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Abstract

Huntington’s disease (HD) is a hereditary neurodegenerative disease of the basal ganglia that causes severe motor, cognitive
and emotional dysfunctions. In the human basal ganglia, these dysfunctions are accompanied by a loss of striatal medium spiny
neurons, dysfunctions of the subthalamic nucleus and globus pallidus, and changes in dopamine receptor binding. Here, we used
a neuro-computational model to investigate which of these basal ganglia dysfunctions can explain patients’ deficits in different
stimulus–response learning paradigms. We show that these paradigms are particularly suitable for scrutinising the effects of
potential changes in dopamine signaling and of potential basal ganglia lesions on overt behavior in HD. We find that combined
lesions of direct and indirect basal ganglia pathways, but none of these lesions alone, reproduce patients’ learning impairments.
Degeneration of medium spiny neurons of the direct pathway accounts for patients’ deficits in facilitating correct responses,
whereas degeneration of indirect pathway medium spiny neurons explains their impairments in inhibiting dominant but incorrect
responses. The empirical results cannot be explained by lesions of the subthalamic nucleus, which is part of the hyperdirect path-
way, or by changes in dopamine levels. Overall, our simulations suggest combined lesions of direct and indirect pathways as a
major source of HD patients’ learning impairments and, tentatively, also their motor and cognitive deficits in general, whereas
changes in dopamine levels are suggested to not be causally related to patients’ impairments.

Introduction

Huntington’s disease (HD) is an autosomal-dominant hereditary dis-
ease of the basal ganglia that causes progressive neuronal decline
and leads to severe motor and cognitive impairments. The neuronal
origins of these impairments have not yet been clearly identified,
but a loss of striatal medium spiny neurons (MSNs) has been pro-
posed to be critical (DeLong, 1990; Raymond et al., 2011; Ehrlich,
2012). These striatal MSNs receive afferents from the cortex, and
project to either the globus pallidus internus (GPi) and substantia ni-
gra reticulata (SNr) or to the globus pallidus externus (GPe). Those
MSNs that project to the GPi/SNr belong to the ‘direct’ basal gan-
glia pathway, which, via the thalamus, excites the cortex (Fig. 1A).
Those MSNs that project to the GPe, in contrast, belong to the
‘indirect’ basal ganglia pathway, which inhibits cortical activity
(Fig. 1A). In the presymptomatic and early symptomatic stages of

HD, neuronal degeneration primarily affects indirect pathway MSNs
(Albin et al., 1992), but, later in the disease, direct pathway MSNs
also deteriorate (Reiner et al., 1988). As well as direct and indirect
pathways, the basal ganglia have a third, ‘hyperdirect’, pathway
(Fig. 1A) that proceeds to the GPi/SNr via the subthalamic nucleus
(STN). Like the indirect pathway, this pathway inhibits cortical
activity, but it simultaneously affects larger numbers of cortical neu-
rons (Hazrati & Parent, 1992a,b; cf. Schroll & Hamker, 2013) and
probably has different mechanisms of synaptic plasticity (Schroll
et al., 2014).
HD neurodegeneration affects not only the striatum, but also the

STN and the globus pallidus (O’Kusky et al., 1999; Tabrizi et al.,
2012, 2013; Delmaire et al., 2013), suggesting degeneration of the
hyperdirect pathway as another potential cause of patients’ impair-
ments. Moreover, changes in dopamine receptor binding have been
reported (Antonini et al., 1996; Weeks et al., 1996; Glass et al.,
2000; Van Oostrom et al., 2005).
Motor and cognitive deficits of HD patients have been described

according to a variety of neuropsychological paradigms. They are
related to learning (Lawrence et al., 1999; Brown et al., 2001;
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Filoteo et al., 2001), executive functions (Peinemann et al., 2005;
Beste et al., 2007, 2008b, 2012, 2013), attention (Montoya et al.,
2006b), Go–NoGo performance (Sprengelmeyer et al., 1995; Beste
et al., 2008a, 2010, 2011), verbal fluency (B€ackman et al., 1997;
Ho et al., 2002), and episodic memory (Montoya et al., 2006a), to
name just a few. However, to what extent these deficits can be
explained by specific basal ganglia dysfunctions has not yet been
systematically explored.
Via simulations in a neuro-computational model, we here investi-

gated whether lesions of direct pathway MSNs, indirect pathway
MSNs or hyperdirect pathway STN neurons could reproduce
patients’ empirically observed deficits in stimulus–response learning
paradigms. Moreover, we decreased and increased dopamine levels
to simulate the effects of changes in dopamine receptor binding.

Materials and methods

Neuro-computational model

For our simulations, we used a neuro-computational model that has
been described in detail by Schroll et al. (2014), who applied it to
explain stimulus–response learning in healthy subjects and Parkin-
son’s disease patients. Its architecture comprises a cortico-basal
ganglia-thalamic loop that connects cortical areas related to stimulus
processing to motor cortical areas (Fig. 1A). Although we did not
specify the anatomical substrate of this stimulus cortex in Schroll
et al. (2014), it most likely corresponds to prefrontal cortical areas
that participate in the conscious processing of stimulus-related infor-
mation. Anatomically, the prefrontal cortex has been shown to pro-
vide direct inputs to both the striatum (Alexander et al., 1989) and
the STN (Hartmann-von Monakow et al., 1978; Canteras et al.,
1990). Within the basal ganglia, the model contains direct, indirect
and hyperdirect pathways, as based on anatomical evidence (Braak
& Del Tredici, 2008). These three pathways converge in the GPi, a
basal ganglia output nucleus with tonically active neurons that inhi-
bit the thalamus. Reductions in GPi activity increase thalamic firing
and thereby result in increased motor cortical activity, whereas
increases in GPi activity decrease thalamic and cortical firing. The
direct pathway proceeds from the cortex via striatal MSNs to the

GPi; activity within this pathway decreases GPi firing, resulting in
increased cortical activity (Fig. 1B). The indirect pathway in our
model proceeds from the cortex, via the striatum and the GPe, to
the GPi; activity within this pathway excites GPi neurons. Note that
our model contains the short route of the indirect pathway only – an
additional longer route that traverses the STN (Smith et al., 1998;
cf. Schroll & Hamker, 2013) was omitted from the implementation
as detailed in Schroll et al. (2014). Finally, the hyperdirect pathway
proceeds from the cortex via the STN to the GPi; activity in this
pathway also increases GPi firing (Fig. 1B).
Each modeled nucleus within the cortico-basal ganglia-thalamic

loop contains a predefined number of artificial neurons (Table 1)
whose membrane potentials and firing rates are determined via
differential equations (Appendix A). In brief, each neuron’s mem-
brane potential is determined by the sum of its synaptic inputs
(Eqn A1 in Appendix A). Firing rates are mostly equal to mem-
brane potentials, but rectify negative values to zero (Eqn A2 in
Appendix A). The strengths (i.e. weights) of synaptic connections
between neurons are determined by an additional set of differential
equations (Appendix A): according to Hebb’s principle, synapses
are strengthened whenever presynaptic and postsynaptic neurons
are concurrently active. Synapses within the basal ganglia are addi-
tionally modulated by dopamine, as outlined below. To simulate
stimulus–response learning performance in the model, stimulus rep-
resentations are fed into the model’s stimulus cortex, and its motor
responses are read out of the motor cortex. Exploration of response
alternatives is guaranteed by random noise terms that contribute to
neurons’ membrane potentials (Eqn A1 in Appendix A). This noise
also causes variability in behavioral performance among otherwise
equivalent networks.
Basal ganglia pathways learn to interconnect stimulus and motor

cortices in a meaningful way on the basis of reward-related dopa-
mine signals. Dopamine signals, provided by the substantia nigra
compacta (SNc), encode reward prediction errors (i.e. difference sig-
nals between received and expected rewards): whenever the model
experiences more rewards than predicted, dopamine activity
increases above baseline by an amount proportional to the predic-
tion error; whenever the model experiences fewer rewards than pre-
dicted, dopamine activity decreases below baseline. High levels of

A B C

Fig. 1. Overview of the anatomy and functionality of our neuro-computational model (Schroll et al., 2014). (A) Model architecture. The model contains several
distinct layers corresponding to the cortex, basal ganglia, and thalamus. Each of these layers comprises a predefined number of artificial neurons (Table 1) that
are interconnected in agreement with anatomical evidence (Braak & Del Tredici, 2008). The direct pathway is shown in red, the indirect pathway in blue, the
hyperdirect pathway in magenta, and the cortico-thalamic pathway in green. (B) Scheme of relevant properties of basal ganglia pathways in the model. Each of
these pathways either excites or inhibits the motor cortex. Moreover, dopamine either facilitates either LTP or LTD in each of these pathways. (C) Pathway
functions in reward-based stimulus–response learning as they emerge from the scheme shown in B. The y-axis shows activation of cortical motor programs,
where values above zero imply facilitation of motor programs and values below zero imply inhibition of motor programs. Headed arrows denote excitatory
effects of basal ganglia pathways on motor program activity, and pointed arrows denote inhibitory effects.
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dopamine facilitate long-term potentiation (LTP) in synapses of the
direct and hyperdirect pathways and long-term depression (LTD) in
synapses of the indirect pathway (Fig. 1B); low levels of dopamine,
in contrast, have exactly opposite effects on all pathways. These
assumptions are based on findings by Shen et al. (2008), who
reported that D1 dopamine agonists facilitated LTP in striatal D1
MSNs, whereas D1 antagonists facilitated LTD in these MSNs.
Moreover, Shen et al. (2008) showed that D2 agonists favored LTD
in striatal D2 MSNs, whereas D2 antagonists favored LTP in these
MSNs. As a result of these different rules of synaptic plasticity and
the pathways’ excitatory vs. inhibitory effects on cortical activity,
pathways self-organise in our model to fulfill the following distinct
functions (Fig. 1C): the direct pathway learns to facilitate those
stimulus–response associations that result in rewards, the hyperdirect
pathway learns to inhibit competing stimulus–response associations
whose non-execution results in rewards, and the indirect pathway
learns to inhibit those stimulus–response associations that result in
omissions of expected rewards (i.e. those that have been rewarded
previously but that currently do not result in reward; Fig. 1C) (Sch-
roll et al., 2014). In addition, a cortico-thalamic pathway is capable
of automatising previously learned stimulus–response associations,
achieving faster response times as performance becomes habitual
(Schroll et al., 2014).
We adapted our neuro-computational model for application to the

stimulus–response learning paradigms outlined below in a few minor
respects. For each simulated paradigm, we set the number of neu-
rons in the visual cortex to the number of possible stimuli and the
number of neurons in the GPi, GPe, thalamus and motor cortex to
the number of possible responses. Moreover, we adapted the post-
synaptic activity threshold for synaptic plasticity within the thalamus
to 0.3 for two thalamic neurons, to 0.47 for three thalamic neurons,
to 0.55 for four thalamic neurons, and to 0.60 for five thalamic neu-
rons. This became necessary because we adapted the number of tha-
lamic neurons to the number of possible responses: synaptic
plasticity in the thalamus is partly based on the average firing rate

of this nucleus (Schroll et al., 2014). This average firing rate, how-
ever, changes with the number of available but inactive neurons: for
one active neuron with a firing rate of 1 and otherwise inactive neu-
rons with firing rates of 0, the average firing rate becomes 0.5 for
two thalamic neurons, 0.33 for three thalamic neurons, 0.25 for four
thalamic neurons, and 0.20 for five thalamic neurons. We compen-
sated for this effect by adapting the above-mentioned activity thresh-
old accordingly. Overall, this activity threshold was chosen to be
lower than in Schroll et al. (2014) (where we did not fit empirical
data) to allow for faster cortico-thalamic automatisation of stimulus–
response associations. For paradigms where only two response
options were available, moreover, we fixed the lateral weights
within the GPi to 1.25 rather than having them evaluated on the
basis of synaptic plasticity, as the corresponding rule of synaptic
plasticity requires at least three neurons to function adequately.
Finally, we adapted the number of neurons in the two segments of
the striatum (belonging to the direct and indirect pathways) and in
the STN to the complexities of the simulated behavioral paradigms.
For adequate learning performance, each stimulus–response associa-
tion of a paradigm has to be represented by a separate cluster of
neurons in each of these nuclei in our model. Neuronal numbers
were set to 12 for paradigms that involved relatively few stimulus–
response associations (i.e. the reversal learning paradigm and the
category learning paradigm as outlined below) and to 16 for more
complex paradigms (i.e. the sequence learning paradigm and the
paradigm used to investigate model predictions, also as outlined
below). Table 1 gives an overview of implemented numbers of neu-
rons for each of the four different learning paradigms.

Simulating basal ganglia dysfunctions

In our neuro-computational model, we separately introduced four
different lesions of the basal ganglia, and investigated whether any
of these reproduced HD patients’ behavioral deficits on the neuro-
psychological paradigms outlined below. Following empirical

Table 1. Numbers of neurons for each of the model’s layers, and parameters used to compute the model’s membrane potentials and firing rates

Cell type

No. of cells

wff wlat B ei,t
Reversal
learning

Sequence
learning

Category
learning

Model
prediction

Stimulus cortex 4 8 2 4 – – 0.0 0.0

Motor cortex 2 3 2 5 wThal�Cx
i;j ¼ 1:0 wCx�Cx

i;j ¼ �1:0 0.0 [�1.0, 1.0]

Striatum (D1) 12 16 12 16 wStrðD1Þ�StrðD1Þ
i;j ¼ �0:3 0.4 [�0.1, 0.1]

Striatum (D2) 12 16 12 16 wStrðD2Þ�StrðD2Þ
i;j ¼ �0:3 0.4 [�0.1, 0.1]

Striatum (thalamus) 2 3 2 5 wThal�StrðThalÞ
i;j ¼ 1:0 wStrðThalÞ�StrðThalÞ

i;j ¼ �0:3 0.4 [�0.1, 0.1]

STN 12 16 12 16 wSTN�STN
i;j ¼ �0:3 0.4 [�0.1, 0.1]

GPe 2 3 2 4 wStrðThalÞ�GPe
i;j ¼ �0:3 1.0 [�1.0, 1.0]

GPi 2 3 2 5 wGPe�GPi
i;j ¼ �1:5

wStrðThalÞ�GPi
i;j ¼ �0:3

2.4 [�1.0, 1.0]

Thalamus 2 3 2 5 wGPi�Thal
i;j ¼ �1:5 wThal�Thal

i;j ¼ �0:6 1.0 [�0.1, 0.1]

SNc 1 1 1 1 0.1 0.0

For each modeled brain area and nucleus, numbers of simulated neurons for the four different neuro-psychological paradigms are shown. Also shown are hard-
coded weights (both feedforward, wff, and lateral, wlat), baseline membrane potentials (B), and the boundaries of uniform distributions from which error terms
(ei,t) were randomly drawn. Striatum (thalamus): striatal neurons that receive thalamic feedback.
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evidence that neuronal degeneration primarily affects MSNs of the
striatum, we lesioned MSNs of the direct pathway, MSNs of the
indirect pathway, and both of these MSNs simultaneously. To
explore the effects of potential neurodegeneration within the hyper-
direct pathway, we lesioned the STN. Lesions were implemented by
setting the outputs of 50% of relevant neurons to zero. This percent-
age was chosen because piloting runs had shown it to result in obvi-
ous behavioral deficits without completely disrupting performance.
Of course, effect sizes for a given relative amount of neuronal loss
depend on the number of initially available neurons. This number is
much reduced in our model as compared with the human brain (in
line with the fact that our model has to cope with only a very lim-
ited range of behavioral tasks). Therefore, we would not claim that,
with 50% neuronal loss in target structures, human patients would
show deficits that are quantitatively equivalent to those revealed by
our networks. We do claim, however, that qualitatively all effects
should be the same.
To investigate the consequences of changes in dopamine levels,

resulting in increased or reduced dopamine receptor binding, we
either increased or decreased dopamine levels (both tonic and pha-
sic) by 10%. Again, we wanted to investigate whether these changes
reproduced patients’ behavioral deficits qualitatively, not quantita-
tively.
To simulate which of these basal ganglia dysfunctions best repro-

duced patients’ stimulus–response learning deficits, we employed an
abductive or ‘reverse-engineering’ approach. As defined by Maia &
Frank (2011) in their seminal article on computational neurology,
such an approach is based on reasoning from a computational repro-
duction of behavioral effects to the neuronal origins of these effects.

Basal ganglia pathway effectiveness

To provide insights into the model’s functioning, we recorded the
outputs of basal ganglia and cortico-thalamic pathways while net-
works learned our model prediction task outlined below. For each
trial, we computed a measure of functional pathway effectiveness as
follows. (i) We first computed each pathway’s outputs on the differ-
ent response neurons of our model. This involved three steps. In the
first step, we recorded all synaptic weights and presynaptic activities
of striato-GPi synapses (direct pathway), striato-GPe synapses (indi-
rect pathway), subthalamo-GPi synapses (hyperdirect pathway) and
cortico-thalamic synapses (cortico-thalamic pathway) precisely at the
time points where responses were chosen. In the second step, for
each synaptic contact, we then multiplied its synaptic weight by the
activity of the corresponding presynaptic neuron. In the third step,
we summed up these products across all synapses that targeted a
particular postsynaptic response neuron, separately for each pathway
and postsynaptic neuron. (ii) For each pathway, we then determined
task-relevant and task-irrelevant responses as explained below. (iii)
Finally, we computed the relative number of networks whose out-
puts on neurons that corresponded to relevant responses superseded
their average outputs on all other neurons by at least one order of
magnitude. This percentage of networks in which pathway functions
had developed appropriately gave us an estimation of the pathways’
functional effectiveness across networks.
For the direct pathway, relevant neurons were those that encoded

currently correct responses. This is because we had shown previ-
ously that this pathway’s function is to specifically facilitate correct
responses in our model (Fig. 1C) (Schroll et al., 2014). For the indi-
rect pathway, relevant neurons were those that targeted previously
correct responses, based on previous evidence that this pathway spe-
cifically inhibits such responses in our model (Fig. 1C) (Schroll

et al., 2014). For the hyperdirect pathway, those postsynaptic neu-
rons were relevant that encoded currently incorrect responses, as we
had shown that the hyperdirect pathway’s function is to suppress
incorrect responses in a surround-inhibition manner in our model
(Fig. 1C) (Schroll et al., 2014). Finally, for the cortico-thalamic
pathway, neurons that encoded currently correct responses and those
that encoded previously correct responses were relevant – in line
with previous findings that the cortico-thalamic pathway facilitates
correct responses in our model and maintains this facilitation even if
these responses become incorrect later.

Stimulus–response learning paradigms

For both practical and theoretical reasons, we focused on stimulus–
response learning paradigms for our comparisons of empirical data
with model performance. From a practical point of view, our com-
putational model was specifically designed to be capable of reward-
based stimulus–response learning (Schroll et al., 2014). It therefore
appeared most natural to use it in this respect also for our simula-
tions of potential neuronal dysfunctions in HD, rather than adapting
it for coping with different behavioral paradigms. From a theoretical
point of view, stimulus–response learning paradigms are well suited
for simulating both the effects of lesions of basal ganglia pathways
and the effects of changes in dopamine levels. Whereas the behav-
ioral consequences of basal ganglia lesions could have been simu-
lated on any kind of neuropsychological paradigm, changes in
dopamine levels are more challenging: as the only function that
dopamine is generally acknowledged to contribute to in the brain is
reward-based learning (e.g. Waelti et al., 2001; Frank et al., 2007;
Glimcher, 2011), we required such a paradigm for our simulations.
We found three empirical reports on HD patients’ reinforcement-

based stimulus–response learning performance, namely a reinforce-
ment-based reversal learning task (Lawrence et al., 1999), a
reinforcement-based sequence learning task (Brown et al., 2001), and
a reinforcement-based category learning task (Filoteo et al., 2001).
In all of our implementations, irrespective of timings in the origi-

nal paradigms, stimuli were presented for 1000 ms before responses
were recorded (single time point) and feedback was presented for
500 ms, followed by inter-trial intervals of 100 ms. For each mod-
eled basal ganglia dysfunction, we simulated 100 networks that
passed our learning criteria, irrespective of the original number of
subjects, thereby achieving more reliable performance estimates.

Reinforcement-based reversal learning

Lawrence et al. (1999) devised a reinforcement-based stimulus–
response learning task that involved phases of initial learning and
reversal learning (Fig. 2A). In this task, two stimuli were simulta-
neously presented on a computer screen. In each trial, subjects had
to choose one of these stimuli for which the ‘correct’ stimulus
resulted in positive feedback in 80% of trials and in negative feed-
back in 20% of trials, and the incorrect stimulus resulted in negative
feedback throughout. Stimuli were presented in two of four possible
locations on the screen (left, right, top, and bottom). When subjects
had completed 40 trials of this task, reinforcement contingencies
were reversed, and the previously unrewarded stimulus now resulted
in probabilistic rewards for 40 trials. For both initial and reversal
learning phases, Lawrence et al. (1999) analysed the number of tri-
als required by subjects to reach a criterion of eight correct
responses in a row.
Lawrence et al. (1999) tested 21 symptomatic patients (mean age,

48.2 years; mean disease duration, 4.8 years) and 21 age-matched and
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IQ-matched controls on this paradigm. Patients’ mean score on the
Unified Huntington’s Disease Rating Scale was 21.0; no patient ful-
filled the criteria for dementia on the Mini Mental State Examination.

For our implementation, we simplified this paradigm, in that we
did not model the presentation of stimuli in different spatial loca-
tions, thereby holding stimulus positions constant across trials. We

A B

C D

E F

G H

Fig. 2. Stimulus–response learning paradigm and behavioral results as reported by Lawrence et al. (1999). (A) Stimulus–response learning paradigm. Subjects
had to learn touching the red stimulus in stage 1 of the experiment, but to switch to touching the green stimulus in stage 2, based on probabilistic feedback.
Details are given in the main text. (B) Original empirical results as reported by Lawrence et al. (1999). The number of incorrectly responded trials before learn-
ing criterion was reached are shown for both stage 1 (initial learning) and stage 2 (reversal learning) of this paradigm, separately for HD patients (filled circles)
and matched controls (open circles). The criterion was defined as eight correct responses in a row. (C–H) Simulated results for lesions of the direct, indirect, hy-
perdirect and direct plus indirect pathways, and for reduced and increased dopamine levels. Error bars represent standard errors of the mean. Gray background
shading indicates panels with results that are qualitatively equivalent to those shown in B. CS, control subjects.
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opted for this approach because there is no way of presenting red
and green stimuli in different spatial locations to our model such
that it would recognise the equivalence of red and green across these
locations. In the human brain, this ability most likely does not rely
on the basal ganglia, so we think that our simplification is justified
for our model.

Reinforcement-based sequence learning

In a paradigm used by Brown et al. (2001), subjects had to learn a
simple sequence of eight letters (URLDUDRL). In the first trial of
each run, the first letter of this sequence (i.e. U) appeared high-
lighted on a computer screen (Fig. 3A). Subjects could respond by
pressing any of the response buttons corresponding to the three
other letters. If they chose the correct button, this new stimulus
became highlighted on the screen. If not, the previous stimulus
remained highlighted, and subjects had to choose again. At the end
of each eight-letter sequence, the whole sequence started again. Sub-
jects continued with this sequence for 10 repetitions in each of 10
blocks. Brown et al. (2001) measured the proportion of trials in
which subjects responded correctly upon first choice, separately for
each block. Moreover, they determined the length of the longest
sequence of first-choice correct responses in each block.
Brown et al. (2001) tested 16 symptomatic patients with HD on this

paradigm (mean age, 42.8 years, mean disease duration, 6.4 years)
who scored 41.8 points on average on the Unified Huntington’s Dis-
ease Rating Scale motor section. A control group was matched with
regard to sex, age, education, class of occupation, and handedness.
For our computational implementation, we adapted the paradigm in

the following ways. In the original paradigm, the sequence consisted
of four distinct stimuli (i.e. U, D, L, and R), each of which was pre-
sented twice in each eight-character sequence run (i.e. URLDUDRL).
In our implementation, the sequence’s eight characters were handled
as eight distinct stimuli (that is, identical letters within the first half
and the second half of the sequence were handled as different inputs).
Thereby, the model could differentiate between identical stimuli at dif-
ferent positions of the sequence. We think that this simplification is
justified for a model that focuses on the functions and dysfunctions of
basal ganglia pathways, and that therefore does not contain any mem-
ory system: differentiation between identical stimuli at different
sequence positions would have required a working memory system
that could store stimuli presented immediately before. The number of
response options, however, was kept at three (corresponding to the
three stimuli not currently highlighted). Networks that did not finish
the task after 5.000 trials were abandoned, but fully scored.

Reinforcement-based category learning

Filoteo et al. (2001) asked their subjects to categorise simple line
stimuli on the basis of reinforcement signals. Stimuli consisted of a

horizontal line and a vertical line that were interconnected at their
upper and left ends, respectively, and that were independently varied
in length. In two separate experiments, category boundaries were
determined on the basis of either linear or non-linear rules. Our
neuro-computational model can solve only the linear condition. In
each trial of this condition, subjects saw one of the above-described
stimuli and had to indicate whether it belonged to category 1 or to
category 2 (Fig. 5A). The paradigm comprised six blocks of 100 tri-
als each. One hundred different stimuli were generated and shown
in six different orderings across blocks.
Filoteo et al. (2001) recruited seven HD patients for this para-

digm (mean age, 49.9 years) and six healthy controls who did not
differ significantly from patients with regard to age or years of edu-
cation. Subjects’ correct-response rates were analysed blockwise.
When implementing this paradigm, we assumed that stimuli were

represented by two neurons in the stimulus cortex in a binary fash-
ion: the first neuron became active whenever the length of the verti-
cal line of the stimulus exceeded the length of the horizontal line,
and the second neuron became active whenever the horizontal line
was longer. In line with neurophysiological evidence (e.g. Freedman
et al., 2001), the definition of category boundaries was implemented
to reside within the prefrontal stimulus cortex. This allowed basal
ganglia pathways to learn associations between given categories and
response options in a stimulus–response-like manner; it does not
preclude the possibility that different basal ganglia loops (not mod-
eled here) are involved in category learning as well (Antzoulatos &
Miller, 2011). The lengths of the two lines were drawn from bivari-
ate normal distributions as specified by Filoteo et al. (2001) (cate-
gory 1, mean of dimension 1 = 0.38, standard deviation = 0.1,
mean of dimension 2 = 0.62, standard deviation = 0.1; category 2,
dimensions 1 and 2 exchanged), but separately for each simulated
network, such that our simulations did not depend on specific values
of these randomly drawn variables.

Paradigm to investigate model predictions

To highlight empirically testable predictions of our computational
model, we simulated the model’s performance on an additional stim-
ulus–response learning paradigm that, to our knowledge, has not yet
been used to empirically investigate learning deficits of HD patients.
The use of this paradigm in an empirical study on HD patients and
healthy controls in the future will allow disentanglement of the
effects of the dysfunctions of direct and indirect pathways in HD
that are described in this work, and may provide further support for
our interpretations.
In a first phase of this paradigm, associations between three

abstract arbitrary stimuli and four response buttons have to be
learned via rewarding feedback (Fig. 6A). Whenever stimulus 1 is
presented, button A should be pressed; whenever stimulus 2 is
presented, button B should be pressed; and whenever stimulus 3 is

Fig. 3. Sequence learning paradigm and behavioral results as reported by Brown et al. (2001). (A) Sequence learning paradigm as reported by Brown et al.
(2001). Subjects had to learn an eight-letter sequence (URLDUDRL) across 10 blocks of trials, where each block consisted of 10 completed sequences. In each
trial, a letter was presented on a computer screen, and subjects had to indicate the subsequent letter by pressing the corresponding button. If they decided cor-
rectly, this letter replaced the previous one on the screen; if not, the previous letter remained, and subjects were required to choose again. Thus, subjects moved
through the sequence, starting again from the beginning whenever the last letter was reached. Details are given in the main text. Dashed lines within the left
subplot show the chance rate of 33.33% correct responses and the criterion rate of 90% correct responses, respectively. (B) Original results as reported by
Brown et al. (2001). The left subplot shows the development of average correct response rates across blocks (where each block consists of 10 repetitions of the
eight-letter sequence), separately for HD patients (filled circles) and healthy controls (open circles). Only trials in which subjects responded correctly upon first
choice were counted as correct. The right subplot shows, for each block, the length of subjects’ longest sequence of first-choice correct responses, again sepa-
rately for HD patients (circles) and healthy controls (squares). (C–H) Simulation results for partial lesions of the direct, indirect, hyperdirect and direct plus indi-
rect pathways, and for reduced and increased dopamine levels. Subplots are organised as in B. Error bars represent standard errors of the mean. Gray
background shading indicates panels with results that are qualitatively equivalent to those shown in B. CS, control subjects.
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presented, button C should be pressed. In a second step of the para-
digm, starting when phase 1 has been reliably learned and contin-
uing for 500 trials, networks are presented with these same three
stimuli and one additional stimulus. The previously known stimulus
1 now becomes associated with response D (reversal), stimulus 2
remains associated with response B (maintenance), and stimulus 3
no longer results in reward, no matter which response is selected
(extinction). The novel stimulus 4 becomes associated with response
A. For this second phase of the experiment, our model makes a cou-
ple of specific predictions, as outlined in Results.
We simulated our model’s performance for ‘healthy’, i.e. unle-

sioned, networks, for networks with partial lesions of the indirect
pathway (corresponding to early stages of HD in humans), and
for networks with partial lesions of both the direct pathway and
the indirect pathway (corresponding to later stages of HD in
humans).

Results

Reinforcement-based reversal learning

In the study of Lawrence et al. (1999), 14 of 21 patients (66.6%)
and 20 of 21 controls (95.2%) passed the initial learning stage
(stage 1) of the stimulus–response learning paradigm. For just these
patients, a two-factor repeated-measures ANOVA on numbers of trials
required to reach the learning criterion revealed a significant main
effect of stage (i.e. initial vs. reversal learning), no significant
effect of group (i.e. HD patients vs. healthy controls), and a mar-
ginally significant stage 9 group interaction, which could be
resolved such that HD patients required significantly more trials on
the reversal stage than controls, but not on the initial learning stage
(Fig. 2B).
In our simulations, 72.5% of the unlesioned control networks

reached the learning criterion. Lesions of the direct pathway repro-
duced the finding of Lawrence et al. (1999) of a reduced number of
patients reaching the learning criterion (51.8% successful networks),
as did combined lesions of the direct and indirect pathways (57.5%)
and increased levels of dopamine (56.5%), but not lesions of the hy-
perdirect (71.9%) or indirect pathway (76.3%) or decreased levels of
dopamine (79.4%).
For networks passing stage 1, data were analysed further. Overall,

networks required more trials for learning criteria to be reached than
the subjects of Lawrence et al. (1999) s (Fig. 2C–H). Their conclu-
sions, however, were based on differences between conditions, inde-
pendently of overall performance levels. We applied the same
statistical tests as used by Lawrence et al. (1999) to our simulation
data. Lesions of the indirect pathway produced a significant main
effect of stage (F1,198 = 152.89, P < 0.0001), a significant main
effect of group (F1,198 = 19.85, P < 0.0001), and a significant
stage 9 group interaction (F1,198 = 8.86, P = 0.003 (Fig. 2D), as
did combined lesions of the direct and indirect pathways (stage,
F1,198 = 164.12, P < 0.0001; group, F1,198 = 17.49, P < 0.0001;
stage 9 group interaction, F1,198 = 15.07, P = 0.0001). Reduced
and increased levels of dopamine produced a significant main effect
of stage (F1,198 > 187, P < 0.0001) and a significant interaction
(F1,198 > 6.8, P < 0.01). Lesions of the direct and hyperdirect path-
ways, in contrast, did not produce a significant interaction (Fig. 2C
and E). Additionally taking into account visual comparisons between
the original data and our simulated dysfunctions (Fig. 2), we con-
clude that lesions of the indirect pathway and combined lesions of
the direct and indirect pathways best reproduced the results of Law-
rence et al. (1999).

Reinforcement-based sequence learning

Brown et al. (2001) found that HD patients were significantly
impaired in sequence learning as compared with healthy controls
(Fig. 3B). In a repeated-measures ANOVA on correct-response rates,
they found significant main effects of group (i.e. HD patients vs.
controls) and block (i.e. learning progress), and a marginally signifi-
cant group 9 block interaction. In an equivalent ANOVA on subjects’
longest sequences of first-choice correct responses, they found sig-
nificant main effects of group and block, and a significant
group 9 block interaction (Fig. 3B). Moreover, they reported that
only two of 16 patients (12.5%), but 13 of 16 controls (81.3%),
reached the learning criterion of 90% correct responses in any of the
10 blocks (Fig. 4A).
We applied the same statistical tests as used by Brown et al.

(2001) to analyse our simulation data. We found that lesions of
direct-pathway MSNs reproduced patients’ deficits well (Fig. 3C).
In a repeated-measures ANOVA on correct-response rates, there were
significant main effects of group (F1,1782 = 45.30, P < 0.0001) and
block (F9,1782 = 212.33, P < 0.0001), and a significant
group 9 block interaction (F9,1782 = 15.39, P < 0.0001). Similarly,
combined lesions of the direct and indirect pathways (Fig. 3F)
reproduced the main effects of group (F1,1782 = 100.23, P < 0.0001)
and block (F9,1782 = 83.42, P < 0.0001), and the interaction
(F9,1782 = 63.05, P < 0.0001). Lesions of the indirect pathway
(Fig. 3D) also reproduced these effects (group, F1,1782 = 20.96,
P < 0.0001; block, F9,1782 = 124.13, P < 0.0001; group 9 block,
F9,1782 = 16.5, P < 0.0001). Lesions of the hyperdirect pathway
(Fig. 3E), in contrast, reproduced the significant main effect of
block (F9,1782 = 447.52, P < 0.0001) and the significant
group 9 block interaction (F9,1782 = 3.43, P = 0.0003), but not the
significant main effect of group (F1,1782 = 0.93, P = 0.34).
Decreased dopamine levels (Fig. 4G) reproduced the significant
main effect of block (F9,1782 = 395.62, P < 0.0001), but neither the
main effect of group (F1,1782 = 0.54, P < 0.46) nor the interaction
(F9,1782 = 1.88, P = 0.05). Finally, with increased levels of dopa-
mine (Fig. 3H), networks were unable to complete the task, sticking
to incorrect sequence elements infinitely. We therefore refrained
from performing statistical tests for these networks.
Regarding the networks’ longest sequences of first-choice correct

responses, again, lesions of the direct pathway reproduced the sig-
nificant main effects of group (F1,1782 = 240.24, P < 0.0001) and
block (F9,1782 = 200.93, P < 0.0001), and the group 9 block inter-
action (F9,1782 = 116.59, P < 0.0001), as did combined lesions of
the direct and indirect pathways (group, F1,1782 = 264.37,
P < 0.0001; block, F9,1782 = 177.99, P < 0.0001; group 9 block,
F9,1782 = 137.09, P < 0.0001), lesions of the indirect pathway
(group, F1,1782 = 14.85, P = 0.0002; block, F9,1782 = 225.95,
P < 0.0001; group 9 block, F9,1782 = 15.21, P < 0.0001), and
decreased dopamine levels (group, F1,1782 = 10.74, P = 0.001;
block, F9,1782 = 286.95, P < 0.0001; group 9 block, F9,1782 = 5.96,
P < 0.0001). Lesions of the hyperdirect pathway, in contrast, repro-
duced the main effect of block (F9,1782 = 338.61, P < 0.0001) and
the group 9 block interaction (F9,1782 = 3.67, P = 0.0001), but not
the significant main effect of group (F1,1782 = 1.52, P < 0.22).
Increased levels of dopamine were not analysed further.
For the number of networks reaching the 90% performance crite-

rion (Fig. 4), we found that 94.0% of control networks were suc-
cessful. HD patients’ impairments in reaching this criterion were
reproduced by lesions of the direct pathway (15.0% of networks
successful), by lesions of the indirect pathway (69.0% successful),
and by combined lesions of the direct and indirect pathways (12.0%
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Fig. 4. Additional results of the sequence learning paradigm presented by Brown et al. (2001). (A) Original results as reported by Brown et al. (2001). For
both healthy controls (left) and HD patients (right), subplots show the percentage of subjects across blocks who reached the learning criteria of 50% (circles),
75% (squares) and 90% (triangles) correct responses. (B–G) Simulation results for partial lesions of the direct, indirect, hyperdirect and direct plus indirect path-
ways, and for reduced and increased dopamine levels. Subplots are organised as in A. Gray background shading indicates panels with results that are qualita-
tively equivalent to those shown in A.
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successful), but not by lesions of the hyperdirect pathway (100.0%
successful) or by decreased dopamine levels (95.0% successful).
With increased dopamine levels, as outlined above, no network fin-
ished the task, excluding this condition from all statistical analyses.
Overall, therefore, lesions of the direct pathway, lesions of the indi-
rect pathway and combined lesions of the direct and indirect path-
ways reproduced the results best. Visual comparisons between
empirical and simulated results particularly highlighted combined
lesions of the direct and indirect pathways as reproducing results
well.

Reinforcement-based category learning

For their category learning paradigm, Filoteo et al. (2001) per-
formed repeated-measures ANOVAs on accuracy rates, with the
between-subjects factor group (i.e. HD patients vs. controls) and the
within-subjects factor block (i.e. learning progress), for both their
full six blocks of 100 trials each and for the first block only, with
subdivision into 10 blocks of 10 trials each (Fig. 5B). For these first
100 trials, they reported a significant main effect of group, reflecting
HD patients’ overall impaired performance as compared with
healthy controls, and a significant main effect of block, reflecting
subjects’ overall improvements across blocks, but no significant
group 9 block interaction. For the full 600 trials, they again
reported significant main effects of group and block, and also a sig-
nificant interaction, reflecting stronger improvement of HD patients
than of controls across blocks.
When we performed repeated-measures ANOVAs on our simulated

data as used by Filoteo et al. (2001), we found that lesions of
direct-pathway MSNs (Fig. 5C) reproduced the significant main
effect of group for both the first 100 trials (F1,1782 = 11.42,
P = 0.0009) and the full 600 trials (F1,990 = 32.34, P < 0.0001), as
did combined lesions of the direct and indirect pathways (Fig. 5F)
(F1,1782 = 5.71, P = 0.018 and F1,990 = 35.32, P < 0.0001, respec-
tively). Decreased levels of dopamine reproduced a significant main
effect of group for the full 600 trials (Fig. 5G) (F1,990 = 13.52,
P = 0.0003), but not for the first 100 trials (F1,1782 = 0.21,
P = 0.65), whereas increased levels of dopamine reproduced the
main effect for the first 100 trials (Fig. 5H) (F1,1782 = 9.19,
P = 0.003), but not for the full 600 trials (F1,990 = 0.73, P = 0.40).
Lesions of the indirect pathway alone (Fig. 5D) and lesions of the
hyperdirect pathway (Fig. 5E) did not reproduce any significant
main effect of group (all F < 2.96, P > 0.08). All simulated dys-
functions reproduced the significant main effects of block for both
the first 100 trials and the full 600 trials (F > 66.26, P < 0.0001). A
significant interaction for the full 600 trials was reproduced by
lesions of the indirect pathway (F1,990 = 2.82, P = 0.02) and
increased levels of dopamine (F1,990 = 9.16, P < 0.0001). These
simulated dysfunctions, however, did not reproduce the more impor-
tant main effect of group as outlined above. Overall, we therefore
conclude that lesions of the direct pathway and combined lesions of
direct and indirect pathways reproduced results best.

Model predictions

In the preceding subsections, we have shown that only combined
lesions of the direct and indirect pathways can reproduce HD
patients’ deficits on all simulated stimulus–response learning para-
digms. In the following, we report the model’s performance on a
novel stimulus–response learning paradigm for these types of lesion
to generate empirically testable predictions (Fig. 6A). We simulated
three model conditions: healthy (unlesioned networks), early HD

(networks with 50% lesions of the indirect pathway), and advanced
HD (networks with 50% lesions of both the direct pathway and the
indirect pathway). Our predictions relate to learning impairments of
HD patients during the reversal stage of the paradigm (i.e. stage 2;
Fig. 6B) and to alterations in the functional effectiveness of basal
ganglia and cortico-thalamic pathways during the reversal stage
(Fig. 6C).
For a better understanding of HD patients’ predicted deficits in

the effectiveness of basal ganglia pathways, we will first repeat these
pathways’ functions in ‘healthy’, i.e. unlesioned, networks. As out-
lined in Materials and methods and shown in Fig. 1C, the direct
pathway’s function is to learn facilitation of currently correct
responses. Therefore, it increases its effectiveness when novel stimu-
lus–response associations are learned in unlesioned networks, i.e.
during reversal learning and learning of novel stimulus–response
associations (circles in Fig. 6C, first line of subplots, stimuli 1 and
4). As outlined in Materials and Methods, the indirect pathway’s
function is to suppress previously correct responses (Fig. 1C).
Therefore, its effectiveness increases in our paradigm whenever pre-
viously correct stimulus–response associations have to be sup-
pressed, as is the case in reversal learning and extinction trials, in
particular during early blocks (circles in Fig. 6C, second line of sub-
plots, stimuli 1 and 3). Importantly, suppression of previously cor-
rect responses is a prerequisite for learning novel correct responses
in reversal learning trials (stimulus 1). The hyperdirect pathway’s
function is to suppress currently incorrect responses, thereby sup-
porting the selection of correct responses via the direct pathway (see
Materials and methods and Fig. 1C). Therefore, it becomes effective
in our paradigm whenever novel stimulus–response associations are
learned (circles in Fig. 6C, third line of subplots, stimuli 1 and 3).
This suppression becomes unnecessary once the direct pathway has
learned to reliably facilitate correct responses, accounting for the
reduction in effectiveness of the hyperdirect pathway as performance
improves. Finally, the cortico-thalamic pathway’s function is to
‘automatize’ currently correct stimulus–response associations and to
implement a long-term memory system of previously correct
responses (see Materials and methods) (Schroll et al., 2014). In line
with this function, it increases its effectiveness in facilitating cur-
rently correct responses in our paradigm whenever novel stimulus–
response associations are learned (Fig. 6C, last line of subplots,
stimuli 1 and 3, lower subpanels). Moreover, it remains effective in
facilitating previously correct (but now incorrect) responses, thereby
implementing long-term memory (circles in Fig. 6C, last line of sub-
plots, stimulus 1, upper subpanel).
HD patients in relatively early stages of the disease, where lesions

of indirect-pathway striatal MSNs are predominant (Reiner et al.,
1988; Albin et al., 1992), are predicted to show deficits in reversal
learning, i.e. in associating previously known stimuli with novel
responses (triangles in Fig. 6B, stimulus 1) and in extinction learn-
ing, i.e. in suppressing previously established stimulus–response
associations altogether (triangles in Fig. 6B, stimulus 3). As shown
in Fig. 6C, both of these deficits are predicted to result from
reduced functional effectiveness of the indirect pathway (triangles in
Fig. 6C, second line of subplots, stimuli 1 and 3), i.e. from this
pathway’s failure to inhibit previously correct responses. Because
this inhibition is a prerequisite for learning novel stimulus–response
associations, the direct pathway is predicted to show a deficit in
facilitating novel correct responses, i.e. to be less functionally effec-
tive as well (triangles in Fig. 6C, first line of subplots, stimulus 1),
although this pathway is not lesioned itself. Patients in early stages
of the disease are predicted to not be impaired in learning correct
responses to novel stimuli (triangles in Fig. 6B, stimulus 4) or in
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Fig. 5. Category learning paradigm and behavioral results as reported by Filoteo et al. (2001). (A) Category learning paradigm. Subjects were presented with
six blocks of 100 trials each. In each trial, a line stimulus had to be categorised as belonging to either category 1 or category 2, where the relative lengths of a
horizontal line and a vertical line constituted the decisive factor. Details are given in the main text. (B) Original empirical results as reported by Filoteo et al.
(2001). Subplots show HD patients’ (squares) and healthy controls’ (circles) percentages of correct responses across six blocks of 100 trials each (right) and
across the first 10 subblocks of 10 trials each (left). (C–H) Simulated results for lesions of the direct, indirect, hyperdirect and direct plus indirect pathways, and
for reduced and increased dopamine levels. Error bars represent standard errors of the mean. Subplots are organised as in B. Gray background shading indicates
panels with results that are qualitatively equivalent to those shown in B. CS, control subjects.
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Fig. 6. Stimulus–response learning paradigm used to test our model predictions. (A) Trial setup and stimulus–response associations. In each trial, networks
were presented with one of four stimuli (1–4), the networks’ response (A–D) was recorded, and they received feedback on whether their response was correct.
During stage 1 of the paradigm, the correct response for stimulus 1 was A, that for stimulus 2 was B, and that for stimulus 3 was C. In the second stage of the
paradigm, stimulus 1 became associated with response D (reversal), whereas stimulus 2 remained associated with response B (maintenance), and stimulus 3 no
longer resulted in reward, independently of response choice (extinction). A novel stimulus 4 became associated with response A. (B) Simulated model perfor-
mance on stage 2 of the paradigm shown in A for healthy control networks (circles), networks with lesions of the indirect pathway (triangles), and networks
with combined lesions of the direct and indirect pathways. For stimuli 1, 2, and 4, subplots show the percentage of successful networks, i.e. the percentage of
networks satisfying a learning criterion of at least 90% correct responses in a given block of learning. For stimulus 3, the subplot shows the percentage
of perseverant networks, i.e. the percentage of networks satisfying a criterion of at least 50% perseverant responses in a given block of learning. Each block of
learning consisted of 50 trials. (C) Pathway dysfunctions explain the learning deficits of networks with HD-like lesions. Subplots show developments in the
functional effectiveness of basal ganglia and cortico-thalamic pathways across 10 blocks of learning – separately for unlesioned networks (circles), networks
with lesions of the indirect pathway (triangles), and networks with combined lesions of the direct and indirect pathways (squares). We determined the pathways’
effectiveness by measuring their outputs on neurons encoding relevant responses, and comparing them with their average outputs on all other neurons, as
detailed in Materials and methods. For the direct pathway, correct responses were relevant; for the indirect pathway, previously correct (but now incorrect)
responses were relevant; for the hyperdirect pathway, currently incorrect responses were relevant; and for the cortico-thalamic pathway, both currently correct
responses (lower subpanel) and previously correct responses (upper subpanel) were relevant. Details on computation of the pathways’ functional effectiveness
are given in Materials and methods. PW, pathway.
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maintaining previously learned stimulus–response associations (trian-
gles in Fig. 6B, stimulus 2). In line with these behavioral observa-
tions, the pathways’ effectiveness does not differ from that of
unlesioned networks for the corresponding types of trial (triangles in
Fig. 6C, stimuli 2 and 4).
HD patients in relatively advanced stages of the disease who suf-

fer not only from lesions of the indirect pathway but also from addi-
tional lesions of the direct pathway (Reiner et al., 1988) are
predicted to show impairments not only in reversal learning (squares
in Fig. 6B, stimulus 1) and extinction learning (squares in Fig. 6B,
stimulus 3) as compared with healthy controls, but also in learning
novel stimulus–response associations (squares in Fig. 6B, stimulus
4). That is, these patients’ additional lesions of the direct pathway
are predicted to cause deficits in learning novel stimulus–response
associations. These additional deficits are predicted to result from
reduced functional effectiveness of the direct pathway (squares in
Fig. 6C, first line of subplots, stimulus 4), i.e. from a deficit of this
pathway in facilitating currently correct responses that results in
reduced execution of these correct responses.

Discussion

We showed that combined lesions of direct pathway and indirect
pathway striatal MSNs, but none of these lesions alone, reproduced
HD patients’ deficits in stimulus–response learning on three distinct
neuro-psychological paradigms. Lesions of the hyperdirect pathway
and changes in dopamine levels could not account for patients’
impairments. Our results therefore suggest that combined lesions of
the direct and indirect pathways, rather than lesions of the hyperdi-
rect pathway or changes in dopamine, are responsible for patients’
learning deficits, and tentatively also for their motor and cognitive
deficits in general, as will be discussed below.

Loss of striatal MSNs explains HD patients’ stimulus–response
learning deficits

Via immunohistochemical and autoradiographic techniques, striatal
MSNs have been repeatedly confirmed to degenerate in human HD
brains (Reiner et al., 1988; Albin et al., 1992; Glass et al., 2000).
Striato-GPe MSNs of the indirect pathway die in the early and pre-
symptomatic stages of the disease, whereas striato-GPi/striato-SNr
MSNs of the direct pathway die only as the disease advances (Rein-
er et al., 1988; Albin et al., 1992; Glass et al., 2000). The early loss
of striato-GPe MSNs of the (inhibitory) indirect pathway has been
suggested to explain patients’ hyperkinetic choreic movements in
the early stages of the disease, whereas the later loss of (excitatory)
direct pathway MSNs might explain their hypokinetic symptoms as
the disease advances (DeLong, 1990; Storey & Beal, 1993).
In our simulations, combined lesions of the direct and indirect

pathways reproduced HD patients’ stimulus–response learning defi-
cits well. Lesions of the direct and indirect pathways, however, con-
tributed to these deficits in different ways. Lesions of the indirect
pathway reproduced patients’ reversal learning deficits because of
less reliable inhibition of previously correct responses. These deficits
in inhibiting unwanted but still dominant response tendencies are
conceptually similar to patients’ choreatic movements in the early
stages of manifest HD. As outlined above, choreatic movements
have indeed been argued to result from a loss of indirect pathway
MSNs (DeLong, 1990). Lesions of the direct pathway, in contrast,
reproduced patients’ deficits in facilitating correct responses well,
specifically their impairments in initiating correct sequence elements
in the sequence learning paradigm and in choosing correct catego-

ries in the category learning paradigm. Such deficits in facilitating
correct responses are conceptually similar to the hypokinetic symp-
toms that occur in some patients with advanced HD (Denny-Brown,
1960; Thompson et al., 1988). As outlined above, hypokinetic
symptoms have indeed been proposed to result from lesions of the
direct basal ganglia pathway (e.g. Andr�e et al., 2010, 2011). To the
extent that stimulus–response learning paradigms are well suited for
investigating HD dysfunctions (see Materials and methods), our
results corroborate combined lesions of the direct and indirect path-
ways as the neuronal origin of HD motor and cognitive impairments
in general. Changes in dopamine levels, in contrast, do not account
for patients’ deficits in our simulations. The empirically reported
changes in dopamine receptor binding may therefore be corrolaries
of MSN degeneration, according to our results.

Comparisons with previous computational models of HD

Beste et al. (2014) presented a computational model that explains
the neuronal mechanisms behind improved response selection in
HD, as empirically reflected in both reduced error rates and reduced
reaction times (Beste et al., 2008c, 2014; Tomkins et al., 2013).
These authors suggest that a loss of connectivity among striatal neu-
rons impairs response selection in HD to a minor extent, while, at
the same time, increased sensitivity of N-methyl-D-aspartate
(NMDA) receptors improves response selection. In HD, these
improvements are proposed to outweigh the above-mentioned
impairments, resulting in overall improved response selection. In
contrast, in benign hereditary chorea, which is a distinct disorder,
the loss of connectivity among striatal MSNs is proposed to prevail
over increased NMDA receptor sensitivity, resulting in overall
impaired response selection. Thus, in contrast to our approach, Beste
et al. (2014) did not investigate the neuronal origins of behavioral
impairments in HD, but focused on a specific behavioral improve-
ment relative to healthy controls. Therefore, their conclusions do not
contrast with our results: whereas increased NMDA receptor sensi-
tivity might explain improved response selection in HD (Beste
et al., 2014), combined lesions of the direct and indirect pathways
might account for patients’ deficits in stimulus–response learning.
Speculatively, increased NMDA receptor sensitivity might be a com-
pensatory mechanism to alleviate the effects of MSN lesions.
The model of Beste et al. (2014) does not include synaptic plas-

ticity, and is therefore incapable of reward-based stimulus–response
learning. Moreover, it does not include hyperdirect and cortico-tha-
lamic pathways. Our model, in contrast, allows us to focus on learn-
ing, synaptic plasticity, the effects of dopamine, and lesions of all
three basal ganglia pathways, thereby surmounting the capabilities
of their model in these respects.

Model predictions

A specific model prediction is detailed in Results. In general, our
model predicts that lesions of direct pathway striatal MSNs result in
reduced facilitation of intended responses, whereas lesions of indi-
rect pathway MSNs cause deficits in inhibiting dominant response
tendencies (i.e. response tendencies that were rewarded in the past,
but that no longer result in rewards). The effects of lesions of the
indirect pathway may be evident not only from deficits in extinction
learning, but also from impairments in reversing stimulus–response
associations, i.e. in learning new response associations for known
stimuli (Fig. 6B). These predictions are more specific than those put
forward in previous models that had suggested overshooting motor
activity as such to be a consequence of lesions of indirect pathway
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MSNs (e.g. Albin et al., 1989; DeLong, 1990). According to our
predictions, HD patients should show overshooting motor activity
(i.e. loss of inhibition) specifically when a dominant, overlearned
response option exists. Reduced motor activity, in contrast, should
be prominent primarily in novel or unusual contexts.
As basal ganglia pathways are known to control not only motor

but also cognitive and motivational functions in separate cortico-
basal ganglia-thalamic loops (Haber, 2003), our model predictions
can be generalised to cognitive and motivational functions. The dif-
ficulties in activating cognitive and motivational states that are expe-
rienced by HD patients in addition to their motor symptoms should
result from lesions of direct pathway MSNs in cognitive and moti-
vational loops, respectively, whereas deficits in inhibiting dominant
cognitive or motivational states should be caused by lesions of indi-
rect pathway MSNs.

Limitations and advantages of our approach

Computational modeling offers the opportunity to study the effects
of various basal ganglia dysfunctions on behavior. In the brain, such
investigations would involve major technical challenges, would be
ethically suitable only in animal models of HD, and would therefore
be restricted to simple behavioral paradigms. As a downside, how-
ever, neuro-computational simulations can only be as good as the
assumptions used in the underlying computational model. Although,
of course, any of our assumptions might have to be revised in the
future on the basis of novel empirical insights, we carefully
designed each assumption according to a wealth of existing empiri-
cal data (Schroll et al., 2014). Moreover, we developed and pub-
lished our neuro-computational model well before we simulated the
effects of HD-like lesions. Therefore, our model assumptions were
not influenced by considerations on how to reproduce the stimulus–
response learning deficits of HD patients. Further underlining the
validity of our assumptions, moreover, our model has already per-
formed well in predicting the effects of dopamine loss in Parkin-
son’s disease and in reproducing findings on how Parkinsonian
symptoms can be alleviated by specific basal ganglia lesions (Ver-
leger et al., 2013; Schroll et al., 2014).
Our model is capable of coping with only a specific subset of

neuro-psychological paradigms, namely those that involve stimulus–
response learning. Our simulations show that combined lesions of
striatal MSNs of the direct and indirect basal ganglia pathways can
reproduce HD patients’ deficits on these paradigms, as outlined
above. However, we could not investigate whether combined lesions
of the direct and indirect pathways might also explain patients’ defi-
cits on different types of paradigm. For instance, HD patients also
show deficits in attention, executive function, Go–NoGo perfor-
mance, and episodic memory (see Introduction). As outlined in
Materials and methods, however, we consider stimulus–response
learning paradigms to be well suited for investigations of the poten-
tial neuronal origins of HD patient’s cognitive and motor dysfunc-
tions in general.
Finally, our finding that only combined lesions of the direct and

indirect pathways account for patients’ learning impairments might
exclusively relate to relatively advanced stages of the disease, as the
reproduced empirical results of Lawrence et al. (1999), Brown et al.
(2001) and Filoteo et al. (2001) were based on data from patients
with clearly manifest HD. It is known that relatively advanced
stages of the disease are associated with a loss of MSNs in both the
direct and indirect basal ganglia pathways (Reiner et al., 1988). Pre-
manifest patients or patients in very early symptomatic stages of the
disease, in contrast, might have shown different learning deficits that

might have been better explained by lesions of the indirect pathway
alone (Reiner et al., 1988). Changes in dopamine levels or dysfunc-
tions of the hyperdirect pathway, however, most probably would not
have explained these patients’ deficits either.

Conclusions

By performing neuro-computational simulations, we found that com-
bined lesions of direct pathway and indirect pathway striatal MSNs
can explain HD patients’ stimulus–response learning deficits. Whereas
lesions of the direct pathway explain their impairments in facilitating
novel desired responses, lesions of the indirect pathway explain their
deficits in inhibiting undesired but previously relevant (and therefore
still dominant) response tendencies. Lesions of the hyperdirect path-
way and changes in dopamine levels did not explain patients’ impair-
ments. Tentatively, these results suggest that combined lesions of the
direct and indirect pathways constitute the most prominent cause of
HD patients’ cognitive and motor impairments in general.
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Appendix A

We here present the full mathematical setup of our neuro-computa-
tional model. All equations are equivalent to those described in Sch-
roll et al. (2014), except for the changes described in Materials and
methods.

Membrane potentials and firing rates

Membrane potentials of postsynaptic neurons, mpost
i;t , are determined

via

s � dm
post
i;t

dt
þ mpost

i;t ¼
X
j2bre

ðwpre�post
i;j;t � rprej;t Þ þ Bþ ei;t ðA1Þ

where s = 10 ms is a time constant, wpre�post
i;j;t is the weight from

the presynaptic neuron j to the postsynaptic neuron i at time t,
rprei;t is the firing rate of the presynaptic neuron j, wpre�post

i;j;t is the
weight from the presynaptic to the postsynaptic neuron, B is the
postsynaptic neuron’s baseline membrane potential, and ei,t is a
random noise term, drawn from a uniform distribution. This noise
term ensures the exploration of network states, and thereby guar-
antees the exploration of different response alternatives. It is the
origin of variability in behavioral performance among networks.
Specific values for the parameters of Eqn A1 are shown in
Table 1.
As an exception, membrane potentials of SNc neurons, mSNc

i;t , are
determined via

s � dm
SNc
i;t

dt
þ mSNc

i;t ¼ Pt � Rt þ Qt �
X

j2StrðD1Þ
ðwStrðD1Þ�SNc

i;j;t � rStrðD1Þj;t Þ
0
@

1
A

þ B

ðA2Þ

where s = 10 ms is a time constant, and Pt is set to 1 whenever
reward can occur and to 0 otherwise, Rt is set to (1 – B)
whenever reward can occur and to 0 otherwise, and Qt is set to 1
whenever reward can occur to 10 otherwise, as described in Schroll
et al. (2014). B = 0.1 is the baseline membrane potential of SNc
neurons.
Firing rates of postsynaptic neurons, rposti;t , are computed from

membrane potentials via

rposti;t ¼ ðmpost
i;t Þþ ðA3Þ

where ()+ determines that all negative values are set to 0. As an
exception, firing rates of thalamic neurons, rThali;t , are computed from
thalamic membrane potentials via

rThali;t ¼
ðmThal

i;t Þþ if mThal
i;t � 1

0:5þ 1

1þe
1�mThal

i;t
2

 !þ
else

8>><
>>: ðA4Þ

as described in Schroll et al. (2014).

Strengths of synaptic contacts

The strengths of synaptic contacts between presynaptic and postsyn-
aptic neurons are determined via a different set of differential equa-
tions. Below, we show these equations separately for each type of

connection in the model. This allows for easier reading than the
table-based format used in Schroll et al. (2014).

Cortico-thalamic synapses

The strengths of synaptic contacts between stimulus cortical and tha-
lamic neurons, wCx�Thal

i;j;t , are computed via

g � dw
Cx�Thal
i;j;t

dt
¼ CaCx�Thal

i;j;t � aCx�Thal
i;t � CaCx�Thal

i;j;t ðA5Þ

With

aCx�Thal
i;t ¼ ðmThal

i;t � mMAXÞþ ðA6Þ

where g = 2000 is a time constant, CaCx�Thal
i;j;t denotes a calcium

trace as defined in Eqn A7, and aCx�Thal
i;t ensures that synaptic con-

tacts cannot increase in strength infinitely, but may reach a dynamic
threshold as the postsynaptic membrane potential crosses a threshold
defined by mMAX = 0.9. Cortico-thalamic weights are not allowed to
become negative.
Calcium traces are determined via

CaCx�Thal
i;j;t ¼ ðrCxj;t � CxtÞ � ðrThali;t � Thalt � cThalÞþ ðA7Þ

where rCxj;t is the firing rate of the presynaptic cortical neuron j at
time t, Cxt is the average firing rate of the stimulus cortex at time t,
rThali;t is the firing rate of the thalamic neuron i at time t, Thalt is
the average firing rate of the thalamus at time t, cThal is the
postsynaptic activity threshold (which was set to 0.3 for two tha-
lamic neurons, to 0.47 for three thalamic neurons, to 0.55 for four
thalamic neurons, and to 0.60 for five thalamic neurons, as
described in Materials and methods), and ()+ determines that nega-
tive values are set to zero.

Cortico-striatal synapses

The strengths of connections between the stimulus cortex and stria-
tal MSNs, wCx�Str

i;j;t , are determined via

g � dw
Cx�Str
i;j;t

dt
¼ fDAðDAt � 0:1Þ � CaCx�Str

i;j;t � aCx�Str
i;t � CaCx�Str

i;j;t ðA8Þ

with

aCx�Str
i;t ¼ ðmStr

i;t � mMAXÞþ ðA9Þ

where Str can refer either to D1 MSNs or to D2 MSNs. DAt is the
dopamine level at time t, CaCx�Str

i;j;t is the calcium trace for the syn-
apse of interest, and aCx�Str

i;t determines that weights decrease as the
postsynaptic membrane potential crosses a threshold defined by
mMAX = 1.0. Both formulae are equivalent for cortical synapses to
D1 and D2 MSNs. Calcium traces are computed via

gCa � dCa
Cx�Str
i;j;t

dt
þ CaCx�Str

i;j;t ¼ ðrCxj;t � Cxt � cCxÞ � ðrStri;t þ StrtÞþ

ðA10Þ

with
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gCa ¼ 250 if gCa � dCa
Cx�Str
i;j;t

dt þ CaCx�Str
i;j;t ¼ 0

1 else

(
ðA11Þ

again equivalently for D1 and D2 MSNs, where rCxj;t is the firing rate
of the presynaptic stimulus cortical neuron j at time t, Cxt is the
average firing rate of the stimulus cortex at time t, cCx = 0.15 is the
presynaptic activity threshold, rStri;t is the firing rate of the postsynap-
tic striatal neuron i at time t, and Strt is the average firing rate of
the striatal neurons in question (i.e. the average firing rate of all D1
MSNs if the evaluated synapse belongs to a D1 MSN, and the aver-
age firing rate of all D2 MSNs if the synapse belongs to a D2
MSN).
The effects of dopamine on synaptic plasticity differ between D1

and D2 MSNs. For D1 MSNs, the following function determines
the effects of dopamine:

fDAðxÞ ¼

2x if x[ 0
0:8x if x\0 \

ððCaCx�StrðD1Þ
i;j;t [ 0 \ wCx�StrðD1Þ

i;j;t [ 0Þ
[ ðCaCx�StrðD1Þ

i;j;t \0 \ wCx�StrðD1Þ
i;j;t \0ÞÞ

0 else

8>>>>><
>>>>>:

ðA12Þ

whereas for D2 MSNs, the following function holds true, as
described in Schroll et al. (2014):

fDAðxÞ ¼

�2x if x\0
�0:8x if x[ 0 \

ððCaCx�StrðD2Þ
i;j;t [ 0 \ wCx�StrðD2Þ

i;j;t Þ
[ ðCaCx�StrðD2Þ

i;j;t \0 \ wCx�StrðD2Þ
i;j;t \0ÞÞ

0 else

8>>>>><
>>>>>:

ðA13Þ

Cortico-subthalamic synapses

The strengths of cortico-subthalamic synapses are determined in
exactly the same way as the strengths of synapses between the cor-
tex and D1 MSNs.

Striato-nigral synapses

The strengths of synapses between striatal D1 MSNs and the SNc,
wStrðD1Þ�SNc
i;j;t , are determined via

g � dw
StrðD1Þ�SNc
i;j;t

dt
¼ �fDAðDAt � 0:1Þ � ðrStrðD1Þj;t � StrðD1ÞtÞþ ðA14Þ

with

fDAðxÞ ¼ x if x[ 0
3x else

�
ðA15Þ

where g = 100 000 is a time constant, DAt is the dopamine level at

time t, rStrðD1Þj;t is the firing rate of the presynaptic striatal D1 MSN j

at time t, StrðD1Þt is the average firing rate of all striatal D1 MSNs
at time t, and ()+ determines that all negative values are set to 0. As
striato-nigral synapses are GABAergic, their weights are prevented
from increasing above 0. Functionally, Eqns A14 and A15

determine that striato-nigral synapses increase in strength after pha-
sic increases in dopamine (that is, they become more negative after
unexpected rewards). As a consequence, the magnitudes of future
phasic increases in SNc firing are reduced as rewards become pre-
dictable.

Striato-pallidal synapses

The strengths of synaptic contacts between striatal D1 MSNs and
the GPi, and between striatal D2 MSNs and the GPe, wStr�GP

i;j;t , are
determined via

g � dw
Str�GP
i;j;t

dt
¼ �fDAðDAt � 0:1Þ � CaStr�GP

i;j;t � aStr�GP
i;t � CaStr�GP

i;j;t

ðA16Þ

with

aStr�GP
i;t ¼ �ð�mGP

i;t � mMAXÞþ ðA17Þ

where Str can refer to either D1 or D2 MSNs, and GP can either
refer to the GPi or the GPe. g = 50 is a learning rate, DAt is the
dopamine level at time t, CaStr�GP

i;t is the calcium trace between the
presynaptic neuron j and the postsynaptic neuron i at time t as deter-
mined from Eqn A18, and aStr�GP

i;t reduces synaptic weights as post-
synaptic firing crosses a threshold defined by mMAX (with
mMAX = 1.0 for synapses between D1 MSNs and GPi neurons, and
mMAX = 2.0 for synapses between D2 MSNs and GPe neurons).
Weights are not allowed to increase above 0.
Calcium traces are computed via

gCa � dCa
Str�GP
i;j;t

dt
þ CaStr�GP

i;j;t ¼ ðrStrj;t � StrtÞþ � ð�rGPi;t þ GPt � cGPÞ
ðA18Þ

with

gCa ¼ 250 if gCa � dCa
Str�GP
i;j;t

dt þ CaStr�GP
i;j;t ¼ 0

1 else

(
ðA19Þ

where rStrj;t is the firing rate of the striatal MSN j at time t, Strt is the
average firing rate of all striatal MSNs of the respective type (i.e.
either D1 or D2 MSNs), rGPi;t is the firing rate of the GPi or GPe
neuron i at time t, GPt is the average firing rate of all GPi or GPe
neurons, as appropriate, and cGP = 0.15 is the postsynaptic activity
threshold.
The dopamine function fDA(x) differs between synapses that con-

nect D1 MSNs to the GPi and those that connect D2 MSNs to the
GPe. For connections between D1 MSNs and GPi neurons, the fol-
lowing function is valid:

fDAðxÞ ¼
2x if x[ 0
0:8x if x\0 \ CaStrðD1Þ�GPi

i;j;t [ 0
0 else:

(
ðA20Þ

whereas for connections between D2 MSNs and GPe neurons, the
following function holds true:
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fDAðxÞ ¼
�2x if x\0
�0:8x if x[ 0 \ CaStrðD2Þ�GPe

i;j;t [ 0
0 else:

(
ðA21Þ

Subthalamo-pallidal synapses

Subthalamo-pallidal weights, wSTN�GPi
i;j;t , are determined in strength via

g � dw
STN�GPi
i;j;t

dt
¼ fDAðDAt � 0:1Þ � CaSTN�GPi

i;j;t � aSTN�GPi
i;t � CaSTN�GPi

i;j;t

ðA22Þ

with

aSTN�GPi
i;t ¼ ðmGPi

i;t � mMAXÞþ ðA23Þ

and

fDAðxÞ ¼
2x if x[ 0
0:8x if x\0 \ CaSTN�GPi

i;j;t [ 0
0 else:

(
ðA24Þ

where g = 50 is a learning rate, DAt is the dopamine level at time
t, CaSTN�GPi

i;j;t is the calcium trace between the STN neuron j and the
GPi neuron i at time t, and aSTN�GPi

i;t prevents further increases in
synaptic weights as the postsynaptic membrane potential crosses a
threshold defined by mMAX = 1.5. Weights are not allowed to
decrease below 0.
Calcium traces are computed via

gCa � dCa
STN�GPi
i;j;t

dt
þ CaSTN�GPi

i;j;t ¼ ðrSTNj;t � STNtÞþ � ðrGPii;t � GPit

þ cGPiÞ
ðA25Þ

with

gCa ¼ 250 if gCa � dCa
STN�GPi
i;j;t

dt þ CaSTN�GPi
i;j;t ¼ 0

1 else

(
ðA26Þ

where gCa is a learning rate, rSTNj;t is the firing rate of STN neuron j
at time t, STNt is the average firing rate of the STN at time t, rGPii;t

is the firing rate of the GPi neuron i at time t, GPit is the average
firing rate of the GPi at time t, cGPi = 0.15 is the postsynaptic activ-
ity threshold, and ()+ determines that negative values are set to
zero.

Pallido-pallidal synapses

Weights that control lateral competition in the GPi, wGPi�GPi
i;j;t , are

determined via

g � dw
GPi�GPi
i;j;t

dt
¼ ð�rGPij;t þ GPitÞþ � ð�rGPii;t þ GPitÞþ � aGPi�GPi

i;t

� ð�rGPij;t þ GPitÞþ � ðrGPii;t � GPitÞþ
ðA27Þ

with

aGPi�GPi
i;t ¼ ðmGPi

i;t Þþ ðA28Þ

where rGPij;t is the firing rate of the presynaptic GPi neuron j at time
t, GPit is the average firing rate of the GPi at time t, rGPii;t is the
activity of the postsynaptic GPi neuron i at time t, aGPi�GPi

i;t deter-
mines that weights do not increase infinitely, and ()+ determines that
negative values are set to 0. Note that, for the reversal learning and
the category learning paradigms, where only two GPi neurons are
present (Table 1), lateral competition in the GPi was set to 1.25
(that is, synaptic plasticity was not evaluated), as described in Mate-
rials and methods. Pallido-pallidal weights are prevented from
decreasing below zero.

Overt responses

Overt responses are determined from motor cortical firing rates via a
softmax rule, whereby the probability of the correct response i at
time t, Pi,t, is given by

Pi;t ¼
rmotor Cx
i;t þ hP

j2motor Cx
ðrmotor Cx

j;t þ hÞ ðA29Þ

where rmotor Cx
i;t is the firing rate of motor cortical neuron i at time t,

and h = 10�10 prevents the denominator from becoming 0.
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