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Abstract. We present a neuro-computational model that, based on
brain principles, succeeds in performing a category learning task. In par-
ticular, the network includes a fast learner (the basal ganglia) that via
reinforcement learns to execute the task, and a slow learner (the pre-
frontal cortex) that can acquire abstract representations from the accu-
mulation of experiences and ultimately pushes the task level performance
to higher levels.
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1 Introduction

Categorization is the capacity to group items according to specific commonali-
ties, in order to generalize or predict responses to new future stimuli and to build
concepts that provide the world with meaning. Humans are especially good in
this ability and therefore, we believe that to build a synthetic system capable of
categorization we should look at mechanisms grounded in neuroscientific data.

The basal ganglia (BG) are a set of subcortical nuclei shown to be involved
in a large number of categorization paradigms [1–5], especially those in which
learning occurs via trial and error [6,7]. The BG are also associated with action
selection [8], reinforcement learning [9] and it has been proposed to be involved
in the training of cortico-cortical connections [10].

The prefrontal cortex (PFC) has also been shown to be involved in cate-
gory tasks. It has been shown that neurons in this area can represent different
categories [11–13]. Furthermore, the PFC plays a well-known role in executive
functions [14].

We propose a novel principle of computation in which a fast-learner system
(the BG) executes a category learning task via reinforcement learning while
training a slower-learner system (the PFC) to acquire category information.
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2 Methodology

2.1 Network Description

In our network, each nucleus of the BG and the PFC are represented by rate-
coded neurons and their function arises from plastic synapses. Synaptic learning
rules and neural activity are governed by differential equations which are solved
by employing the Euler method with a time step of 1 ms. The network was built
using the ANNarchy neural simulator [15] version 3.0.

We used a cortico-basalganglio-thalamic (CBGT) loop model based on pre-
ceding work [16] and connected it to the inferior temporal cortex (IT), the PFC
and the premotor cortex (PM) (see Fig. 1). The IT represents stimuli informa-
tion which is read by the Striatum (STR) and the subthalamic nucleus (STN),
the two main input nuclei of the BG; the PM represents the different possible
motor responses which can be initiated by the BG via the thalamus; and the
PFC contains category information which will be acquired during the execution
of the task. For further information about our BG model architecture consult
[16].

In order to provide a sophisticated mechanism to learn categories, we have
mainly introduced three connections linking the PFC with the thalamus and the
IT. The IT is connected to the PFC with variable, excitatory synapses so that
categories can be learned from the stimuli information. Each of the two thalamic
neurons projects to a different PFC cell with fixed excitatory synapses, which
allows the BG to transmit its action decision signal to the PFC, selecting one of
the two PFC neurons to learn the current input pattern.

Finally, each PFC cell excites its afferent thalamic neuron back in order
to bias the motor decision once enough information has been acquired. In
particular, each PFC neuron is the only excitatory source of its correspond-
ing thalamic neuron. Thus, when learning in the IT �→ PFC connections still
has not occurred, PFC provides both thalamic cells with the same input which
is then just modulated or controlled by the inhibitory projections from the BG
output. However, when category learning has been fully established in the PFC,
the thalamic activity is completely biased by this knowledge. Then, a stimulus of
a particular category will activate just one PFC cell and in doing so, just one of
both thalamic cells will be activated by the PFC, impeding that BG can select
the other thalamic neuron and consequently, it is now PFC which mainly rules
thalamic activity and motor decision.

2.2 Experiment

We performed a numerical categorization experiment which consists of 400 trials
in which learning took place. The model is taught to classify stimuli into one
of two possible categories. Each trial starts with a rest period of 100 ms and
is followed by 50 ms in which a randomly chosen stimulus is exposed. At the
end of this period, the decision of the model is probabilistically evaluated via a
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Fig. 1. Connections and connection types of the novel parts of the network. THAL:
thalamus. PFC: prefrontal cortex. IT: inferior temporal cortex. PM: premotor cortex.
The boxes inside the big shadow are the nuclei of the basal ganglia which correspond to
the one introduced in [16]. One2One: each presynaptic population is only connected by
its corresponding neuron of the postsynaptic population. All2all: every neuron in the
presynaptic population is connected with every neuron in the postsynaptic population.
PFC ↔ THAL connections link half of the THAL neurons with half of the PFC
neurons, constructing two loop structures.

soft-max rule depending on the activation of the PM and, if the model produces
a correct response, reward is delivered for 500 ms.

Each stimulus or exemplar is defined by a 6 × 6 numerical matrix whose
columns have one element set to one and the rest to zero, allowing for a total of
66 different exemplars. Category A represents all the stimuli whose first column
has its first element set to one; the rest of exemplars belong to category B.

Each column of this matrix is considered as one of the stimuli’s dimensions
(color, shape, brightness, texture, size and orientation) and each row in the
matrix as a value of each dimension (green, yellow, pink, red, purple and black
for the color dimension), therefore category A encompasses all exemplars with
green color and category B the rest of stimuli.

3 Results

We ran a set of 100 experiments with randomly initialized weights in the learn-
able connections and measured, among the trials of all experiments, the percent-
age of correct decisions (see Fig. 2). At the beginning, the model starts with a
performance around 50% which progressively increases until it reaches around
95%, meaning that our model can successfully learn this category task.

The fast learning in the BG leads the STR cells to encode small sections
of the stimuli (see Fig. 3c) and due to the high diversity of exposed exemplars,
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Fig. 2. Model performance in the 100 experiments per each of the 400 trials. The
continuous line represents the average of successful trials and the two dotted lines
indicate the corresponding standard error. To smooth the line plot, the average and
the standard error are calculated from the data of the corresponding trial and the next
4 trials.

the input representation of most STR neurons strongly varies over time (see
Fig. 3d). The slow learning in the PFC allows to eventually extract more generic
and stable knowledge (see Fig. 3a and d).

In the exposed stimuli of each category, the IT neurons representing “color”
are more probable to be active and thus more strongly encoded in PFC than
the other IT cells. In the case of category A, the IT “green color” cell is always
active and therefore, the PFC representations of category A eventually become
selective just to this IT cell. In the case of category B, IT “color” neurons are
just slightly more probable to be active than the rest of IT cells and thus, the
PFC category B representations encode a broader range of IT neurons than just
IT “color” cells. However, due to the random experiences in each experiment,
the bias for encoding IT “color” cells can only be clearly observed in the average
of the category B representations across all experiments (see Fig. 3b).

To compare both the STR and the PFC representations, we tested, at the
end of each experiment, the capacity of both the PFC and the BG to correctly
classify new, unseen, stimuli without the influence of the other while suppressing
learning in the network. First, the effect of the PFC was tested by running 400
trials after removing the connections between the output nucleus of the BG and
the thalamus. Then, the effect of the BG was tested by also running 400 trials
after setting back the weights of the projections from the input neurons to the
PFC to its initial conditions, thus removing any knowledge stored in them. The
results of both are presented in Fig. 4.

Figure 4 shows that PFC can correctly classify around 99% of the new stimuli
while the BG, around the 68%. This confirms that the slow learning system can
acquire a better category representation. However, this is only possible due to
the initial training performed by the BG.
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a) b) c)

d)

Fig. 3. “Receptive fields” of example PFC and STR cells at the end of the learning
period. As illustrated in a), the x-axis, the y-axis and the grey scale of each subplot
indicate the dimension of the input, the value of the input and the synaptic strength,
respectively. (a) Two example PFC cells; one cell specializes in category A and the other
in category B. (b) Mean across all experiments of the synaptic input representations in
the two PFC cells. (c) Example of 16 STR neurons, which encode only small parts of
stimuli information. (d) Evolution of the synaptic weights in one neuron of STR (first
row) and one cell of PFC (second row) over time at nine different moments (trials).

4 Discussion

Our model succeeds in a category classification task and provides insight into
the role of fast and slow learning in category acquisition. The high variability in
the exposed stimuli impedes the input nuclei of the BG to clearly encode each
category due to fast changes in the synaptic weights that force the neurons to
extract only features of the most recent stimuli, while forgetting the rest. For
this reason, the fast learning of the BG fails to produce a stable and complete
category representation required for generalizing. However, it proves to be good
enough to teach correct associations to the PFC.

Contrary to the stimuli specific knowledge acquired by the fast leaner, the
slow learning in IT �→ PFC projections allow them to gather a more general
or broader amount of information. And because the fast leaning in BG pro-
duces a high enough number of correct associations, the BG train the PFC to
more strongly encode those elements common in the stimuli of the corresponding
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Fig. 4. Performance of the PFC and the BG alone in generalizing new stimuli. For
each of both the PFC and the BG, there are three bars representing the percentage
of trials correctly classified. Each bar disposes of an error bar indicating its standard
error.

category, thus generating stable category representations that generalize across
individual exemplars.

However, the slower learner would not be required if the number of stimuli
were small enough. Hence, the fast learning could produce stable representations
of the stimulus-response (SR) associations necessary to quickly achieve the high-
est performance [16–18]. Nevertheless, the task is no longer a category learning
task but an SR learning task.

Although the fast learning system is not suitable for achieving the greatest
scores in our task, it is appropriate for executing the initial trials, as it can
reach a high performance in a small amount of time. Using a slow learner alone
(without a fast learner) would take too much time to reach a high performance.
Therefore, we believe that the brain requires a combination of both fast and
slow learning for acquiring category representations while having a high task
performance from the beginning.

Assigning fast and slow learning to BG and PFC respectively is in accordance
with physiological considerations [19] built in a brain theory that proposes: first,
a fast learning for extracting specific stimulus information, and a slow learning
for identifying the commonalities among the elements of the same class [19]; and
second, the BG to learn fast specific stimulus-motor associations while slowly
teaching the PFC to learn categories [19–21]. Likewise, our model’s function
and architecture is in agreement with brain anatomy and neuroscience studies
[22–24] which, for example, understand BG-cortex interaction via a cortico-basal
ganglio-thalamic loop.

As in neuroscience, the machine learning community has been investigating
the category recognition phenomenon. In particular, the state of the art of this
field in machine learning belongs to deep neural networks with supervised learn-
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ing (SL) which have won the latest contests and outperformed records in this
domain [25,26]. However, learning to distinguish between entities just from the
correct examples provided by a teacher (i.e. SL) works well if learning is done off-
line. Category learning as discussed here relates more closely to reinforcement
learning (RL), in which an agent pursues a goal by exploring and exploiting
actions in its environment in order to maximize reward sensation [27].

Specifically, our model brings together both RL and categorization in such a
way that fast RL learns useful actions while trains the slow learning to acquire
category knowledge. Therefore, this model could be proposed as a novel deep
networks’ classifier, which could efficiently perform SR tasks, in case of a small
number of stimuli, and categorization tasks, otherwise. Finally, further work
should focus on adapting this model to more complex stimuli, for example, to
learn to classify real objects by their shape.
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10. Hélie, S., Ell, S.W., Ashby, F.G.: Learning robust cortico-cortical associations with
the basal ganglia: an integrative review. Cortex 64, 123–135 (2015)

11. Freedman, D.J., Riesenhuber, M., Poggio, T., Miller, E.K.: A comparison of pri-
mate prefrontal and inferior temporal cortices during visual categorization. J. Neu-
rosci. 23, 5235–5246 (2003)



Fast and Slow Learning Role in Categorization 255

12. Freedman, D.J., Riesenhuber, M., Poggio, T., Miller, E.K.: Visual categorization
and the primate prefrontal cortex: neurophysiology and behavior. J. Neurophysiol.
88, 929–941 (2002)

13. Freedman, D.J., Riesenhuber, M., Poggio, T., Miller, E.K.: Categorical represen-
tation of visual stimuli in the primate prefrontal cortex. Science 291, 312–316
(2001)

14. Miller, E.K., Cohen, J.D.: An integrative theory of prefrontal cortex function. Ann.
Rev. Neurosci. 24, 167–202 (2001)

15. Vitay, J., Dinkelbach, H., Hamker, F.H.: ANNarchy: a code generation approach
to neural simulations on parallel hardware. Front. Neuroinf. 9, 19 (2015)

16. Schroll, H., Vitay, J., Hamker, F.H.: Dysfunctional and compensatory synaptic
plasticity in Parkinson’s disease. Eur. J. Neurosci. 39, 688–702 (2014)

17. Baladron, J., Hamker, F.H.: A spiking neural network based on the basal ganglia
functional anatomy. Neural Netw. 67, 1–13 (2015)

18. Packard, M.G., Knowlton, B.J.: Learning and memory functions of the basal gan-
glia. Ann. Rev. Neurosci. 25, 563–593 (2002)

19. Seger, C.A., Miller, E.K.: Category learning in the brain. Ann. Rev. Neurosci. 33,
203 (2010)

20. Antzoulatos, E.G., Miller, E.K.: Differences between neural activity in prefrontal
cortex and striatum during learning of novel abstract categories. Neuron 71, 243–
249 (2011)

21. Miller, E.K., Buschman, T.J.: Rules through recursion: how interactions between
the frontal cortex and basal ganglia may build abstract, complex rules from con-
crete, simple ones. In: Neuroscience of Rule-Guided Behavior, pp. 419–440 (2007)

22. Seger, C.A.: The basal ganglia in human learning. Neuroscientist 12, 285–290
(2006)

23. Haber, S.N.: The primate basal ganglia: parallel and integrative networks. J. Chem.
Neuroanat. 26, 317–330 (2003)

24. McHaffie, J.G., Stanford, T.R., Stein, B.E., Coizet, V., Redgrave, P.: Subcortical
loops through the basal ganglia. Trends Neurosci. 28, 401–407 (2005)

25. Stallkamp, J., Schlipsing, M., Salmen, F., Igel, C.: Man vs. computer: benchmark-
ing machine learning algorithms for traffic sign recognition. Neural Netw. 32, 323–
332 (2012)

26. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61,
85–117 (2015)

27. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. A Bradford
Book, Cambridge (1998)


	Fast and Slow Learning in a Neuro-Computational Model of Category Acquisition
	1 Introduction
	2 Methodology
	2.1 Network Description
	2.2 Experiment

	3 Results
	4 Discussion
	References


