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Abstract The article proposes a cost model for two implementations of the all-pairs-shortest-path
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approaches leads to a runtime prediction, which together span an interval for the expected execution
time. An experimental evaluation shows that most characteristics of the runtime curve are correctly
predicted, which is especially important for small graphs where a tiny increase of the input size may
result in a significant increase of the execution time. For large graphs, we show that the cost prediction
deviates less than 1% from the measured times in many cases.
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J. Dümmler
Chemnitz University of Technology, 09107 Chemnitz, Germany,
E-mail: djo@cs.tu-chemnitz.de

S. Egerland
Chemnitz University of Technology, 09107 Chemnitz, Germany,
E-mail: egse@hrz.tu-chemnitz.de
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1 Introduction

Graphics Processing Units (GPUs) are increasingly used in the area of high performance computing
because they offer a much higher parallel peak performance than current multi-core processors (CPUs) [2].
Since the hardware architecture of GPUs is substantially different from CPUs, applications need to be
specifically adapted for an execution on GPUs to obtain the best possible performance. For the coding
of GPU applications several high-level programming approaches have been developed including Nvidia
CUDA [20] and OpenCL [12].

Performance prediction models for parallel applications are required for several reasons. First, a
performance model allows the identification of hardware and software parameters that influence or limit
application performance. Thus, it can be used as a guideline for code optimization for a specific target
platform. Second, it allows performance assessment on future hardware and is, thus, useful in determining
whether to perform a hardware upgrade. Third, it can be used to select the best program version
if multiple implementation variants are available and, finally, it can provide the required input for the
scheduling of task-based applications. Performance prediction for GPUs is a challenging task, since minor
changes in the implementation or in the execution configuration can lead to significant performance
differences. A variety of performance models have been proposed for GPUs in the past, see [16] for
an overview. The vast majority of these models concentrates on the runtime prediction for a specific
execution scenario, i.e., a fixed input problem size and a fixed execution configuration.

In the article, we propose a performance modeling approach for GPUs that particularly focuses
on the prediction of the execution time for different input problem sizes and different kernel thread
block configurations. The presented cost model is tailored to a GPU implementations of the all-pairs-
shortest-path (APSP) problem based on the Min-plus algorithm [15] and the Floyd-Warshall algorithm,
respectively. APSP is a fundamental problem of graph theory with many application areas including
routing in communication networks and the calculation of transport routes. The general approach used
in this article can easily be transferred to applications with a similar compute structure, i.e., applications
operating on matrices in a block-based fashion, such as for example the multiplication of two matrices.

The performance measurements performed for the APSP implementation show that the execution
time depends on the input problem size in an approximately piecewise linear way with jumps in-between
the linear segments of the obtained runtime curve. The major goal of the proposed approach is to
correctly predict the shape of the runtime curve, i.e., the location of the jumps and the slope of the linear
segments. For this purpose, we combine analytical modeling with empirical data collected by benchmark
runs. The analytical part delivers a cost prediction in symbolic time units that leads to a curve of
appropriate shape if applied to different input problem sizes. The analytical model is parameterized with
the hardware configuration of the GPU, such as the number of multiprocessors and the total number of
cores. The empirical data is used to translate the symbolic time units in actual time units. For obtaining
the empirical data, a single benchmark run for a predefined reference problem size is required. Based on
the result of this benchmark run, performance predictions for different problem sizes are computed.

For an accurate performance prediction, the presented model examines the thread blocks defined by
the algorithm in detail. In particular, different categories of thread blocks are identified that differ in
the number of active warps. The mapping of thread blocks to GPU multiprocessors is modeled based on
one out of four available approaches (Min, Sorted, Full, Buckets). Two of these approaches are based on
optimistic and the other two on pessimistic assumptions. Overall, this leads to four different performance
predictions that span in interval in which the actual execution time is expected.

The experimental evaluation has been performed on two different GPU architectures (Kepler and
Fermi) using different thread block sizes as well as small and large input problems. The results show
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that most of the jumps in the runtime curves are predicted correctly. In particular, the Buckets approach
mimics the shape of the runtime curve closely. Especially for large graphs on the Fermi architecture, we
have observed very good runtime predictions that deviate less than 1% from the measured execution
times.

The article is structured as follows. Section 2 introduces the terms and concepts of the CUDA pro-
gramming model that are relevant for the cost model. Section 3 defines the APSP problem and discusses
an appropriate GPU implementation. Section 4 explains the proposed cost model in detail. Section 5
includes an experimental evaluation of the model. Section 6 discusses related work and Sect. 7 concludes.

2 CUDA Programming Model

Several programming approaches have been developed for the implementation of general purpose appli-
cations on GPUs including Nvidia CUDA [20] and OpenCL [12]. In this article, we concentrate on CUDA
and use the corresponding notions, but in principle the proposed runtime model can also be used for an
OpenCL implementation. A CUDA program consists of a host program that is executed by the CPU
and a set of kernels each of which containing parallel code running on the GPU. The host program
controls the execution of the kernels and initiates the required data transfers between the main memory
(accessible by the CPU) and the global memory located on the GPU.

A GPU is a manycore platform consisting of a large number of streaming processors (SPs) that
are organized in streaming multiprocessors (SMs). In the following, the number of SMs is denoted as
#SMsDev and the number of SPs per SM is denoted as #CoresPerSMDev. There are several types of
memory on a GPU, including the global GPU memory that can be accessed by each SP, and the shared
memory located on each SM.

A CUDA kernel is executed by a number of threads that are logically grouped into thread blocks.
The number of threads and thread blocks is specified when invoking the kernel in the host program.
Threads within the same thread block may cooperate with each other using synchronization operations
or data located in the shared memory, but threads of different thread blocks are completely independent
of each other.

The computations of a kernel are mapped to the hardware execution resources in multiple steps. First,
entire thread blocks are assigned to the SMs where each SM can hold at most #BlocksPerSMOcc thread
blocks at any given point of time. The value #BlocksPerSMOcc depends on the ratio of the required
resources (number of threads, shared memory and registers) of a thread block and the available hardware
resources [19]. In the second step, each thread block is subdivided into a number of warps consisting of
#ThreadsPerWarpDev threads each. All threads of the same warp are executed in lock step, usually by
different SPs of the same SM. Different warps of the same thread block may be executed concurrently
(if there are enough SPs available) or one after another. In the latter case, the execution of warps often
overlaps to hide latencies resulting from memory accesses.

The number of warps created for a given kernel has to be a multiple of the warp allocation granularity
WarpGranularityDev. Depending on the number of execution threads specified in the host program,
this hardware parameter may lead to the creation of additional (empty) warps when executing the
kernel. For the definition of the cost model in Sect. 4, we use the function #WarpsPerBlock(n)Dev

which returns the number of warps for a thread block with n threads. If multiple threads of a given
warp access neighboring elements in the global GPU memory, #CoalescableMemAccessesDev memory
requests are fused into a single transaction. This operation is called memory coalescing. The value of
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Table 1 Overview of the hardware-specific model parameters defined in Sect. 2.

Parameter Description

#SMsDev Number of streaming multiprocessors (SMs)
#CoresPerSMDev Number of CUDA cores per SM
#BlocksPerSMOcc Maximum number of active thread blocks on an SM
#ThreadsPerWarpDev Number of threads in a warp
WarpGranularityDev Minimum number of warps allocated at the same time
#WarpsPerBlock(n)Dev Number of warps created for a thread block with n threads
#CoalescableMemAccessesDev Number of memory requests fused into a single transaction

#CoalescableMemAccessesDev depends on the bus width of the GPU and the size of each data element
accessed. The hardware parameters defined in this section are summarized in Tab. 1.

3 The APSP problem and its GPU implementation

In the following, we define the all-pairs-shortest-path (APSP) problem in Subsect. 3.1, discuss the Min-
plus algorithm for the solution of this problem in Subsect. 3.2, and present a parallel CUDA implemen-
tation in Subsect. 3.3.

3.1 Problem statement

The input of the APSP problem is a directed graph G = (V,E) with a set V = {v1, . . . , vn} of n nodes
and a set E ⊆ V × V of directed edges. Each edge e ∈ E is annotated with a weight w(e) ∈ N. In the
following, we assume that the weights are stored in a matrix A ∈ Rn×n where an entry Ai,j , i, j = 1, . . . , n
is defined as follows

Ai,j =

w(e) if e = (vi, vj) ∈ E
0 if i = j
∞ otherwise

The APSP problem consists of the determination of the path with the minimum accumulated weight
between each pair of nodes u, v ∈ V . For this problem, it is reasonable to assume that there are no cycles
with a negative accumulated weight in G because traversing a negative weight cycle multiple times will
lead to paths with an arbitrary low accumulated weight. Furthermore, we assume that the output is
produced in form of two matrices D,P ∈ Rn×n where an entry Di,j of the distance matrix D denotes the
accumulated weight of the shortest path from vi to vj and an entry Pi,j of the path matrix P denotes
the index of the first node on the shortest path from vi to vj with i, j = 1, . . . , n. The entire shortest
path between two nodes can be reconstructed by a suitable traversal of matrix P .

3.2 The Min-plus algorithm

Several algorithms for the computation of the APSP problem have been proposed. Examples are the
Floyd-Warshall algorithm with a complexity of O(n3) and the Min-plus algorithm [15] with a complexity
of O(n3 · log(n)). In the following, we focus on the Min-plus algorithm, which is especially suited for a
GPU implementation due to its similarity with matrix multiplication.
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Algorithm 1: Host Program for CUDA-APSP.

1 Init<<< GridWidth×GridWidth,BlockWidth×BlockWidth >>>(n, A, D, P );
2 for (step = 1, . . . , dlog2(n− 1)e) do
3 APSP<<< GridWidth×GridWidth,BlockWidth×BlockWidth >>>(n, D, P );

The idea of the Min-plus algorithm is to compute a series of auxiliary matrices D(2∗m),m = 1, 2, . . .
where D(k) contains the length of the shortest paths between all pairs of nodes subject to the constraint
that each path contains at most k edges. These matrices are computed by

D(1) = A

D
(2∗m)
i,j = min

k=1,...,n
{D(m)

i,k + D
(m)
k,j } (m ≥ 1 and i, j = 1, . . . , n).

The computation of D(2∗m) can also be written as D(m) ⊗D(m) where the operator ⊗ denotes a mod-
ified form of matrix multiplication with addition replacing multiplication and the minimum operation
replacing the addition in the original matrix multiplication. Since each shortest path in G contains at
most n − 1 edges (assuming no negative weight cycles), the final distance matrix D equals D(k) where

k = 2dlog2(n−1)e, i.e., dlog2(n − 1)e steps are required to compute the final result. For the path matrix
P , a similar sequence of auxiliary matrices can be computed by keeping track of the positions at which
a new shortest path is discovered, i.e.,

P
(1)
i,j =

{
j if (vi, vj) ∈ E
∞ otherwise

P
(2∗m)
i,j = P

(m)
i,kmin

with kmin = argmin
k=1,...,n,k 6=i

{D(m)
i,k + D

(m)
k,j }

(m ≥ 1 and i, j = 1, . . . , n).

3.3 Parallel CUDA implementation

Several GPU implementations have been proposed for the APSP problem, see e.g. [3,6,24]. In the fol-
lowing, we present an implementation that exploits the similarity of the Min-Plus algorithm with matrix
multiplication [24]. The CUDA implementation consists of a host program shown in Alg. 1 and two
CUDA kernels called Init and APSP. The host program first invokes the embarrassingly parallel kernel
Init, which initializes the matrices D and P with data from the input matrix A. Afterwards, the kernel
APSP is executed dlog2(n− 1)e times, where each kernel call applies the Min-plus operator ⊗ to matrix
D and updates matrix P accordingly. The kernel works in-place, i.e., the updated values are written to
the given input matrices immediately.

Kernel APSP is executed by two-dimensional thread blocks of size BlockSize × BlockSize where
BlockSize is a configurable parameter. The entire kernel grid consists of GridWidth×GridWidth thread
blocks where GridWidth = dn/BlockSizee. Table 2 summarizes the application-specific parameters
introduced in this section. The matrices D and P are partitioned into tiles of size BlockSize×BlockSize
where each thread block is responsible for the updates for one of these tiles. The pseudo code of kernel
APSP is shown in Alg. 2.
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Algorithm 2: Pseudo code of kernel APSP.

1 let (gx, gy) be the global thread coordinates;
2 let (tx, ty) be the local thread coordinates;
3 wmin = D(gx, gy); kmin =∞;
4 for (b = 0, . . . , GridWidth− 1) do
5 collectively load 2 tiles of matrix D into shared memory locations D1 and D2;
6 synchronize();
7 km = argmink=0,...,BlockSize−1{D1(tx, k) + D2(k, ty)};
8 wk = D1(tx, km) + D2(km, ty);
9 if wk < wmin then wmin = wk; kmin = b ∗BlockSize + km;

10 synchronize();

11 if (kmin 6=∞) then12 D(gx, gy) = wmin; P (gx, gy) = P (gx, kmin);

k

k

v

u

Fig. 1 Illustration of the tiles processed by a specific thread block. The bottom right matrix highlights the tile processed
by the thread block. The top matrix and the bottom left matrix show the tiles that have to be loaded into shared memory
for the computations of the output tile.

First, each thread determines its local and global coordinates within the thread block and the kernel
grid, respectively (lines 1 and 2). Line 3 determines the current length wmin of the path for the assigned
pair of nodes. Afterwards, the kernel iterates over the tiles in matrix D (line 4). In each step, one tile
located on the same row and the corresponding tile located on the same column as the output tile of
the thread block are loaded into shared memory using a coalesced access pattern (line 5), see Fig. 1
for an illustration. After synchronizing all threads from a thread block (line 6), each thread performs a
Min-plus operation using data from shared memory (line 7-8). If applicable, the current shortest path
wmin and the coordinate kmin of the minimum are updated (line 9). Finally, the global data structures
are updated, if a new shortest path has been found (line 11).
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Table 2 Overview of the application-specific model parameters defined in Sect. 3.

Parameter Description

BlockWidth Size of a tile in the computed matrices.
GridWidth Number of tiles per dimension of the computed matrices.
n Number of nodes in the input graph.

Algorithm 3: Host Program for CUDA-APSP-FW.

1 Init<<< GridWidth×GridWidth,BlockWidth×BlockWidth >>>(n, A, D, P );
2 for (k = 1, . . . , n) do
3 APSP-FW<<< GridWidth×GridWidth,BlockWidth×BlockWidth >>>(n, k, D, P );

Algorithm 4: Pseudo code of kernel APSP-FW.

1 let (gx, gy) be the global thread coordinates;
2 let k be the step number provided by the host code;
3 if (D(gx, k) + D(k, gy) < D(gx, gy)) then
4 D(gx, gy) = D(gx, k) + D(k, gy);
5 P (gx, gy) = P (k, gy);

3.4 Floyd-Warshall Algorithm

The Floyd-Warshall algorithm is an alternative approach to compute the APSP problem. In its sequential
version, it consists of three nested loops each of which running over all nodes of the input graph leading
to a runtime complexity of O(n3). All data dependencies of the loop nest are carried by the outermost
loop. Thus, in a parallel implementation of this algorithm, the iterations of the outermost loop have to
be executed one after another, but the iterations of two innermost loops are pairwise independent of each
other and can be executed concurrently.

The GPU implementation of the Floyd-Warshall algorithm follows this parallelization strategy. The
host program shown in Alg. 3 is responsible for the initialization (similar to the Min-plus algorithm)
and the sequential execution of the outermost loop. Each loop iteration corresponds to one invocation
of the parallel kernel APSP − FW , which is shown in Alg. 4. The kernel is executed with n× n threads
organized in thread blocks of size BlockWidth×BlockWidth, see Tab. 2 for the parameters. Each thread
is responsible for the update of one element of the distance and the path matrix.

In principle, a GPU implementation of the Floyd-Warshall algorithm can also employ shared memory
to store elements of the distance matrix required by multiple threads of the kernel, see e.g. [24]. Our
experiments on Fermi and Kepler GPUs have shown a slowdown caused by the additional memory copy
operations. Thus, our implementation accesses all data directly from global memory.

4 Performance Model

This section proposes a performance prediction model for the parallel CUDA implementations of the
APSP problem shown in Sect. 3. The approach used in this section is purely analytical, the translation
of the obtained values to actual time units in milliseconds is discussed in Sect. 5. The model focuses on
the update operations performed by the CUDA kernels APSP (see Alg. 2) and APSP-FW (see Alg. 4),
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Table 3 Overview of the parameters and variables defined in Sect. 4.

Parameter Description

TApp Total predicted execution time, computed according to (1).
TAPSP Predicted execution time of a single kernel execution, computed according to

(2).
TLaunch Overhead for launching a CUDA kernel (hardware parameter).
TWarp Predicted execution time of a single warp, computed according to (3).
TInstr Average execution time of an arithmetic operation (hardware parameter).
TRead Average execution time for a read memory access (hardware parameter).
TWrite Average execution time for a write memory access (hardware parameter).
#InstrPerV ertex Average number of instructions executed per graph node (hardware parameter).
#MemAccessRead Total number of read accesses per kernel launch, computed according to (4).
#MemAccessWrite Total number of write accesses per kernel launch, computed according to (5).
#WarpsPerSM Maximum number of active warps assigned to an SM, computed by either

model (Min, Sorted, Full, or Buckets).
#Warps Total number of active warps per kernel launch, computed according to (6).
#WarpsFull/Right/Bottom/Last Total number of warps in full, right, bottom, or last thread blocks, computed

by (8), (10), (12), and (13), respectively.
#WarpsPerBlockFull/Right/Bottom Number of warps in a thread block of type full, right, or bottom, computed by

(7), (9), and (11), respectively.
#WarpsPerSMMin/Full/Buckets Maximum number of active warps per SM according to model Min, Full, or

Buckets, computed by (14),(15), and (18), respectively.

respectively. The model ignores the data transfer operations to copy the input/output data to/from
the device and the time required to initialize the output data structures (kernel Init). An overview of
all symbols defined in this section is given in Tab. 3. We first present the performance model for the
Min-plus algorithm in detail. Subsect. 4.5 shows the application of the model to the Floyd-Warshall
implementation.

4.1 Modeling the application execution time

The total execution costs TApp for the entire Min-plus algorithm are computed by

TApp = dlog2(n− 1)e ∗ TAPSP (1)

where TAPSP is the time required to execute kernel APSP once. The kernel execution time is computed
by

TAPSP = TLaunch + TWarp ∗#WarpsPerSM ∗ #ThreadsPerWarpDev

#CoresPerSMDev
(2)

where TLaunch is the overhead to start a CUDA kernel, TWarp is the time to execute a single warp (see Sub-
sect. 4.2 for its calculation) and #WarpsPerSM is the maximum number of warps assigned to an SM (see
Subsect. 4.3 and 4.4 for computing this value). The factor #ThreadsPerWarpDev/#CoresPerSMDev

determines how many of the #WarpsPerSM are executed one after another on each SM.
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Fig. 2 Illustration of the relationship between the input matrix size (yellow frame) and the kernel grid created for the
execution of kernel APSP. The blue squares symbolize thread blocks and the grey rectangles represent warps with active
threads in thread blocks that partially overlap the input matrix.

4.2 Modeling the warp execution time

The time TWarp denotes the time required for a single warp to execute Alg. 2, which is computed by

TWarp =n ∗#InstrPerV ertex ∗ TInstr+

#MemAccessRead ∗ TRead + #MemAccessWrite ∗ TWrite. (3)

The first line of equation (3) captures the time required to perform computations. This time depends on
the number #InstrPerV ertex of GPU instructions executed for each graph node in lines 7-9 of Alg. 2
and the average execution time of an instruction TInstr. Both, #InstrPerV ertex and TInstr depend on
the hardware specifications of the GPU, see also Sect. 5.

The time required to copy data from or to global memory depends on the number of read and write
accesses per warp (#MemAccessRead and #MemAccessWrite) and the hardware-specific time for
a memory access (TRead and TWrite). We only consider accesses to the global memory, which are all
performed using a coalesced access pattern. The exact number of memory accesses depends on whether
the matrices D and P have to be updated in line 11 of Alg. 2. In the following, we use the parameter
Pmin ∈ [0, 1] to denote the probability of an update operation for a warp. Thus, each warp performs

#MemAccessRead =

⌈
(1 + 2 ∗GridWidth + Pmin) ∗#ThreadsPerWarpDev

#CoalescableMemAccessesDev

⌉
(4)

read accesses (lines 3,5,11 of Alg. 2) and

#MemAccessWrite =

⌈
2 ∗ Pmin ∗#ThreadsPerWarpDev

#CoalescableMemAccessesDev

⌉
(5)

write accesses (line 11 of Alg. 2).

4.3 Computing the total number of warps

Figure 2 shows the kernel grid for kernel APSP where the blue squares represent thread blocks of size
BlockSize × BlockSize and the yellow frame represents the input matrix of size n × n. If n is not a
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multiple of BlockSize, some threads have coordinates outside of the matrix and, thus, do not participate
in computations. As a consequence, some warps are immediately terminated by the GPU. For an accurate
modeling of the execution time especially for small graphs, we have to take this behavior into account.
Thus, we distinguish four different types of thread blocks:

– Full thread blocks where all threads perform computations (dark blue squares in Fig. 2).
– Right thread blocks located on the rightmost column of the kernel grid. In these blocks, only a subset

of the warps on each row perform computations.
– Bottom thread blocks located on the bottom row of the kernel grid. In these blocks, only a subset of

the rows performs computations and some rows have no assigned work.
– The last thread block located on the bottom right of the kernel grid. In this block, only a subset of

the warps on some of the rows perform computations.

The total number of warps is the sum of the warps of each category, i.e.,

#Warps = #WarpsFull + #WarpsRight + #WarpsBottom + #WarpsLast. (6)

In the following, we give formulas to compute the number of warps of each category assuming that each
row of a thread block starts with a new warp.

4.3.1 Computing the number of warps in full thread blocks

In full thread blocks all included threads are active. Thus, a single thread block of type full includes

#WarpsPerBlockFull = #WarpsPerBlockDev

(⌈
BlockSize

#ThreadsPerWarpDev

⌉
∗BlockSize

)
(7)

warps. The total number of active warps in full thread blocks is then computed by

#WarpsFull =
⌊ n

BlockSize

⌋2
∗#WarpsPerBlockFull. (8)

4.3.2 Computing the number of warps in right thread blocks

In a right thread block, (n mod BlockSize) threads on each of the BlockSize rows perform work leading
to

#WarpsPerBlockRight = #WarpsPerBlockDev

(⌈
n mod BlockSize

#ThreadsPerWarpDev

⌉
∗BlockSize

)
(9)

active warps per thread block and

#WarpsRight =
(⌈ n

BlockSize

⌉
− 1
)
∗#WarpsPerBlockRight (10)

total active warps in right thread blocks.
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4.3.3 Computing the number of warps in bottom thread blocks

Each bottom thread block has (n mod BlockSize) rows each of which containing BlockSize active
threads. Thus, the number of warps in such a thread block is

#WarpsPerBlockBottom = #WarpsPerBlockDev

(⌈
BlockSize

#ThreadsPerWarpDev

⌉
∗ (n mod BlockSize)

)
(11)

and the total number of warps in all bottom thread blocks is

#WarpsBottom =
(⌈ n

BlockSize

⌉
− 1
)
∗#WarpsPerBlockBottom. (12)

4.3.4 Computing the number of warps in the last thread block

The last thread block contains (n mod BlockSize) rows with (n mod BlockSize) active threads each.
Thus, the total number of warps in this thread block is

#WarpsLast = #WarpsPerBlockDev

(⌈
n mod BlockSize

#ThreadsPerWarpDev

⌉
∗ (n mod BlockSize)

)
. (13)

4.4 Modeling the number of warps per SM

The execution time of kernel APSP depends on the assignment of the #Warps active warps to the SMs
of the GPU. Since this mapping decision is made by the internal scheduler of the GPU and not visible for
the application program, we consider 4 different approaches to estimate the maximum number of warps
per SM (#WarpsPerSM).

4.4.1 Model Min

The model Min assumes that warps are assigned to SMs in a round robin fashion, i.e., the maximum
number of warps per SM is given by

#WarpsPerSMMin =

⌈
#Warps

#SMsDev

⌉
. (14)

This model ignores that warps of the same thread block have to executed on the same SM. Further-
more, it assumes a perfect load balance between the SMs. As a consequence, the computed value
#WarpsPerSMMin is an optimistic approximation of the actual number of warps executed by an SM.
Figure 3 (a) illustrates the workload distribution for 4 SMs and 7 thread blocks according to model Min.
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SM 1 SM 2 SM 3 SM 4

(a) Model Min.

SM 1 SM 2 SM 3 SM 4

(b) Model Sorted.

Fig. 3 (a) Assumed distribution of 7 full thread blocks onto 4 SMs according to model Min. Each SM gets approximately
the same number of warps possibly splitting thread blocks between SMs. (b) Assumed distribution of 4 full thread blocks,
2 half-full thread blocks and 5 quarter-full thread blocks onto 4 SMs according to model Sorted. The thread blocks are
assigned to SMs by a list-scheduling algorithm that considers the thread blocks in order of decreasing number of active
warps.

4.4.2 Model Sorted

Model Sorted assumes that thread blocks are assigned to SMs by a static list-scheduling approach, i.e.,
the thread blocks are considered one after another starting with the block with the most active warps
and each block is assigned to the SM currently having the smallest accumulated number of active warps.
This leads to an optimistic estimate of the actual number of warps per SM, since the GPU hardware does
not know the number of active warps before actually executing the corresponding thread block. Thus,
a less optimal block distribution results in practice. Figure 3 (b) illustrates the mapping for 3 different
types of thread blocks onto 4 SMs. The formula to compute #WarpsPerSMSorted is quite lengthy and
thus omitted for the sake of a clear presentation.

4.4.3 Model Full

Model Full assumes that all created thread blocks are of type full, i.e., all created threads are assumed
to be active. The assignment of thread blocks to SMs is performed in a round robin fashion. Thus, the
maximum number of warps of an SM is computed by

#WarpsPerSMFull =

⌈d n
BlockSizee

2

#SMsDev

⌉
∗#WarpsPerBlockFull. (15)

An illustration for 6 thread blocks and 4 SMs is given in Fig. 4 (a). Model Full overestimates the actual
workload leading to a pessimistic cost prediction especially for small input problem sizes where a large
fraction of the warps may be inactive. But for large input problem sizes, i.e. n � BlockSize, the vast
majority of blocks are of type full and the model is expected to give a realistic estimate.
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SM 1 SM 2 SM 3 SM 4

(a) Model Full.

SM 1 SM 2 SM 3 SM 4

(b) Model Buckets.

Fig. 4 (a) Assumed distribution of 6 thread blocks onto 4 SMs according to model Full. All thread blocks contain the
maximum number of warps and the mapping of thread blocks onto SMs is performed by a round robin algorithm. (b)
Assumed distribution of 5 thread blocks onto 4 SMs according to model Buckets using a bucket size of 2. The resulting
buckets with at most 2 thread blocks are scheduled in a round robin way.

4.4.4 Model Buckets

Model Buckets assumes that multiple thread blocks are combined into a larger entity called bucket and
that in each scheduling step an entire bucket of thread blocks is assigned to an SM. Similar to model
Full, Buckets assumes that all thread blocks are of type full and that the resulting buckets assigned to
SMs in a round robin fashion. The rationale behind the model is that the GPU scheduler may decide
to assign an additional thread block to an SM when all currently assigned warps are blocked, e.g. when
waiting for a data transfer from global memory. The size of a bucket is set to #BlocksPerSMOcc, i.e.,
the maximum number of thread blocks that may be active on an SM at the same time. An illustration
of the workload distribution for bucket size 2 and 5 thread blocks is given in Fig. 4 (b). The maximum
number of warps in an SM for this model is computed by

#Blocks1 =

⌈
dn/BlockSizee2

#BlocksPerSMOcc ∗#SMsDev

⌉
∗#BlocksPerSMOcc (16)

#Blocks2 = min
{
dn/BlockSizee2 −#Blocks1 ∗#SMsDev,#BlocksPerSMOcc

}
(17)

#WarpsPerSMBucket = (#Blocks1 + #Blocks2) ∗#WarpsPerBlockFull (18)

4.5 Performance Model for the Floyd-Warshall algorithm

In the following, we discuss the application of the performance model developed for the Min-plus algo-
rithm to the Floyd-Warshall algorithm. Several minor changes are required. The total execution time
TApp−FW of the algorithm is computed by

TApp−FW = n ∗ TAPSP−FW (19)

where the kernel execution time

TAPSP−FW = TLaunch + TWarp−FW ∗#WarpsPerSM ∗ #ThreadsPerWarpDev

#CoresPerSMDev
(20)
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is computed similar to the Min-plus algorithm, see Eq. (2). The warp execution time TWarp−FW is
computed by

TWarp−FW =#InstrPerV ertex− FW ∗ TInstr+

#MemAccessRead− FW ∗ TRead + #MemAccessWrite− FW ∗ TWrite. (21)

where the parameters

#InstrPerV ertex− FW = 2 (22)

#MemAccessRead− FW = d (2 + Pmin) ∗#ThreadsPerWarpDev

#CoalescableMemAccessesDev
e (23)

#MemAccessWrite− FW = d2 ∗ Pmin ∗#ThreadsPerWarpDev

#CoalescableMemAccessesDev
e (24)

(25)

come from Alg. 4. The number of warps per SM (parameter #WarpsPerSM) of the Floyd-Warshall
algorithm is identical to the Min-plus algorithm, since both implementations employ an identical thread
block grid.

5 Experimental Evaluation

The proposed performance prediction model is evaluated using two Nvidia GPUs: a Tesla C2075 (Fermi
architecture) and a GTX 780 (Kepler architecture). The hardware parameters are shown in Tab. 4. For
the remaining model parameters, i.e., the memory access and arithmetic computation times, we do not
use the hardware parameters directly, since the cost model does not account for the overlapping of
computation and memory accesses within an SM. Instead, we use a two step approach. In the first step,
we use symbolic platform-independent values for these parameters that reflect their relative magnitude
to each other, see Tab. 5 for the values used in this article. The result is a runtime prediction in symbolic
time units. In the second step, we use the measured execution time on a specific GPU using a fixed input
problem size n0 to determine a platform-specific adjustment factor f , which is computed by

f =
4 ∗ Tmeas(n0)

T ′Min(n0) + T ′Sorted(n0) + T ′Full(n0) + T ′Buckets(n0)

where Tmeas is the measured execution time and T ′Min, T
′
Sorted, T

′
Full, T

′
Buckets are the runtime predictions

in symbolic units provided by the 4 models presented in the previous section. The final cost value in
actual time units is then computed by multiplying the symbolic time with factor f , e.g. by

TMin(n) = f · T ′Min(n)

for model Min and an arbitrary n ∈ N. For the results presented in the following, we use n0 = 500 and
consider small (n ∈ [50, 100]) and large synthetic graphs (n ∈ [4000, 4050]).
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Table 4 Hardware parameters of the GPUs used in the benchmark test.

Parameter C2075 GTX 780

#SMsDev 14 12
#CoresPerSMDev 32 192
#ThreadsPerWarpDev 32 32
WarpGranularityDev 2 4
#CoalescableMemAccessesDev 4 4

Table 5 Model parameters used in the experimental evaluation.

Parameter Value

TLaunch 5000
#InstrPerV ertex 1000
TInstr 10
TRead 2000
TWrite 4000
PMin 0.5

5.1 Experiments on the Tesla C2075

The experiments on the Tesla C2075 have been performed using thread blocks of size 8 × 8, 16 ×
16, and 32 × 32, i.e., BlockSize ∈ {8, 16, 32}. Figure 5 shows the measured and predicted execution
times for BlockSize = 8. Using this configuration, each SM can hold 8 blocks at the same time, i.e.,
#BlocksPerSMOcc = 8. As a consequence, the entire GPU with 14 SMs has a maximum of 112 active
blocks. The measured execution times for small graphs show two major jumps: at n = 65 and at n = 80.
The first jump results from an additional execution of kernel APSP (see line 2 of Alg. 1). The second
jump is caused by an increase of the number of thread blocks from 100 (10×10 thread blocks for n = 80)
to 121 (11 × 11 thread blocks for n = 81), which includes the maximum number of active blocks, i.e.,
some blocks have to wait for other blocks to finish their execution. Model Buckets (using bucket size
8) correctly predicts both jumps and provides a very good approximation of the observed execution
behavior. The other models predict minor jumps with a step size of 8 (equal to BlockSize), but fail to
account for the major jump at n = 80. For large graphs, we only show the results of the models Min and
Bucket, because they represent the minimum and the maximum of the prediction interval, respectively.
Both models underestimate the measured execution time by less than 1% on average. This may be caused
by a factor f that is slightly too small.

The results for 16 × 16 thread blocks are shown in Fig. 6. The measured execution times for small
graphs show jumps at n = 65 and n = 96, which originate in an increase of the number of kernel
executions and in an increase in the number of thread blocks from 36 (6× 6 thread blocks for n = 96) to
49 (7 × 7 thread blocks for n = 97), respectively. All models correctly predict the jump at n = 65, but
only model Min foresees the jump at n = 96. For large graphs, we obtain a very good prediction of the
actual execution time by all models. The maximum observed deviation is below 1%.

Using thread blocks of size 32× 32 (see Fig. 7 for the results) delivers identical prediction for models
Full and Buckets, since a bucket size of 1 is used for the latter (#BlocksPerSMOcc = 1). For small
graphs, the runtime predictions are very accurate for all models (except Min) up to n = 96. The jump at
n = 96 results from an increase of the number of thread blocks from 9 (3× 3 thread blocks for n = 96)
to 16 (4 × 4 thread blocks for n = 97). This jump is predicted by all models except Sorted. Model Min
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Fig. 5 Comparison of the measured and predicted execution times for the Tesla C2075 using thread blocks of size 8× 8
for small graphs (left) and large graphs (right).
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Fig. 6 Comparison of the measured and predicted execution times for the Tesla C2075 using thread blocks of size 16×16
for small graphs (left) and large graphs (right).
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Fig. 7 Comparison of the measured and predicted execution times for the Tesla C2075 using thread blocks of size 32×32
for small graphs (left) and large graphs (right).

leads to the best prediction of the height of this jump. For large graphs, we observe a deviation of up to
2.5% from the measured runtime. The average deviation is between 1.1% (models Full and Buckets) and
1.6% (models Min and Sorted).

In summary, the results for small graphs show that the measured execution times are always within
the interval spanned by the 4 proposed models. There are several jumps in the execution times that are
predicted by some but not all models. Further investigations are required to analyze these jumps and to
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Fig. 8 Comparison of the measured and predicted execution times for the GTX 780 using thread blocks of size 32 × 32
for small graphs (left) and large graphs (right).

incorporate the observations into the prediction models. Considering the large graphs, all models slightly
underestimate the measured runtime. Nevertheless, the runtime predictions have a very high accuracy
with a deviation below 1% in most cases.

5.2 Experiments on the GTX 780

For the GTX 780, we only show the results for thread blocks of size 32 × 32 (see Fig. 8); thread blocks
of size 8 × 8 and 16 × 16 lead to similar observations. For small graphs, the measured execution times
exhibit two jumps (at n = 65 and at n = 96) that are predicted by all 4 models. The origin of these
jumps is similar to the 32× 32 scenario for the C2075. For n ∈ [96, 100], models Full and Buckets predict
the execution time almost perfectly. For large graphs, all models overestimate the execution time by
about 20%. Nevertheless, the curve progression is modeled quite accurately, indicating that a smaller
conversion factor f is required. Thus, future investigations may include the use of different values for f
for different graph sizes to increase prediction accuracy.

6 Related Work

There are three major approaches to performance modeling for GPUs[16]:

– analytical models, which deliver a set of equations that describes the performance of an application
depending on hardware and software parameters;

– machine learning approaches, which uses empirical data to train a model or a classifier;
– simulator-based approaches that simulate the target system step by step and extract performance

data on the fly.

A further classification can be made into application-specific approaches that are designed for a single
class of applications and general-purpose approaches that do not make any assumptions on a specific
application structure. The model presented in this article is an application-specific analytical model
whose final parameters are determined by empirical data. In the following, we give a brief overview of
analytical and empirical models proposed by other research groups.

MWP−CWP [8] is an analytical general-purpose model based on two metrics: MWP (memory warp
parallelism) representing the maximum number of warps per SM that can overlap memory accesses and
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CWP (computation warp parallelism) representing the number of warps that can perform their compu-
tations during one memory waiting period. These metrics determine whether a kernel is compute-bound,
memory-bound, or does not offer enough parallelism. Depending on this classification, an appropriate
formula to predict the kernel execution time is derived. The MWP − CWP model has been used as
basis for several other performance prediction frameworks. An example is GROPHECY[18], that obtains
a suitable implementation variant for a GPU kernel based on an abstract code skeleton, which defines the
computations and memory accesses performed by the kernel. Several extensions to the MWP − CWP
model, e.g., the inclusion of caches and special function units, have been presented in [22].

The MAX and SUM models[13] are general-purpose analytical models that use ideas of the models
BSP and QRQW, the latter being an extension of the PRAM model. The total execution cost is either
predicted as the maximum (MAX model) or the sum (SUM model) of the predicted computation and
memory access costs. [1] presents a compiler-based approach, which constructs a workflow graph to
represent the dependencies between memory accesses of a given kernel. The weight of the graph edges
depends on the number of compute operations and on an adjustment for branch divergence. The total
computation and memory latency of a warp is obtained by a suitable graph reduction. The approach
presented in [9] is similar in spirit to the MWP−CWP model, but with a focus on kernel throughput. The
memory accesses are modeled in form of a pipeline. The execution time of a kernel is predicted depending
on its classification as memory-bound or compute-bound. An application-independent analytical model
for compute-intensive tasks has been proposed in [7]. This model ignores memory traffic and all thread
blocks are assumed to have an identical workload that is evenly distributed over the available SMs.

The approach described in [17] combines an analytical model with a calibrated application-specific
part, which provides information about, for example, cache utilization and thread-block layout. The
model coefficients are fitted using measured execution times. The focus is on the correct prediction of
the influence of the individual model variables. As an example application, an APSP implementation
similar to the one in this article is used. In contrast to the proposed model, different input problem sizes
are not taken into account and only full thread blocks are considered.

Application-specific performance models for GPUs have been proposed for sparse matrix-vector multi-
plication [5] and matrix-matrix multiplication [14]. The approach in [5] uses profiling information obtained
for a set of benchmark matrices to compute a conversion factor to translate execution times from a ref-
erence architecture to an architecture with unknown execution times. The approach in [14] works on the
warp level, i.e., thread block configurations are not considered. It computes a performance upper-bound
by making optimistic assumptions, such as the absence of bank conflicts, and using microbenchmarks
for different machine instructions occurring in the considered code.

Examples for models using empirical data are [11,21,4,10]. The approach discussed in [11] uses the
Ocelot framework to collect various parameters like the number of instructions and memory transfers
from the PTX code of a given kernel. Statistic analysis is used to group the parameters into principle
components. The performance model is obtained by linear regression applied to the identified components
and benchmark results obtained from a training set. [21] presents a history-based model for OpenCL
kernels. The framework collects profiling data for kernel launches with different input data and execution
configurations. The obtained results are used to identify parameters that correlate with the execution
time. The strongly correlating parameters are used to build a linear prediction model. [4] presents an
approach for cross-platform performance prediction that uses various profiling information for a given
kernel that may be gathered by measurements or by using a simulator like GPGPU-Sim. Using the
obtained information, the distance in the multi-dimensional parameter space between the considered
kernel and different predefined training kernels is computed. The known performance of the training
kernels is used to predict the execution time of the considered kernel on different hardware. [10] uses
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a multiple regression model to predict the execution time of OpenCL kernels with the goal to identify
bottlenecks. The model is built using profiling data from actual kernel executions, which are grouped
into principal components. The above mentioned approaches collect many different parameters from
program runs and may require the repeated execution of kernels with different execution configurations.
In contrast, the approach presented in this article only requires the measured execution time for a single
input problem size.

A quantitative performance model for the Nvidia GeForce 200 series has been proposed in [25]. The
model combines information about the executed instructions obtained by the Barra GPU simulator with
the results of microbenchmarks for the instruction pipeline, the shared memory access time, and the
global memory access time. The goal is to optimize real-world applications and to suggest architectural
improvements. [23] presents a set of microbenchmarks that measure the execution time depending on the
memory access pattern and the amount of computation performed. The goal is to provide a guideline on
how to choose an appropriate thread block size. For this purpose, the impact of different thread block
configurations on the resulting performance is evaluated.

In contrast to the approach proposed in this article, none of the models listed above distinguishes
explicitly between active and inactive warps and none of these models focuses on the correct reproduction
of the curve shape obtained for different input sizes.

7 Conclusions

In this article, we have presented a cost model that provides four different approximations for the
execution time of an all-pairs-shortest-path implementation on GPUs. Two of these approximations are
based on optimistic assumptions. The model Min assumes that warps of a thread block can be scheduled
independently and model Sorted assumes that the GPU hardware knows the number of active warps of
a thread block before actually executing it. The other two approximations are pessimistic by ignoring
any inactive threads that may exist if the kernel block size is not a multiple of the input graph size.
Experiments show that we get a high prediction accuracy especially on the Fermi architecture. The
underlying approach of the presented cost model may prove useful for predicting execution time of
applications with a similar compute structure, such as for example the multiplication of two matrices.
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3. Buluç, A., Gilbert, J., Budak, C.: Solving Path Problems on the GPU. Parallel Comput. 36(5-6), 241–253 (2010).
4. Che, S., Skadron, K.: BenchFriend: Correlating the performance of GPU benchmarks. Int. Journal of High Performance

Computing Applications 28(2), 238–250 (2014).
5. Guo, P., Wang, L.: Accurate cross–architecture performance modeling for sparse matrix–vector multiplication (SpMV)

on GPUs. Concurrency and Computation: Practice and Experience (2014).
6. Harish, P., Narayanan, P.: Accelerating Large Graph Algorithms on the GPU Using CUDA. In: Proc. of the 14th Int.

Conf. on High Performance Computing (HiPC ’07), pp. 197–208. Springer-Verlag, Berlin, Heidelberg (2007).
7. Hasan, K., Chatterjee, A., Radhakrishnan, S., Antonio, J.: Performance Prediction Model and Analysis for Compute-

Intensive Tasks on GPUs. In: C.H. Hsu, X. Shi, V. Salapura (eds.) Proc. of the 11th IFIP Int. Conf. on Network and
Parallel Computing (NPC’14), Lecture Notes in Computer Science, vol. 8707, pp. 612–617. Springer Berlin Heidelberg
(2014).
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