuracy and reliability of these models is crucial for
achieving low execution times for all tasks. The individual runtimes of
concurrently executed tasks are often affected by contention for hard-
ware resources, such as communication networks, the main memory, or
hard disks. However, existing cost models usually ignore the effects of
resource contention, thus leading to large deviations between predicted
and measured runtimes. In this article, we present a resource contention
aware cost model for the execution of multiprocessor tasks on heteroge-
neous platforms. The integration of the proposed model into two task
scheduling methods is described. The cost model is validated in isolation
as well as within the utilized scheduling methods. Performance results
with different benchmark tasks and with tasks of a complex simulation
application are shown to demonstrate the performance improvements
achieved by taking the effects of resource contention into account.

Keywords: Resource contention, Multiprocessor tasks, Heterogeneous
platforms, Scheduling methods, Distributed simulations

1 Introduction

Reducing the overall execution time of compute-intensive applications is a major
concern in high performance computing (HPC). The efficient utilization of the
available HPC resources represents a key aspect for achieving such reductions of
execution times. Complex applications in the area of scientific and engineering
simulations usually consist of separated tasks that can be distributed among the
compute nodes of a HPC platform. Thus, the goal is to find a distribution that
minimizes the execution time of the whole application. This problem is usually
solved by applying task scheduling methods. Sequential tasks are assigned to
exactly one processor of a compute node. Multiprocessor tasks can be executed
in parallel itself to reduce their individual execution times by using more than
one processor. Thus, for distributing multiprocessor tasks on HPC platforms, not

http://dx.doi.org/10.1007/978-3-319-75178-8_32
http://dx.doi.org/10.1007/978-3-319-75178-8_32

only the particular compute node but also the number of processors to be used on
this node has to be determined for each task. The resulting distribution problem
becomes increasingly complex, thus requiring dedicated scheduling methods.

Task scheduling methods usually base their decisions for distributing the
tasks on predictions of the execution times of the tasks. These predictions can
be determined with cost models that model the specific execution times of the
tasks on the hardware platform to be utilized. For multiprocessor tasks, the cost
model also has to include the number of processors employed. Thus, cost models
from parallel computing, such as PRAM [9], BSP [II], or LogP [], might be
used. However, since these models abstract from many details of the compute
systems, there can be large differences between modeled and measured execution
times. These differences lead to improper decisions for scheduling the single tasks
and, thus, might deteriorate the overall execution time of all tasks. Keeping these
difference as small as possible is therefore an important goal for achieving an
efficient execution of multiprocessor tasks on HPC platforms.

Heterogeneous platforms consist of a variety of compute nodes with different
computational properties. Existing cost models for heterogeneous platforms take
these properties into account, for example, by including different computational
speeds of compute nodes. However, the influence of tasks on each other when
being executed concurrently on the same node is currently not included in these
models. For example, tasks that are executed concurrently on different processors
of a compute node can utilize the same hardware resources (e. g., communication
network, main memory, or hard disk). The access to these hardware resources
has to be shared and might increase execution times due to resource contention.

In this article, we present a resource contention aware cost model for the exe-
cution of multiprocessor tasks on heterogeneous platforms. The proposed model
considers the effects of resource contention, especially due to hard disk and main
memory accesses. The integration of the cost model into two scheduling methods
for multiprocessor tasks is described. Experiments with different types of tasks
on a heterogeneous compute cluster are performed. This includes benchmark
tasks with intensive hard disk and main memory accesses. Simulation tasks of a
complex application for optimizing lightweight structures are used to represent
tasks with accesses to various hardware resources.

The rest of the article is organized as follows: Section [2]discusses related work.
Section [3]defines a scheduling problem for multiprocessor tasks and describes the
modeling of the task execution times. Section [4] presents a resource contention
aware cost model for multiprocessor tasks on heterogeneous platforms. Section
describes the integration of the cost model into different task scheduling methods.
Section [6] presents experimental results and Section [7] concludes the article.

2 Related Work

Resource contention is mainly considered in the area of thread scheduling for
operating systems [14]. Contention for accessing the main memory is integrated
into the scheduling, for example, based on memory request rates [12] or cache

miss rates [§]. The measured rates are used to prioritize or group applications to
achieve a balanced utilization of memory resources. The measurement approach
might also be used to estimate the effects of resource contention for tasks. How-
ever, the scheduling approach is not suitable if all tasks exhibit the same memory
behavior, such as simulation tasks that execute the same application program.

For task scheduling, contention for communication resources is usually con-
sidered. For example, in [I0], a model for communication contention is proposed
that improves the accuracy of predicted execution times. The integration into
scheduling methods is based on task duplication to avoid interprocessor commu-
nication and, thus, cannot directly be applied to contention of other hardware
resources. Only few works consider contention for other resources. In [2], a con-
tention aware scheduling algorithm for heterogeneous platforms is proposed, but
in the context of achieving fault-tolerance by replicating tasks. In [13], the sys-
tem resources required by tasks are modeled in order to constrain the number
of tasks running concurrently. A reduction of the execution time was achieved
for tasks that perform memory or file accesses. However, the approach requires
that the system resources required by a task are specified manually with user
annotations within the program code.

3 Multiprocessor Tasks and Heterogeneous Platforms

The efficient execution of multiprocessor tasks on heterogeneous platforms can
be described as a scheduling problem. In the following, the scheduling of multi-
processor tasks and the modeling of the task runtimes is described.

3.1 Scheduling of Multiprocessor Tasks

The considered problem comprises ny multiprocessor tasks 11,. .. ,T;,,.. The term
multiprocessor task describes a task that can be executed on an arbitrary num-
ber of processor cores. It is assumed that all tasks are independent from each
other and that the number of utilized cores is fixed during the task execution.
The execution of each multiprocessor task is non-preemptive, i.e. it can not be
interrupted. For each task T;, i = 1,...,np, t; ;(p) denotes its parallel execution
time on p cores of a compute node N, j € {1,...,nx}. The modeling of the
parallel execution time ¢; ;(p) is described in the following subsection.

The considered heterogeneous HPC platform consists of ny compute nodes
Ni,..., Ny, each having a different computational speed. For each node Nj,
Jj € {1,...,ny}, its number of processor cores p; and a performance factor f;
are given. The performance factor f; describes the computational speed of the
compute node N; and is defined as the ratio between the sequential execution
time of a task on a reference node NN, and the compute node N;. Since the
reference node is also used for the runtime modeling of the multiprocessor tasks,
the compute node with the highest number of cores is used as reference node.
It is assumed that each multiprocessor task can only be executed on a single
node (e. g., OpenMP-based codes) and that each core can execute only one task

at a time. Thus, each multiprocessor task might be executed on 1 to p; cores
of anode N;, j € {1,...,nn}. Depending on the number of utilized cores of a
compute node, several tasks can be executed on a node at the same time.

The result of the scheduling is a schedule, which defines an assignment of the
tasks Tj, i = 1,...,np, to the compute nodes Nj, j = 1,...,ny. A schedule S
includes for each task T;, i € {1,...,nr}, the information about the compute
node and the number of cores to be utilized as well as the estimated start time s;
and finish time e;. The total execution time T,,..(S) of a schedule S is defined as
the difference between the earliest start time and latest finish time of all tasks.
By assuming that the task execution starts at time 0, the total execution time

corresponds to the latest finish time of all tasks, i. e. T2 (S) = max ;. The
i=1,...,n

goal is to determine a schedule S such that T},,.(S5) is as small as possible.

3.2 Runtime Modeling of Multiprocessor Tasks

Scheduling methods usually base their decisions on predictions of the execution
times of the single task. A high accuracy and reliability of these predictions
is required for achieving schedules with a lower total execution time. These
predictions can, for example, be calculated regarding to a specific cost model
or determined by benchmark measurements. Existing cost models for parallel
programming, such as PRAM [9], BSP [I1], or LogP [4], are not suitable for the
considered scheduling of multiprocessor tasks. The PRAM model, for example,
assumes a single shared memory with uniform access by each processor and, thus,
heterogeneous platforms with distributed memory are not covered. Furthermore,
all of the models calculate the cost of a parallel program based on its program
structure and, thus, can not be used if this structure is unknown. In [I], a cost
model is presented that uses the amount of work of each task in combination
with the relative speed of each compute node. Since this model is designed for
the execution of sequential tasks on multiprocessor architectures supported by
accelerators, it is not suitable for the scheduling problem described above.

Since the program structures of the considered multiprocessor tasks are un-
known, we use the following general runtime formula to model the execution time
t;; of each task T;, i € {1,...,np}, on a compute node N;, j € {1,...,nx} de-
pending on the employed number of processor cores p:

ti,j(p) = fj - (a;/p +b; +¢; - logp) (1)

The parameter f; denotes the performance factor of node N; to account for
the different computational speeds. The remaining part of Eq. models the
execution time of task T; on the reference node. This part consists of a paral-
lel computation time a; that decreases linearly with the number of cores p, a
constant sequential computation time b;, and a parallelization overhead c¢; that
increases logarithmically with the number of cores p (e.g., for synchronization
or communication). These components were chosen such that the runtime be-
havior of common parallel algorithms is covered. The parameters a;, b;, and ¢;
of a task T; are determined through a least squares fit of the execution times

measured on the reference node with different numbers of cores. In practice,
these measurements have to be performed only for tasks with differing execution
times.

4 A Resource Contention Aware Cost Model

Shared access to hardware resources can lead to increased execution times of
tasks executed concurrently. In the following, a new resource contention aware
cost model for predicting the execution time of such tasks is developed.

4.1 Measuring the Effects of Resource Contention

Since resource contention results from shared access to hardware resources, the
specific effects on the execution time may depend on the type and number of
tasks executed as well as on the hardware utilized. To investigate these effects, we
consider three types of tasks. The specific data sizes of the tasks where chosen,
such that effects due to data caching are avoided.

I/O bound: The hdWrite tasks are used to investigate resource contention due
to concurrent hard disk accesses. Each task consists of writing data of size
300 MB to a file on the local hard disk. The parallel implementation as
a multiprocessor task is based on MPI where each MPI process writes an
equally sized part of the entire file using the function MPI File write.

Memory bound: The mem Write tasks are used to investigate resource con-
tention for the memory bandwidth due to concurrent main memory accesses.
Each task consists of writing random integers of size 12 GB to the main mem-
ory. The parallel implementation as a multiprocessor task is based on MPI,
where each MPI process writes an equally sized share of the entire data.

Compute bound: Numerical simulations based on a Finite Element Method
(FEM) code [3] are used as compute-intensive tasks. During the numerical
optimization of lightweight structures, a large number of structure simula-
tions for varied sets of manufacturing parameters have to be performed [5].
Each simulation applies a preconditioned conjugate gradient method on very
large but sparse matrices. The FEM code is parallelized with OpenMP, thus
leading to multiprocessor tasks that can be executed in parallel on a single
compute node.

Figure [1| shows the sequential execution times for the different types of tasks
depending on the number concurrently executed tasks on the same compute
node. Each measurement is performed 5 times using the compute node ws1 with
a total number of 12 cores (see Sect. [6.1). The results show that for each type of
tasks, the execution times increase almost linearly with an increasing number of
concurrently executed tasks. However, the slopes of the curves are different for
each type of task. Further measurements have shown that the slope also differs
for the same type of task between different compute nodes. These observations
imply that the effects of resource contention depend on the type of the tasks,
the number of concurrently executed tasks, and the compute node.

Sequential runtime of concurrent tasks

100

g ChdWrite | e T

S go [memWrite o E
g r FEM s 1
P e ==
g]
2 40 [i
T E

5 20

o [

“ [

o) &

= 0 | I I I I I I I I

L]
1 2 3 4 5 6 7 8 9 10 11 12
Number of concurrent tasks

Fig. 1. Measured sequential runtime of different types of tasks on compute node ws1.

4.2 Runtime Modeling with Resource Contention

The effects of resource contention on the execution time of tasks is modeled sep-
arately for each type of task. For a fixed type of task, we introduce a contention
factor ¢; for each compute node Ny, j € {1,...,ny}. This factor represents the
linear slope of the sequential execution times that occurs for executing the tasks
concurrently on the compute node N;. The contention factors are determined
by benchmark measurements as described in the previous subsection. Thus, the
contention factor captures the entire effects of resource contention due to various
hardware resources that may be utilized by a specific type of tasks.

To predict the impact of resource contention on the runtime of a task, the
number of concurrently executed tasks on the same compute node has to be
known. A task Ty, k € {1,...,nr} is executed concurrently to a task T;, i €
{1,...,n7}, i # k, if the start time s;, of task T} is smaller than the finish time
e; of task T; and the finish time ey of task T} is larger than the start time s; of
task T;. The period of time during which the two tasks T} and T; are executed
concurrently lasts from their latest start time to their earliest finish time, i.e.
min(eg, e;) — max(sg, s;). During this time, the two tasks content for resources.

Let K; ; denote the set of tasks that are executed concurrently to a task 77,
i €{1,...,nr}, on the compute node N, j € {1,...,ny}. To include the effects
of resource contention into the prediction of the execution time of the task T;,
its predicted runtime ¢; ;(p) (see Sect. is increased by the additional time
during which the task T; is executed concurrently with the tasks T} € K; ;. The
specific time increase is calculated with the contention factor c; for the type of
tasks on compute node N;. Thus, the contention aware execution time #; ;(p) of
task T; executed on compute node N; with p cores is modeled as follows:

tii(p) =tij(p) +cj - Z (min(eg, e;) — max(sg, $;)) (2)
TweK; ;

7

Table 1. Difference between measured and predicted execution times without and with
resource contention depending on the type and number of tasks on compute node ws1.

Type of tasks hdWrite mem Write FEM

Number of tasks 10 50 100 | 10 50 100 | 10 50 100
Difference without contention | 44.25 25.1 32.01|4.32 2.51 3.02| 2.5 2.95 4.35
[percent] with contention | 4.92 58 2.6 | 3.2 1.67 22 |0.07 0.86 2.13

4.3 Validation of the Runtime Modeling

In order to validate the accuracy of the proposed runtime modeling, several
benchmark measurements have been performed for each of the three considered
types of tasks, i.e. hdWrite, memWrite, and FEM. For each measurement a
specific number of tasks (i.e., 10, 50, or 100) is executed on the compute node
ws1l. The number of cores p utilized by each multiprocessor task is chosen between
1 and 6 and each task is started as soon as the chosen number of cores was
available. The total execution time of all tasks is measured and the difference
to the prediction without resource contention according to Eq. and with
resource contention according to Eq. is determined.

Table [1| shows the differences between measured and predicted execution
times depending on the type and the number of tasks. For all types and num-
bers of tasks, the contention aware cost model leads to smaller differences in
comparison to the cost model that neglects the effects resource contention. More
exactly, the difference between measured and predicted execution times is always
smaller than 6% with the contention aware cost model. The biggest improve-
ment is achieved for the hdWrite tasks, where the difference without resource
contention is up to about 45%. This corresponds to the previous results shown
in Fig. [I} where a significant increase of the runtime was observed. However,
even for the memWrite and FEM tasks, the contention aware cost model leads
to better predictions of the execution times.

5 Resource Contention Aware Scheduling Methods

The contention aware cost model presented in the previous section has been inte-
grated into two task scheduling methods. In the following, the two task schedul-
ing methods and the necessary adaptions for the integration are described.

5.1 Task parallel execution

The task parallel scheduling scheme (TASKP) presented in [7] is a list scheduling
algorithm that assigns each task to exactly one core (i. e., executed sequentially).
All tasks are sorted in descending order based on their sequential runtimes. The
algorithm iterates over the ordered tasks and selects one core to be utilized. The
current task is then assigned to the core that provides the earliest finish.

1 total execution time limit 1 = """, ¢; (1)/ Z;”i’l p; f; for reference node r

2 repeat

3 potential limits L = ()

clear all assignments of tasks to nodes

for task T;,i =1,...,nr, in descending order of t; »(1) do

for node N;, j € {1,...,nn} and coresp=1,...,p; do
select start time s; such that p cores of node N; are free
calculate finish time e; = s; + t;,;(p)
add finish time e; to the set of potential limits L

10 if e; < m then assign T; to p cores of N; and quit the for-loop

© 0w g O A

11 if task T; was not assigned then set m to the smallest finish time
calculated for task T; and quit the for-loop if restart(i) returns true

12 until all task are assigned

13 repeat

14 total execution time limit m = median of all potential limits L

15 clear all assignments of tasks to nodes

16 for task T;,i =1,...,nr, in descending order of t; »(1) do

17 for node N;, j € {1,...,nn} and coresp=1,...,p; do

18 select start time s; such that p cores of node N; are free

19 calculate finish time e; = s; + t;,;(p)

20 if e; < m then assign T; to p cores of N; and quit the for-loop
21 if all task are assigned then remove all values greater than m from L
22 else remove all values less than 1 from L

23 until [L] <1

Fig. 2. Pseudocode of the WATER-LEVEL-SEARCH method.

5.2 Water-Level-Search method

In [6], a heuristic method for scheduling parallel tasks onto heterogeneous com-
pute resources called WATER-LEVEL-SEARCH (WLS) is proposed. Figureshows
the pseudocode of this method. The method uses a limit /m for the predicted
total execution time that must not be exceeded by the finish time of any task.
An initial guess for this limit is based on the sequential runtimes of the tasks and
the total compute capacity of all nodes (line . Afterwards, the WLS method
performs a search for a better smaller limit that still allows to finish all tasks.
The search for a better limit consists of two phases (lines and lines
. In each phase, the current limit m is used to determine an assignment
of tasks to nodes and cores (lines and lines [I6H20). The assignment is
determined by iterating over the tasks in descending order based on their se-
quential runtimes and for each tasks T;, i € {1,...,nr}, all compute nodes Nj,
j =1,...,ny, and their numbers of cores p; are tested. This test consists of
selecting a possible start time s; and calculating the corresponding finish time
e; with the runtime formula ¢; ;(p) (lines and lines . If the finish time
e; is valid for the current limit 7, then the task is assigned to the selected node

and cores and then the next task is tested. Otherwise, the limit m is adapted
and the assignment of tasks is restarted for all tasks. In the first phase, the limit
is only increased and a set of potential limits L is created. In the second phase, a
binary search among the potential limits in L is performed by repeatedly using
the median of L as the current limit 7 (line and adapting L accordingly
(lines 21}22)). The last value of L is the smallest limit i that was found and the
corresponding assignment of tasks to nodes and cores is the determined schedule.
Determining an assignment in each phase depends linearly on the number of
tasks nr, the number of nodes ny, and the highest number of cores of a node p,..
Restarting the assignment in the first phase is limited to at most log ny times
with a the restart function (line . The size of L depends linear on the number
of tasks np, such that the binary search in the second phase requires O(log nr)
steps. Thus, the overall complexity of the method is O(logny - nr - ny - py).

5.3 Integration of the Contention Aware Cost Model

Both methods use the runtime formula of ¢; ;(p) in Eq. to predict the ex-
ecution time of a task T;, ¢ € {1,...,nr}, executed on compute node Nj,
Jje€{1,...,ny} with p cores. To integrate the contention aware cost model de-
scribed in Sect. [l each occurrence of this usage is replaced by the new formula
of t; ;(p) in Eq. . Additionally, both methods use a list scheduling approach
where tasks are assigned gradually to the compute resources. Thus, the number
of tasks that are executed concurrently to a specific task that was already sched-
uled can increase during the scheduling. Since the contention aware cost model
depends on this number, the start and finish time of an already scheduled task is
recalculated whenever another task is assigned to the same compute node with
an overlapping period of time.

For the WLS method, changing the finish times of tasks afterwards may
lead to problems. For example, if the finish time of a task increases due to
resource contention, then it might exceed the limit 1 that was used when the
assignment of this task was determined. However, such a behavior conflicts with
the assumption that a valid limit /m allows to finish the execution of all tasks.
To avoid such situations, the prediction of the finish time of a specific task uses
always the maximum number of tasks that might be executed concurrently based
on the number of currently available cores of the compute node.

6 Experimental Results

The proposed resource contention aware cost model has been integrated into the
scheduling methods described in Sect.[5} The following experimental results com-
pare the methods without and with the resource contention aware cost model.

6.1 Experimental Setup

The compute nodes of the heterogeneous compute cluster used for the measure-
ments are listed in Table 2] The scheduling methods described in Sect. [f] have

10

Table 2. List of nodes of the utilized heterogeneous compute cluster.

Nodes Processors #Nodesx #processorsx #cores total RAM GHz
sbl Intel Xeon E5-2650 1x2x38 60 GB 2.00
wsl,...,ws5 Intel Xeon X5650 5X2x6 32 GB 2.66
csl,cs2 Intel Xeon E5345 2x2x4 16 GB 2.33

been implemented in Python. A Python script running on a separate node per-
forms the execution of the tasks on the compute nodes via SSH connections.
Each measurement is performed 5 times and the average values are shown.

6.2 Performance Results with Benchmark and Simulation Tasks

The task parallel scheduling (TASKP) and the WATER-LEVEL-SEARCH method
(WLS) without resource contention and with resource contention (i.e., TASKP-
RC and WLS-RC) have been used to schedule the execution of different types
of tasks. Figure [3| (top) shows the measured total runtimes for executing the
hdWrite tasks (left) and the memWrite tasks (right) according to the determined
schedules depending on the number of tasks. Up to 24 tasks of the corresponding
type are executed on the compute nodes ws1l and ws2 with a total number of
24 cores. Using the contention aware scheduling methods leads to a significant
reduction of the total runtimes with the hdWrite tasks. The biggest differences
up to about 60% of the total runtime are achieved for the task parallel scheduling
method (i. e., TASKP and TASkP-RC). With the contention aware cost model,
both scheduling methods (i.e., TASKP-RC and WLS-RC) lead to about the
same results. This behavior can mainly be attributed to the hardware resources
utilized by the hdWrite tasks. The hard disk accesses are usually limited by the
corresponding hard disk devices, thus leading to high contention for concurrent
accesses and low benefits from parallelization. In comparison, the benefits of the
contention aware cost model for the memWrite tasks are smaller. This behavior
corresponds to the results shown in Fig. [I} where the effect of resource contention
was also smaller for the memWrite tasks. However, there are still improvements
of the total runtime for both contention aware scheduling methods.

Figure [3| (bottom left) shows measured total runtimes for executing the FEM
simulation tasks according to the determined schedules depending on the number
of tasks using all compute nodes of Table 2l The results confirm the improve-
ments achieved with the contention aware cost model. Especially, if the number
of tasks approaches the number of utilized cores (i. e., 92), both scheduling meth-
ods (i.e., TAskP-RC and WLS-RC) lead to a significant reduction of the total
runtimes. In general, the results with the resource contention aware cost model
show a more steady and less abrupt increase when the number of tasks is in-
creased. Figure [3| (bottom right) shows the parallel speedups for executing 100
FEM simulation tasks according to the determined schedules depending on the
number of utilized cores. Up to about 52 cores, there are only small differences

11

hdWrite runtimes memWrite runtimes
= 120 ————— = 100 ————1—
E | TaskP s 1 E E
g 100 | TASKP-RC —— 18 8L
2 1 = i
£ £ 60+
= = E
2 2 40 F]
T ki ; TaSkP-RC —— |
2 = 20, WLS =
g g ¥ WLS-R —a—]
2 E O wwwwww Lo v Lo o0
1 8 16 24
Number of tasks Number of tasks
FEM runtimes FEM speedups
@ 160 40 ¢ A p
—g 140 | TASkP —— i f _=——1
o t TASKP-RC ——] E — 3
£ 120 | 32 ;
g 10 | 5 gy ¥
Z 80| T ;
Z 60 C% 16 P TAsSKP —a
T 40+ : TASKP-RC ——]
2 2 r 8 F WLS —=—
S] E WLS-RC —=— 1
2 0 oo b b v b b b 1 L L L L L L L |
1 20 40 60 80 100 120 1816 28 40 52 64 76 92
Number of tasks Number of cores

Fig. 3. Top: Measured total runtimes of hdWrite tasks (left) and memWrite tasks
(right) depending on the number of tasks using all compute nodes ws1 and ws2. Bottom:
Measured total runtimes of FEM simulation tasks depending on the number of tasks
using all compute nodes of Table [2| (left) and parallel speedups for the execution of 100
FEM simulation tasks depending on the number of cores (right).

between all scheduling methods. However, when all compute nodes are used, the
resource contention aware cost model prevents a decrease of the speedup.

7 Conclusions

In this article, we investigated the effects of resource contention for the execution
of multiprocessor tasks on heterogeneous platforms. The development of a con-
tention aware cost model based on a task- and hardware-depending contention
factor was described. The proposed cost model was used for the prediction of
executions times of multiprocessor tasks and the integration into two existing
scheduling methods was described. Measurements with benchmark tasks with
hard disk and main memory accesses demonstrated that for both scheduling
methods, a reduction of the total task runtimes could be achieved. Further

12

results with FEM simulation tasks confirmed the performance improvements,
especially due to a better utilization of hardware with high contention effects.

Acknowledgments

This work was performed within the Federal Cluster of Excellence EXC 1075
“MERGE Technologies for Multifunctional Lightweight Structures” and sup-
ported by the German Research Foundation (DFG).

References

1.

10.

11.

12.

13.

14.

Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: A unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurr. Com-
put.: Pract. Exper. 23(2), 187-198 (2011)

Benoit, A., Hakem, M., Robert, Y.: Contention awareness and fault-tolerant
scheduling for precedence constrained tasks in heterogeneous systems. Parallel
Computing 35(2), 83-108 (2009)

Beuchler, S., Meyer, A., Pester, M.: SPC-PM3AdH v1.0 - Programmer’s manual.
Preprint SFB/393 01-08, TU-Chemnitz (2001)

Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K., Santos, E., Subramo-
nian, R., von Eicken, T.: LogP: Towards a realistic model of parallel computation.
In: Proc. of the 4th ACM SIGPLAN Symp. on Principles and Practice of Parallel
Programming (PPOPP’93). pp. 1-12. ACM (1993)

Dietze, R., Hofmann, M., Riinger, G.: Exploiting Heterogeneous Compute Re-
sources for Optimizing Lightweight Structures. In: Proc. of the 2nd Int. Workshop
on Sustainable Ultrascale Computing Systems (NESUS’15). pp. 127-134 (2015)
Dietze, R., Hofmann, M., Riinger, G.: Water-level scheduling for parallel tasks in
compute-intensive application components. J. of Supercomputing pp. 1-22 (2016)
Diimmler, J., Kunis, R., Riinger, G.: A comparison of scheduling algorithms for
multiprocessortasks with precedence constraints. In: Proc. of the High Performance
Computing & Simulation Conference (HPCS’07). pp. 663-669. ECMS (2007)
Feliu, J., Petit, S., Sahuquillo, J., Duato, J.: Cache-hierarchy contention-aware
scheduling in CMPS. IEEE Trans. Parallel Distrib. Syst. 25(3), 581-590 (2014)
Fortune, S., Wyllie, J.: Parallelism in random access machines. In: Proc. of the
10th Annual ACM Symp. on Theory of Computing. pp. 114-118. ACM (1978)
Sinnen, O., To, A., Kaur, M.: Contention-aware scheduling with task duplication.
J. of Parallel and Distributed Computing 71(1), 77-86 (2011)

Skillicorn, D.B., Hill, J., McColl, W.: Questions and answers about bsp. Scientific
Programming 6(3), 249-274 (1997)

Subramanian, L., Seshadri, V., Kim, Y., Jaiyen, B., Mutlu, O.: MISE: Providing
performance predictability and improving fairness in shared main memory systems.
In: Proc. of the 19th Int. Symp. on High Performance Computer Architecture
(HPCA’13). pp. 639-650. IEEE (2013)

Tillenius, M., Larsson, E., Badia, R.M., Martorell, X.: Resource-aware task schedul-
ing. ACM Trans. Embed. Comput. Syst. 14(1), 5:1-5:25 (2015)

Zhuravlev, S., Saez, J.C., Blagodurov, S., Fedorova, A., Prieto, M.: Survey of
scheduling techniques for addressing shared resources in multicore processors. ACM
Comput. Surv. 45(1), 4:1-4:28 (2012)

	Resource Contention Aware Execution of Multiprocessor Tasks on Heterogeneous Platforms

