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a b s t r a c t

We introduce a spiking neural network of the basal ganglia capable of learning stimulus–action associa-
tions. We model learning in the three major basal ganglia pathways, direct, indirect and hyperdirect, by
spike time dependent learning and considering the amount of dopamine available (reward). Moreover,
we allow to learn a cortico-thalamic pathway that bypasses the basal ganglia. As a result the system de-
velops new functionalities for the different basal ganglia pathways: The direct pathway selects actions by
disinhibiting the thalamus, the hyperdirect one suppresses alternatives and the indirect pathway learns
to inhibit common mistakes. Numerical experiments show that the system is capable of learning sets of
either deterministic or stochastic rules.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The basal ganglia are a set of nuclei located in the forebrain.
Several experiments have associated this brain area to action
selection and reinforcement learning (Grillner, Hellgren, Menard,
Saitoh, & Wikstrom, 2005; Packard & Knowlton, 2002; Wickens,
Reynolds, & Hyland, 2003). The reinforcement signal, i.e. a reward
prediction error (Schultz, 2010), is transferred to basal ganglia
in form of the neurotransmitter dopamine originating in the
substantia nigra pars compacta and the ventral tegmental area.

The basal ganglia are composed of several cortico thalamic
loops that start in the cortex and via different pathways converge
in the internal globus pallidus, an output structure which projects
through the thalamus back to the cortex. All loops include either
the striatum or the subthalamic nucleus, areas that are considered
as input stages of the basal ganglia. In the basal ganglia each loop is
composed of typically three different pathways, a direct pathway,
an indirect pathway and a hyperdirect pathway (Schroll & Hamker,
2013).

To allow the simulation of behavioral experiments, several
models of the complete basal ganglia have been proposed that
do also include synaptic plasticity. Most of them are based on
mean rate neurons (see for example: Frank, 2005;Gurney, Prescott,
& Redgrave, 2001; Schroll, Vitay, & Hamker, 2012, 2014). Only
recently, some models using spiking neurons have appeared
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(Chersi, Mirolli, Pezzulo, & Baldassarre, 2013; Stewart, Bekolay,
& Eliasmith, 2012). The main difference between both relates to
the different ways of modifying the synaptic weights. While rate-
basedmodels typically adjust their weights based on a three factor
rule, pre- and post-synaptic firing rate plus dopamine, spiking
models can also consider the exact timing of pre- andpost-synaptic
spikes by spike timing dependent plasticity (STDP) learning rules
(Markram, Gerstner, & Sjöström, 2011; Morrison, Diesmann, &
Gerstner, 2008).

Recently, Schroll et al. (2014) presented a set of learning rules
for rate-basedmodels that allow to determine the function of each
pathway while minimizing hard-wired connections. However,
none of the published spiking neural models of the basal ganglia
allows for synaptic plasticity in all three pathways. Thus, in the
present work we propose a new spiking network, inspired by
the rate model presented by Schroll et al. (2014), that allows for
learning by means of STDP in all three pathways. As a result of
learning novel interpretations in the function associated to each
of the cortico-thalamic pathways that include the basal ganglia
emerge.

2. Basal ganglia anatomy

The main input structure of the basal ganglia is the striatum.
It is composed mainly of medium spiny neurons (MSNs) and of
a small amount of interneurons. The input from the cortex and
thalamus to the striatum is mediated by glutamatergic synapses
(Leh, Ptito, Chakravarty, & Strafella, 2007; Smith, Raju, Pare, &
Sidibe, 2004;Wiesendanger, Clarke, Kraftsik, & Tardif, 2004).MSNs
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are quiet at rest and require a strong correlated input to activate
(Nisenbaum & Wilson, 1995). Once active they inhibit through
GABAergic connections the neurons in the globus pallidus.

The striatum is also the destination of many projections from
the dopaminergic cells of the substantia nigra pars compacta. The
dopamine signal produced by these connections provides the basal
ganglia with information about the performance of the task by
means of a reward prediction error (Schultz, 2007). When more
reward than expected is obtained (for example, in the form of
juice in animal experiments) the level of dopamine is enhanced
and when less reward than expected is received the dopamine
level is reduced. This dopamine signal modulates learning in
the basal ganglia connections. In neurons expressing the type-
1 receptor (D1) a rise in the level of dopamine produces long
termpotentiation,while in neurons expressing the type-2 receptor
(D2), it produces long term depression (Shen, Flajolet, Greengard,
& Surmeier, 2008). A reduced level of dopamine reverses this
effect, producing long term depression in D1 cells and long term
potentiation in D2 cells. This difference suggests that both cell
types have a different function. D1 expressing cells directly project
to the internal globus pallidus (GPi), themain output nucleus of the
basal ganglia, while D2 expressing cells first project to neurons in
the external globus pallidus (GPe), which then project to the GPi.
All these connections are inhibitory.

The pathway comprising striatal D1 cells and its direct connec-
tion to GPi is usually called the direct pathway and the one in-
cluding D2 cells and GPe is usually called the indirect pathway.
Both pathways converge in GPi which projects to the thalamus
via GABAergic connections. The direct pathway, through the pro-
jections from striatum D1 cells, reduces the tonic activity of GPi
and thus reduces the level of inhibition from GPi to the thalamus.
The indirect pathway, through the inhibitory connections between
striatum D2 cells and GPe, is able to remove the continuous inhi-
bition that the tonic firing of GPe provides to GPi. The absence of
this inhibition increases the level of activity in GPi. Thus, standard
theories associate the direct pathway with a GO-function, i.e., ini-
tiating the correct action, and the indirect pathway to a NO-GO-
function, i.e., inhibiting the incorrect actions (Braak & Del Tredici,
2008; O’Reilly & Frank, 2006; Schroll & Hamker, 2013).

The Subthalamic Nucleus (STN) is another input structure of
the basal ganglia which receives connections from the cortex,
the thalamus and the GPe and projects to GPi and GPe (Temel,
Blokland, Steinbusch, & Visser-Vandewalle, 2005). The projections
from the STN to GPi are excitatory, so this pathway, usually
called hyperdirect, is supposed to have a different function than
the inhibitory connection from the striatum. Anatomical evidence
suggests a center–surround structure where this pathway inhibits
competing motor programs while the direct pathway excites the
correct one (Nambu, Tokuno, & Takada, 2002). For a recent review
of the computational function of the different BG pathways see
Schroll and Hamker (2013).

3. Previous spiking models of the basal ganglia

Recently, spiking models of the complete basal ganglia have
been proposed which are able to learn stimulus–response asso-
ciations. Chersi et al. (2013) developed a model to simulate a
behavioral task in which a monkey must learn a stimulus–action
association. The monkey sits in front of a table with three lights
and three buttons. At the beginning of a trial a light is flashed and
then the animal must discover which button he has to press to
turn the light on again. Only one button is correct for each light.
An interesting characteristic of this model is that to reach a suc-
cessful response in one trial a set of consecutive actions must be
performed. The simulated monkey must first look at the flashed
light, then reach the button and finally press it.
In their network each nucleus of the basal ganglia, the motor
cortex and the prefrontal cortex, are represented by a layer
composed of a set of populations of leaky integrate and fire
neurons, one for each possible action.

The projections arriving to the striatum, but not to STN, are
plastic and adapt according to a three factor rule which depends
on both the level of dopamine, the timing between spikes and a
trace to solve the temporal credit assignment problem. However,
the learning rule is identical for all connections, independent of
the pathway or dopamine receptor. All remaining connections of
the direct, indirect and hyperdirect pathway and their weights
are determined by an optimization routine which assures the
fulfillment of a set of biological and functional restrictions. In the
resulting network the direct pathway is in charge of selecting
the proper action by disinhibiting the corresponding population
of the thalamus, while the indirect only maintains the activity
of GPi within working limits, avoiding undesired behaviors like
oscillations. The hyperdirect pathway basically switches off the
BG selection mechanism allowing direct connections between the
prefrontal cortex and the motor areas to determine the action to
be executed.

Another spiking model has been recently proposed by Stewart
et al. (2012) based on the firing rate model of Gurney et al. (2001).
The model of Gurney et al. (2001) is basically an action selection
model that, by its implemented BG connections, ensures that a
single action is determined, the one with output zero, given utility
values Q for each action as input. The utility value is the estimate
of reward given a particular state and a chosen action. The model
of Stewart et al. (2012), uses learning between cortex and striatum
but not between cortex and STN to map a sensory state to utility
values represented by populations of spiking neurons while the
other connections are set to replicate the same exact computations
performed by the original rate model. The learning rule does not
depend on the timing between the presynaptic and postsynaptic
spikes but only on the amount of activity of both cells and on an
error signal. The activity of a neuron is estimated using the amount
of neurotransmitters released in the synapse. The error signal is
computed by subtracting the vector of utility values (one value for
each possible action in a particular state) from the received reward.
Thus, the error signal is not uniformacross striatal populations. The
network is capable of learning a probabilistic bandit task, in which
an agentmust choose between two ormore actions. Reward is non
deterministic, depending on a probability distribution.

Humphries, Stewart, and Gurney (2006) proposed a different
spiking model which was used to study the appearance of slow
oscillations in the STN and the GPe. The dopamine signal in this
model is not used to modify the synapses, which are all fixed,
but only as a modulator of synaptic efficiency. This model is able
to reproduce several biological datasets but its lack of plasticity
makes it incomparable with this work where one of the main
objectives is to test the learning capabilities of the basal ganglia.

The learning process in the previous spiking models does not
differentiate between cells with a different type of dopamine
receptor. However, recent experiments have shown that the effect
of dopamine in plasticity varies according to the type of receptor
expressed by the cell (Calabresi, Picconi, Tozzi, & Filippo, 2007;
Shen et al., 2008), a factor that none of the spiking models have
taken into account.

Also, none of the previousmodels can explain the effects of pal-
lidotomy, a common treatment for Parkinson’s disease in which
the GPi is lesioned, reducing the influence of the BG in the thala-
mus. After the surgery, patients can perform everyday movements
(Lozano et al., 1995) but are impaired at learning (Sage et al., 2003).
This suggests that there exists anothermechanism for action selec-
tion that can guide behavior independent of the basal ganglia. We
propose that this can be performed by direct cortico thalamic con-
nections which are trained by the BG. However, in order to change
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a learned (habitual) behavior established by the cortico-thalamic
interactions, the basal ganglia would require a strong inhibitory
mechanism. We believe that this is possible due to the existence
of asymmetrical synaptic plasticity in the distinct cortico striatal
pathways.

Other modeling approaches have used a different, top-down,
approach to construct spiking models of reinforcement learning
inspired by classical machine learning techniques (Sutton & Barto,
1998). Potjans,Morrison, andDiesmann (2009) proposed amethod
in which any implementation of the TD algorithm could be
directly transformed into a spiking network, including a complete
correspondence between parameters. Their approach has two
main problems: first from the biological point of view, there is no
direct concordance between the structure of their model and the
known functional anatomy of the basal ganglia, and, second, their
implementation is designed for discrete state descriptions while
the brains operates in a continuous way. A solution to the latter
problem has been proposed in Frémaux, Sprekeler, and Gerstner
(2013), but this implementation is still lacking a direct association
to the different basal ganglia nuclei and their projections. Morita,
Morishima, Sakai, and Kawaguchi (2012) introduce a network that
is consistent by anatomical facts. However, it only operates in a
state-based fashion.

4. Network description

We here introduce a bottom-up modeling approach to the
basal ganglia which can explain the role of the different effects of
dopamine receptors in plasticity.We have also added direct cortico
thalamic projections, which are capable of conducting behavior
once an stimulus action association have been learned by the basal
ganglia pathways. These two features introduce a newmechanism
for action selection, different than previous computationalmodels.
The model is inspired by a recent rate model presented by Schroll
et al. (2014) where through different, realistic learning rules the
pathways learned to perform a behavioral task.

The model of Schroll et al. (2014) includes the direct, hyperdi-
rect, indirect and cortico-thalamic pathways of the basal ganglia.
The connectivity is not pre-specified but defined by a set of plas-
ticity rules. At the beginning the pathways do not implement any
function but acquire one through experience. Learning is modu-
lated by dopamine (except in the direct connections between the
cortex and the thalamus).

Schroll et al. (2014) also induced a Parkinsonian state in their
rate model by lowering the dopaminergic cell output to the stria-
tum, which alters synaptic plasticity and as a result dysfunctional
pathways functionalities emerge. The simulations showed that the
changes in the direct and indirect pathways agreed with early the-
ories about the effects of Parkinson’s disease and predicted an in-
crease in the output of both the hyperdirect pathway and the direct
cortico-thalamic pathway. Dopamine replacement was simulated
by increasing the tonic dopamine level. Simulations showed that
initial learning performance can be alleviated by low dopamine
doses while automatic execution required high doses which im-
pede learning. In networks that received pallidotomy, a common
therapeutical lesioning of GPi for Parkinsonian patients, the per-
formance on well known tasks was restored but learning was im-
paired, in agreement with data.

We here show that the functions that emerge through learning
do not depend on the particular kind of Hebbian and three factor
learning rules used by Schroll et al. (2014) but equally well occur
when spiking neurons and spike time dependent learning rules are
used. All model details are given next.

Aswe focus on thewhole basal ganglia some simplifications are
made with respect to computational details. We do not model in
detail the function of different interneurons and omit some known
connections in the BG.
Fig. 1. Network structure. Each rectangle represents one nucleus or component
of the basal ganglia. The circles inside each nucleus represent the different neuron
populations in each (see text). Dashed lines represent plastic connections and solid
lines fixed connections. Blue lines represent excitatory connections and green lines
inhibitory. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

4.1. Cortico thalamic pathways

In our network, each of the basal ganglia nuclei is represented
by a layer of spiking neurons (Fig. 1). The striatum is divided into
two separate groups, one for D1 receptor expressing cells and one
for D2 expressing cells. Each layer in the basal ganglia is composed
of several populations of neurons, where each population is linked
to a particular action, as implemented inmost BGmodels. Learning
takes place between cortex and striatum, cortex and STN as well as
cortex and thalamus.

The other connections of basal ganglia pathways are hard
coded. Both, in the direct and indirect pathway, each population
is only connected to neurons encoding its same action in the next
layer. In the hyperdirect pathway, each neuron is connected to all
neurons encoding an action different than the one represented by
its own population. All these connections are shown in Fig. 1.

Cortical input is represented using one population of neurons
for each possible stimulus. Each cell of these populations is initially
connected to all the neurons in the striatum and the STN.

At rest, the GPi generates spikes that keep the activity in the
thalamus at a low level. Activation of a striatal D1 population
inhibits the GPi, reducing the inhibition in one population of the
thalamus which in turn will allow this population to increase its
activity to finally select an overt response.

Activation of a striatal D2 populationwill inhibit one population
of GPe which are otherwise firing with a baseline rate. A reduction
in the activity of GPe will then reduce the amount of inhibition
received by the GPi, increasing its activity and suppressing an
overt response. Activation of a STN population will increase the
activity of the GPi in all populations encoding a different action and
therefore will inhibit alternative actions.

Both the direct and the hyperdirect pathway jointly generate
patterns thatwill showa clear action selection in the thalamus. The
direct pathway removes the inhibition of the correct action, while
the hyperdirect increases the inhibition to alternative actions. This
implements a center–surround inhibition pattern in GPi if the
weights develop through learning. A detailed view of the action
selection process is shown in Video 1 (see Appendix A) and Fig. 2,
where each spike generated by the network is visualized.

The network also includes cortico-thalamic connections that
allows a fast decision, without the information being processed
by the basal ganglia. Biological evidence for these connections
can be found in Haber (2003). Initially, each population in the
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Fig. 2. Raster plot. This plot shows the activity of the network after an association has been learned. Each area is divided in two populations of 25 neurons each, both
representing different possible actions. The cortex is initially silent until the stimulus is presented, this activates immediately both striatum D1 cells and STN cells. Striatum
D1 cells inhibit the neurons of GPi belonging to the channel encoding the action to be selected. STN cells excite other cells to suppress the execution of alternative actions. The
decrease in the inhibition that the Thalamus constantly receives from GPi activates only the population of cells that represent the correct action. The feedback projections
from the Thalamus produce a small activation of D2 striatal cells, useful for learning, but incapable of canceling the effects of the striatal D1 neurons.
stimulus cortex is connected to all populations in the thalamus.
Slowly, as learning progresses in the basal ganglia pathways, these
connections aremodified in such a way that they express the same
association that has been created in the basal ganglia.

We have also implemented local inhibition between popula-
tions in GPi and striatum. Each neuron in these areas projects to
cells belonging to all other populations in the same layer. This en-
hances competition between actions. In the striatum this effect is
probably created by its complex interneuron structure (Tepper &
Bolam, 2004).We also included inhibition in the thalamus and STN,
but as neurons in these areas are excitatory, we had to include a
small amount of inhibitory neurons. Each excitatory population in
these layers are strongly connected to one small, different, group
of inhibitory interneurons, which then project to all other popula-
tions.

Finally, both STN and striatal cells receive feedback connections
from the population of the thalamus encoding its same action (see
Table 1). This enhances the response of neurons that represent the
selected action, increasing the effect of the learning rule.

4.2. Neurons and synapses

We have used the Adaptive Exponential Integrate and Fire
model (Brette & Gerstner, 2005; Naud, Marcille, Clopath, & Gerst-
ner, 2008) for all neurons in the network. The state of each neuron
is described by 2 values, an adaptation variable (w) and a mem-
brane potential (Vm). Both variables are governed by the following
differential equations:

C
dVm
dt

= gL(EL − Vm) + gL∆T exp
Vm − VT

∆T


+ Iext + ge − gi − w

τw

dw
dt

= a(Vm − EL) − w

τe
dge
dt

= −ge

τi
dgi
dt

= −gi.

(1)
Table 1
Weight values used in all the simulations.

Pre-synaptic populations Post-synaptic population Weight value

Striatum D1 GPi 2.0 nA
GPi Thalamus 0.12 nA
GPi GPi 0.1 nA
Thalamus D1 0.2 nA
Striatum D2 Striatum D2 2.0 nA
Striatum D2 GPe 2.0 nA
GPe GPi 1.0 nA
Thalamus Striatum D2 0.5 nA
STN GPi 3.0 nA
STN STN interneurons 2.0 nA
STN interneurons STN 1.0 nA
Thalamus STN 0.2 nA
Thalamus Thal. interneurons 2.0 nA
Thal. interneurons Thalamus 0.1 nA

The value of Vm was initialized to −65 mV and w, ge and gi to 0.
A description of each parameter of Eq. (1) together with the value
given in each of the simulations is presented in Table 2.

Once the value of Vm has reached a threshold of 30 mVwe con-
sider a spike has been emitted and reset Vm to −65 mV and in-
crease w by 0.08 nA. The input to each neuron is composed of the
sum of 3 different values, I = Iext +ge −gi. Both ge and gi represent
input coming from other neurons in the network, while Iext repre-
sents the sum of all external currents. Excitatory synapses increase
the value of ge by an amount which depends on the strength of the
connection between the pre-synaptic and post-synaptic neuron
(the weight) each time the pre-synaptic neuron spikes. Inhibitory
synapses increase gi instead. Both variables decay exponentially
with time constants τe and τi in the absence of any activity.

Only the GPe, GPi and the thalamus have a Iext baseline rate
greater than 0, modeled by a Gaussian random variable with
different mean and variance depending on the nucleus.

4.3. Learning rule

All the projections from the cortex to the basal ganglia are
learnable by dopamine modulated STDP. We have used the rule
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Fig. 3. STDP(∆t) function for synaptic plasticity between the stimulus cortex and the basal ganglia. A: function for the synapses projecting to D1 expressing cells when
dopamine is above baseline and for the D2 expressing cells when dopamine is below baseline. B: function for the synapses projecting to D1 expressing cells when dopamine
is below baseline and for the D2 expressing cells when dopamine is above baseline.
Table 2
Neuron parameters used in all the simulations, taken from Brette and Gerstner
(2005).

Parameter name Description Value

C Membrane capacitance 281 pF
gL Leaky conductance 30 nS
EL Leak reversal potential −70.6 nV
∆T Slope factor 2 mV
τw Adaptation time constant 144 ms
a Subthreshold adaptation 4 nS
Iext mean GPe Mean value of GPe 3 nA
Iext s.d. GPe Standard deviation of GPe 0.1 nA
Iext mean GPi Mean value of GPi 10 nA
Iext s.d. GPi Standard deviation of GPi 0.5 nA
Iext mean Thal. Mean value of thalamus 1.5 nA
Iext s.d. Thal. Standard deviation of thalamus 0.1 nA

Table 3
Learning rule parameters for the connections between the stimulus cortex and the
basal ganglia. These values were used in all the simulations.

Parameter name Description Value

τ+ Pre–post time constant 3 mS
τ− Post–pre time constant 2 mS
A+ Pre–post maximum STDP value 0.001
A− Post–pre maximum STDP value 0.0001
τE Eligibility trace time constant 3 ms
τe Excitatory synapses time constant 1 mS
τi Inhibitory synapses time constant 1 mS

proposed by Izhikevich (2007) which is able to solve the distant
reward problem by adding an eligibility trace. The change in the
weights is given in the following equations:

τE
dE
dt

= −E + STDP(∆t) (2a)

dws
dt

= E · DA (2b)

where E is the eligibility trace, ws is the weight, and DA is the
dopamine signal. A positive DA represents a dopamine level above
baseline, which happens when reward is received. A negative DA
represents a dopamine level below the baseline, which in our
model happens when no rewards is obtained at the end of a trial.
The value of E was initialized to 0 for all synapses.

STDP is the standard spike timing dependent plasticity function
(see Morrison et al., 2008 for a review) which depends on the time
difference between a post-synaptic and pre-synaptic spike (∆t).
If the pre-synaptic neuron spikes before the post-synaptic neuron
STDP will lead to long term potentiation (LTP) while if the order
is reversed it will lead to long term depression (LTD). The variable
E stores a history of the effect of spike pairs as a trace that will
be used to change the weights once the dopamine level changes
from its baseline. The STDP function is given in Eq. (3), where A+

and A− are the maximum values and τ+ and τ− are parameters
which limit the maximum distance between spikes that will cause
amodification. A plot of this function with the parameters given in
Table 3 is shown in Fig. 3.

STDP(∆t) =


A+ exp(−∆t/τ+) if ∆t > 0
A− exp(∆t/τ−) if ∆t < 0. (3)

In D1 cells, when DA is above baseline, LTP takes place when
the presynaptic neuron fires before the postsynaptic neuron. A
different temporal order of the spikes leads to a small LTD. In D2
cells, the effect of dopamine is reversed, as observed in Shen et al.
(2008). This has been implemented by multiplying the right hand
side of Eq. (2b) by −1, see also Fig. 3.

According to the classification proposed by Frémaux, Sprekeler,
and Gerstner (2010), this learning rule corresponds to a R-STDP
type, a category which Frémaux et al. (2010) show to be separable
into the sum of two terms: one which depends on the covariance
of the eligibility trace and the reward, and a second one, which
depends only on the mean of both the reward and the trace. This
second term is called the unsupervised bias as it is independent
of the relationship between behavior and success. The authors
showed that under certain circumstances this latter term can
be dominant and impede learning. In the model, to reduce this
effect, the level of long term depression in D1 MSNs is very
low (see Table 3 and Fig. 3A). This condition relates well to the
last experiment of Frémaux et al. (2010) where LTD has been
suppressed. Also, this is consistent with Shen et al. (2008), who
showed that the magnitude of LTD is much smaller than LTP in
striatal cells.

The modification of the cortico-thalamic projections is not
modulated by dopamine, but depends only on spike timing. For
these connections, each pre-synaptic spike followed by a post
synaptic spike will increase the weight and each reversed pair will
reduce it, independent of the level of dopamine. The amount of
weight change is given directly by the STDP function shown in
Eq. (3). The learning of these connections is much slower than the
cortical basal ganglia projections by using smaller values of A+ and
A−. In fact, only a large amount of consecutive correct decisions can
set the cortico-thalamic connections to its maximal level.

Homeostasis is required in the cortico-thalamic connections
to limit the growth of the weights and to assure a one to one
mapping between stimuli and actions. This is achieved by reducing
the weights by a small amount (γS) each time the pre-synaptic
(cortical) neuron spikes. If the post-synaptic neuron also spikes,
because its action has been selected by the basal ganglia, then
the rise due to the pre–post pairing will be much higher than the
homeostasis reduction. If the post-synaptic neuron does not fire,
then the basal ganglia are currently not associating the input to
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Table 4
Learning rule parameters for the direct connections between the stimulus cortex
and the thalamus. These values were used in all the simulations.

Parameter name Description Value

τ+ Pre–post time constant 5 mS
τ− Post–pre time constant 10 mS
A+ Pre–post maximum STDP value 2 × 10−09

A− Post–pre maximum STDP value 1 × 10−11

γS Homeostasis term 0.02 nA

the encoded action and the weight is reduced. The learning rule
for the weight of a synapse between neuron i of the cortex and j
of the thalamus is shown in Eq. (4). In the equation, the activity of
each neuron is described as a set of short pulses t ik, where i is the
index of the neuron and k the index of the spike. A spike train for
neuron i is expressed as Xi(t) =


k δ(t − t ik).

∆wij(t) = −γSXi(t) + Xi(t)

k

STDP(t jk − t)

+ Xj(t)

k

STDP(t − t ik). (4)

The first term of the right-hand side of Eq. (4) correspond to
homeostasis, the second to the effect of a pre-synaptic spike and
the third to the effect of a postsynaptic spike. The effect of a single
spike on the weights depends on the time difference between its
emission time and that of all previous spikes, according to the
function of Eq. (4).

A decision is accompanied by the increase in thalamic activity
enhancing the weights of the direct projection between the active
stimulus and those thalamic cells. This effect is independent of the
correctness of the choice and not modulated by dopamine. For this
reason, the weight increases performed during wrong trials need
to be removed once the correct association is found by the basal
ganglia. Thus, in each correct trial, the activity in the thalamus
is focused on the correct population, and due to the homeostatic
term the weights to all other cells will diminish. Over multiple
repetitions all the wrong information acquired during previous
trials will be forgotten and only one association will be learned.

The homeostatic term is not required in the cortico striatal
connections due to the effect of dopamine. In these synapses the
modification of the weights is different in correct and incorrect
trials.

Both learning rules include an explicit maximumweight value.
All cortico striatal synapses are limited to a range between 0
and 3 nA, while the direct cortico thalamic can only take values
between 0 and 1 nA.

5. Numerical experiments

We have implemented the network using the Brian spiking
neural network simulator (Goodman, 2009) and ran several
numerical experiments that are detailed in this section. The
commonparameters used in all simulations are shown in Tables 2–
4 and the weights in Table 1.

5.1. Learning and relearning of stimulus–response associations

In the first experiment we tested the capacity of the network to
learn an initial map between stimuli and actions and its capacity
to adapt to changes in the environment. In this simple reversal
learning task, in each trial, a single stimulus is presented to the
model which has to learn to associate the stimulus with a single
action chosen from a finite set of possible actions. If the decision
is correct reward is provided. Full success is achieved if 50 correct
answers are given following each other.
Once the model has accomplished the task, the stimulus–
response mapping is changed. This modification is not informed
to the model.

The network used for this experiment has two populations in
each layer, two possible stimuli and two possible actions. All the
projections starting at the stimulus cortex are randomly initialized,
except for the connections to D2 cells which are set to 0 to mini-
mize the level of action suppression in the beginning. Although the
weights are randomly selected the mean value (0.5 nA) is chosen
to be equal. The weights in the direct and hyperdirect pathways
balance each other to select a particular, random action for each
stimulus.

The weights of the local inhibitory synapses were chosen so
that just one population is strongly active at each trial even if at
the beginning the cortico-striatal synapses are not explicitly biased
towards any action. This ensures that each stimulus is associated
to just one action and not with all of them.

All the other connections have weights defined in Table 1.
The stimulus presented in each trial is selected randomly and
presented for 50 ms.

The output of the network is determined by temporal integra-
tion using two accumulators, one for each possible action. The
value of each accumulator starts at zero at the beginning of each
trial and is increased each time a neuron in the corresponding pop-
ulation of the thalamus spikes. If there is no activity they expo-
nentially decrease to zero. The first accumulator to reach a fixed
threshold determines the selected action. If none has reached the
threshold after 100 ms, we conclude that no decision has been
made.

If the correct decision is made then the value of DA is increased
to 10 × 10−8 and if the decision is wrong it is decreased to −10 ×

10−8. The network is run for 350 ms to provide a period in which
the synapses will be updated according to the information stored
in the eligibility traces. In this period the level of DA approaches 0
exponentially. No resetting takes place. A summary of the protocol
is presented as a diagram in Fig. 4

The 100 ms period in which the model is allowed to make a
decision cannot be directly compared to reaction time measure-
ments from behavioral experiments, as the time for stimulus pro-
cessing would take place prior to the activation of the stimulus
neurons. Also, we do not include any motor processing, once a de-
cision ismade this informationmust be transferred from the thala-
mus to themotor cortex. Note that the core processes of perceptual
decision making appear to be very fast. Stanford, Shankar, Mas-
soglia, Costello, and Salinas (2010) proposed a method to estimate
the core decision time independent of the time required for action
and visual processing and concluded that a choice can be made in
25–50 ms.

We ran 100 simulations, each with different initial conditions
and different random stimuli. All networks have successfully
achieved the initial and reversal learning. Only a few trials with
positive dopamine are enough to learn the initial association. The
amount of trials required to succeed varied between 50 and 55,
with a maximum of only 5 incorrect responses. Reversal learning
requires more trials. During the first period after the change,
the network keeps choosing the same action until the negative
DA sufficiently reduces the weights in the direct and hyperdirect
pathways and increases enough the weights in the indirect
pathway to produce a different decision. Once this happens the
new association is learned very fast. The amount of trials required
for the reversal learning varied between 98 and 118.

Fig. 5 shows the development of the mean weights of the con-
nections between each stimulus population and each of the ac-
tion populations connected to them over the duration of a sim-
ulation. After a small amount of trials, because of the feedback
provided by dopamine, the correct association is quickly found
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Fig. 4. The protocol performed for learning an action stimulus association task. In the case of relearning this procedure is repeated for the second mapping.
Fig. 5. Meanweight of the learnable projections from the stimulus cortex in the deterministic reversal learning experiment of one typical examplemodel. Connections from
cortex to A: Striatum D1 cells, B: STN cells, C: Striatum D2 cells, and D: Thalamus. The reversal of the mapping takes place at trial 52. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
by the weights, increasing to the correct population on the di-
rect pathway and to the suppression of alternative actions in
the hyperdirect pathway. This relationship is kept until the rules
are reversed and the action is not rewarded any more. After the
rule change at trial 52 the weights in the direct and hyperdi-
rect pathway start to decrease and when they have reached the
same level as the other associations the new correct one begins to
rise.
The connections between cortex and the D2 cells develop
differently (Fig. 5(C)). During initial learning they stay very close to
zero and only rise during the re-learning process. This is because
the learning of the first association is very fast and there are not
enough trials with negative DA to increase the weights. However,
once the rules have changed, the network will keep making the
same decisions as initially, failing often enough to activate learning
in the indirect pathway. Once the reversal rule has been learned
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Fig. 6. Mean weight of the learnable projections from the stimulus cortex in the 3 stimuli 3 action experiment. A: stimulus cortex to striatum D1 cells. B: stimulus cortex to
STN cells. C: stimulus cortex to striatum D2 cells. D: stimulus cortex to thalamus. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
the projections will slowly decrease, due to the existence of only
positive reward (see the yellow and blue line on Fig. 5(D)).

Thus, it is not necessary to maintain the strong inhibition of the
former behavior that D2 cells had learned during the task switch.
From this point on, the correct stimulus–action association can be
maintained through the combination of the direct, hyperdirect and
cortico-thalamic pathway without a further involvement of the
indirect pathway.

Fig. 5(D) shows the evolution of the direct connections between
cortex and the thalamus. These connections also learn the correct
association in the initial and re-learning phase but much more
slowly. Thus, they follow the rule discovered by the basal ganglia
pathways.

In a second part of this experimentwe incremented the number
of possible stimuli and actions from 2 to 3. This was done by
increasing the number of populations in the network created for
the previous experiment. We have run 100 simulations using the
same parameters as before. Each stimulus–action association was
learned following the protocol of Fig. 4.

The amount of trials required for learning the first stimu-
lus–action association varied between 64 and 156, increasing in
comparison to the previous experiment. Now, the amount of pos-
sible combinations is higher and the network requiresmore explo-
ration to find the appropriate association. For the stimulus–action
association after rule reversal the number of required trials varied
between 85 and 149, with a mean of 104.93 trials. Video 1 shows
the activation of the different nuclei during a late trial once the cor-
rect association has been learned.

Fig. 6 shows the mean weights of one simulation in a similar
way as it was shown in Fig. 5. As before, in the projections to
both STN and D1, only the weights corresponding to the correct
association rise until the task is solved and the rules change. Then,
the negative dopamine produced bywrong decisions reduces these
weights to the same level as the others and allows a new, different,
association to develop.

The indirect pathway shows amild suppression in the early pe-
riod of learning, but primarily activates when the task changes due
to the larger number of mistakes produced by the network during
the first group of trials after reversal. The negative dopamine level
produces a pattern which inhibits the previously correct associa-
tion enhancing the exploration of new alternatives.

Themaindifferencewith theprevious experiment (Fig. 5) is that
the weights of the projections from the cortex to the D2 MSNs do
not decrease once the exploration phase is finished. The reason for
this is that the switch to the new rule has been already learned
while the weights from cortex to striatal D2 cells being small.
This happens because each stimulus is presented less often as the
50 trials must be divided between three categories and not two.
Thus, the synapses in Fig. 6 do not reach the same levels as in
Fig. 5. Once the new rule is discovered the pattern of activity in the
thalamus changes. The cells which encode the previously correct
action are not active any more, providing no feedback signal to the
D2population to inhibit the previous action. As a result, theD2 cells
become not active any more because the weights of the cortico-
striatal connections are not high enough to produce postsynaptic
activity by themselves. Due to the lack of postsynaptic activity, the
learning rule does not reduce the weight as indicated in Fig. 6.

The cortico-thalamic connections also learn the correct associa-
tions, as can be seen in Fig. 6D. The initial, longer, exploration phase
is reflected in this plot during early trials where all associations re-
duce their weights except for the correct one.

A critical element of our model is the existence of inhibitory
lateral connections in the striatum that allow a competition
between populations. This winner-takes-all dynamic has been
widely used to explain action selection in the basal ganglia but has
been questioned by a group of more recent biological experiments
(Plenz, 2003). The experiments performed by Czubayko and Plenz
(2002) and Tunstall, Oorschot, Kean, and Wickens (2002) have
shown that the interaction between spiny neurons in the striatum
is sparse and it is dominated by unidirectional projections.
Theoretical studies (Ponzi & Wickens, 2003, 2012) have proposed
that through this sparse connectivity the activation of neurons in
the striatum become locked at different times from stimulus onset,
creating complex temporal patterns. Although this new approach
is still in discussion it may contradict the assumptions we made in
this neurocomputational model. For this reason, we implemented
a second version of the network, in which we study the effects of a
reduction in the levels of lateral inhibition.

For this second version of the model we reduced the inhibitory
weights between populations of the striatum and STN to 1 ×

10−11 nA. Also, the inhibition between thalamic populations was
removed to further weaken the competition between populations.
The resulting network was still able to learn 2 different stimu-
lus–action associations following the protocol shown in Fig. 4. This
was achieved only after reducing the amount of dopamine deliv-
ered after each trial. A slower learning was required because the
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Fig. 7. Mean weight of the learnable projections from the stimulus cortex in one example simulation of the model with low lateral inhibition. Connections from cortex to
A: Striatum D1 cells, B: STN cells, C: Striatum D2 cells, and D: Thalamus. The reversal of mapping takes place at trial 62. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
Table 5
Probability of finding reward in each side of the maze in the probabilistic learning
experiment.

Block Right path Left path

1 0.63 0.21
2 0.21 0.63
3 0.72 0.12
4 0.12 0.72

lack of inhibition increased the amount of activity in both STN and
striatum D1.

The amount of trials required to succeed slightly increasedwith
this new version of the model. To learn the first rule, the network
required between 50 and 73 trials (mean 56.5) and for the reversal
learning the network required between 94 and 251 trials (mean
123.2). This is a consequence of both the slower learning rate and
the reduction of lateral inhibition.

Fig. 7 shows the evolution of the weights in one example
simulation in a similar way as it was shown in Fig. 5. In this new
version of the model, on both STN and striatum (see Fig. 7A and B),
all the weights rise together, not as in the previous network where
only one association increased its value. This is produced because
the reduced inhibition allows the activation of both populations
of STN and striatum on every trial. Both the cortico-thalamic
connections and the indirect pathway work in a similar way as
before.

The correct behavior is only produced because the weights
corresponding to the proper association, increased faster than the
others. Although the difference between the projections is smaller
than in the previous network, it is still big enough tomake a correct
decision. This weight pattern is now achieved mainly through the
effect of the thalamic feedback signal, which increases the activity
of the selected action, activating the learning rule and enhancing
the current association (or decreasing it in an incorrect trial).

5.2. Probabilistic learning

In a second experiment we simulated a task used by Kim, Sul,
Huh, Lee, and Jung (2009) in which a rat is situated in a maze
where, after crossing a bridge, it has to choose between a left and
a right path. Food is placed at the end of each path according to a
probability which is changed every 40 trials.

The main difference between this task and the previous one
is the probabilistic nature of the reward such that it can also
be received for a wrong selection or not received although the
decision has been correct.

To simulate this task we use only a single input stimulus (that
may mimic the activation of a place cell) which indicates that a
decision between two actions, left or right must be made. At the
beginning of each trial, this population was activated for 50 ms
in a similar way as in the previous task. The output decision was
determined by the same accumulators.

Each simulation consisted of 4 blocks containing each 40 trials.
The reward probabilities in each block are given in Table 5 identical
to the ones used by Kim et al. (2009). These values assure that the
path with themaximum probability changes after every block. The
network does not know when this change will occur and it will
only adapt based on the feedback via the dopamine level, which is
positive (20 × 10−8) if food was found in this trial and negative
(−20 × 10−8) if nothing was encountered. The probabilities of
Table 5 are used only to determine the existence of reward but not
to compute the amount of dopamine, which is the same on all trials
in which food was encountered.

There are two main differences with respect to the protocol
presented in Fig. 4. First, at the beginning of the trial, there is no
input selection, as there is only one population in the first layer of
the network. On every trial the sameneurons are activated. Second,
after a decision is made, it is not necessary to determine if it was
correct or not, but, instead, the probabilities of Table 5 are used to
resolve if reward is found in this trial.

Fig. 8 shows the probability of choosing the left path on each
trial, computed from 100 models with different initial weights.
The plot shows how the network adapts on each block and slowly
discovers the new association and profits from it. On both types
of blocks the network finally learns to select most of the time the
pathway that produces food with a higher probability.

The plot of Fig. 8 is very similar to the experimental data of Kim
et al. (2009). They reported that the animals began to choose the
path associated with the highest reward probability after 10–20
trials. This behavior is replicated in our experiment where after
a block change the probability of choosing the previous path gets
below0.5 in a similar amount of trials.Moreover, similar as the rats,
themodel does not decide for themost rewarded action in all trials.
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Fig. 8. Probability of choosing the second path on each trial, computed from 100
models with different initial conditions.

5.3. GPi lesioning

Parkinson’s disease is a basal ganglia dysfunction that pro-
duces motor symptoms like difficulties of movement initiation
or tremors. It is associated with a decrease in the production of
dopamine in the substantia nigra pars compacta which affects the
normal behavior of the basal ganglia. One common surgical treat-
ment for severe cases had been the use of pallidotomy, a surgery
where small areas of the internal globus pallidus are destroyed.

It has been shown by Lozano et al. (1995) that the GPi lesion
caused by pallidotomy improves performance in well learned
everyday movements, reducing the bradykinesia, rigidity and
tremors common to parkinsonian patients. Another study showed
that the same type of lesion impairs feedback learning in a
categorization task (Sage et al., 2003). Both results together suggest
that the basal ganglia are strongly involved in learning but less in
the execution of well learned tasks.

We simulated aGPi lesion in our network by setting theweights
of the connections between the GPi and the thalamus to zero. This
removes completely the effect of the basal ganglia in action selec-
tion and delivers the control of behavior to the direct connections
between the cortex and the thalamus. We tested if these connec-
tions alone can still produce a correct selection.

All simulations were done with the same network as in the first
part of Section 5.1. In each experiment, we first let the network
learn an initial task and then introduce the lesion. Then, we ran
50 more trials and determined the number of correct answers.
From 100 networks with different random initial conditions and
stimuli, 85 gave always correct answers after lesioning, 14 gave
98% and only 1 gave 96% correct answers. These results indicate
that the cortico-thalamic connections are able to maintain an
already learned behavior.

5.4. Decision time in conflicting situations

Several experimental studies have shown that the STN may
be involved in suppressing premature responding. Baunez et al.
(2001) tested rats where they were first trained to associate each
of two possible lights with a movement into a particular direction.
The rat learned that each time it heard a tone it should choose
either left or right depending on the activated light, which was
turned on slightly before the sound. Then, in a second set of tests,
the two possible lights were both activated for a limited period of
time in which the animal should keep his nose in a central hole.
Then, one light is turned off and at the same time the tone is
produced.

In this second experiment the initial information is not provided
to the rat, so it does not know beforehand to which side it should
turnwhen the tone is heard. Now, the rat cannot, immediately after
the tone, shift to the correct side, as it was doing before, but must
wait for the stimulus to be processed. In order to make a correct
decision, the animal has to look at the light before starting to run.
To successfully learn this task the animal must suppress or delay
the initial learned association between light and the movement,
triggered by the tone.

Normal rats successfully learned the task and sufficiently
delayed their decision, but in surgically STN impaired rats, both the
probability that the animal made a decision before the tone and
that a fast and wrong decision wasmade were increased. Impaired
rats tended to quicklymove towards a random direction as soon as
the tone was heard (exactly as the animal was trained to do in the
first experiment), and could notwait enough to process the change
in the lights. Sage et al. (2003) suggest that one function of the STN
is to suppress premature responses, an effect that was removed
with the surgery and that made rats make a decision without the
complete information.

Desbonnet et al. (2004) used a similar task to show that deep
brain stimulation of the STN can reduce the amount of premature
responses in non-lesioned rats. The rat had to insert its nose in a
hole and then wait until a tone is produced. The frequency of the
tone informed the animal to which side it should move to receive
reward. A premature response was produced when rats took out
the nose from the hole and moved to one side before hearing the
tone. When electrodes were inserted in the rats brain through
which the STNwas stimulated at different frequencies, the number
of premature response decayed linearly with an increase in the
frequency of the stimulation As in the previous case, the authors
suggest that one function of STN is to delay the response, and that
this effect is increased by the stimulation

Both results suggest that the function of the hyperdirect path-
way is tomodulate the response and delay the decision. This seems
to be against the result of our previous numerical experiments
wherewe showed that the STN plays an important role in selecting
the correct action. To clarify the difference between the two per-
spectives we defined a numerical experiment where wemeasured
the reaction time under a different experimental condition.

To recreate the conditions of the experiments in Baunez et al.
(2001), we took the same network as in Section 5.1 and first used
the same protocol as in Fig. 4 to learn an initial stimulus–action
association. This is equivalent to the initial training done by Baunez
et al. (2001) where the rats learned to move in a specific direction
with each light. Then, we deactivated the learning rules, so that in
each of the following trials the connections were kept fixed and
the stimulus–response association was not forgotten. After this,
we ran 50 new trials but changed the way in which we presented
the stimuli: initially we activated both populations of the stimulus
cortex instead of just one. This is equivalent to the second part of
the task of Baunez et al. (2001) where the two lights are turned on
before the tone. A summary of the procedure for this second group
of trials (after the initial learning) is shown in Fig. 9.

Fig. 10 compares the reaction time when one stimulus is pre-
sented and the conflicting case, when both stimuli are presented.
When both stimulus populations are activated, all neurons in the
STN start emitting action potentials. Then, the excitatory projec-
tions to the GPi enhance the activity of the complete area, increas-
ing thereafter the inhibition over the thalamus. The accumulators
then take more time to reach the threshold because of the reduced
amount of spikes they are receiving.



J. Baladron, F.H. Hamker / Neural Networks 67 (2015) 1–13 11
Fig. 9. Simulation protocol for measure the capacity of STN to delay the decision in a conflict situation. This process is applied after an initial association is learned using
the protocol of Fig. 4 and the learning is removed (the weights are fixed).
Fig. 10. Decision time for the experiment where two conflicting stimuli are
presented. The decision time for the double stimulus is a mean over 50 trials and
50 simulations. The decision time for the single stimulus is the mean of the last 10
trials before the initial association is learned of the same 50 simulations.

6. Discussion

Our spiking neural network proposes new basal ganglia func-
tionalities due to the newly introduced cortico-thalamic pathway.
While learning in the direct pathway is stillmost essential, learning
several stimulus response association tasks is explained by the co-
operation between the different pathways as demonstrated in sev-
eral behavioral experiments involving learning. The first one is the
effect of pallidotomy in Parkinsonian patients which after surgery
are able tomaintain previous activitieswhile being impaired learn-
ing new ones. This is achieved in the model by the effect of direct
cortico thalamic connections which slowly learn the associations
acquired by the BG.

Also, the network is capable of explaining a set of experiments
where itwas shown that the STNdelays the response until a correct
decision can be made. This effect is produced in our hyperdirect
pathway by a complete activation of the STN, which indirectly
increases the inhibition in the thalamus, which then holds the
decision.
While several pathway functions have been already proposed
in our previous rate coded model (Schroll et al., 2014), learning in
the spiking neural network depends on STDP and is therefore very
different than learning in the rate model.

Themain difference between our network and previous spiking
models of the basal ganglia is the function of the indirect pathway.
Based on the observation of Shen et al. (2008), the learning rule
we have used differentiates the effect of dopamine on cells with
different receptor types. In neurons expressing type-2 receptor
only reduced levels of dopamine produce long term potentiation.
This, together with a strong thalamic feedback, activates the
indirect pathway only when there are several consecutive wrong
decisions. Thus, our model proposes that the indirect pathway
learns to inhibit a repetitive mistake or a previously correct
action that is still encoded in the cortico-thalamic pathway. This
new function of the indirect pathway can be seen as a natural
consequence of the additional cortico-thalamic pathway. In the
model of Chersi et al. (2013) the main objective of the indirect
pathway is to control the activity of the direct pathway by avoiding
oscillations and keeping activity at low, normal, levels. A similar
approach is used in the model of Stewart et al. (2012) which is
a spiking version of the model of Gurney et al. (2001) where the
indirect pathway is assumed to just regulate the activity of the GPi.

The hyperdirect pathway in our network also has a different
function than in the model of Chersi et al. (2013). In their network
the connections to the STN are not plastic and the objective
of this area is also to keep the GPi activation within working
limits. A similar effect is produced by the STN in the model of
Stewart et al. (2012) where the projections do not depend on
the channel, i.e., each population of this brain area excites all
actions in the GPi. This provides the output nucleus with a global
excitation which is proportional to the total activity afferent to
the basal ganglia. Instead, in our network, this pathway learns to
introduce a reasonable level of surround inhibition by exciting the
incorrect actions. The final selection is then performed through a
cooperation of both the direct and hyperdirect pathways which is
mediated via common feedback signals sent from the thalamus.

Because of the reasons described above, our model provides a
different theoretical framework to understand the basal ganglia
computations, based on novel pathway functionalities. In our
network all pathways are required for action selection and no
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external control of activity is required. Behavioral decisions do not
only depend on the direct pathway, as in previous similar models,
but on a real combination of the output of all areas.

The effect of STN is critical in the probabilistic learning experi-
ment (Section 5.2). This task is difficult for themodel because of the
fast change between blocks and of the stochastic nature of the re-
ward. The inhibition provided by the hyperdirect pathway reduces
the sensibility of the model to the fluctuations created by unre-
warded correct or rewarded incorrect trials, hence stabilizing the
network. In fact, in the model, removal of STN (ablation), produces
a complete random behavior (probability of 0.5) after a few trials.

The inhibition of incorrect actions provided by STN also allows
the model to solve a stimulus–action association task even when
local competition between populations is almost completely re-
moved (see Fig. 7). In this case, the incorrect striatal population is
not always silent and the network requires the hyperdirect path-
way to reduce the effect of its activity in the GPi. Additional simu-
lations showed that the network with reduced lateral inhibition is
not capable of learning when STN is removed.

The special connectivity we have chosen for the hyperdirect
pathway implements the same functionality that was proposed in
Schroll et al. (2014), and obtained through Hebbian learning. This
topography disagrees with previous theoretical studies in which
the STN was proposed to send a global stop signal, increasing the
overall levels of activity in the GPi. In both the model of Frank
(2006) and Gurney et al. (2001) this behavior is implemented by
a full connection between the STN and GPi. Instead, in our model,
each population does not excite all actions but only the alternatives
from the one it encodes. If the missing connections were added
to the network, the hyperdirect pathway would loose its ability to
produce the surround inhibition required to impede the execution
of alternatives. Instead, due to the learning rule of the cortico–STN
synapses, with enough training, the model would just learn to
inhibit everything and present no response.

The new function we propose for the STN does not impede
its role in action suppression. We have shown in Section 5.4
that a strong activation of STN may increase the reaction time. A
global stop signal could be produced by a higher cognitive process
and not necessarily at the level of individual decisions. In fact,
it has been shown that both the frontal cortex and the STN are
strongly involved in stopping an already initiated response (Aron &
Poldrack, 2006) and that the activation of the STN is higher in stop
trials than go trials (Li, Yan, Sinha, & Lee, 2008).

Our network also agrees with the abstract model proposed by
Mink (2003), in which a center–surround inhibition is used to
select actions. However, in themodel ofMink (2003) the activation
of both the indirect and direct pathway is required for action
selection, suggesting that the weights to both D1 and D2 cells
should increase with reward. In our model the surround inhibition
is provided by the hyperdirect pathway, through its direct cortical
synapses, and not through the indirect pathway, for which we
proposed a new function. For this reason, both D1 and STN cells
increase their weights with reward and not D2 neurons.

Although we included a realistic learning rule of direct and
indirect pathway inspired by the observations by Shen et al. (2008),
our model is still much simplified. In our model synaptic plasticity
only occurs when dopamine is above or below baseline. However,
the data indicates that dopamine is just one player among others
such as A2a and NMDA receptors reported by Shen et al. (2008)
and a deviation of dopamine from baseline is not essential for
synaptic plasticity to occur. However, as the in vivo baseline level of
dopamine is not known the exact degree of LTP in D2MSNs cannot
presently be specified.

A further simplification is that the neuron model and param-
eters are the same in each layer. Experiments have shown dis-
tinctive behavior of cells in different areas of the basal ganglia.
Moreover, the connections between the STN and the GPe were not
included in our model. This reduction has also been made in other
models (O’Reilly & Frank, 2006; Schroll et al., 2014; Stocco, Lebiere,
& Anderson, 2010) mainly to keep the pathways segregated and
to be able to analyze their function and effect on the output sep-
arately. We hypothesize that excitatory connections from the STN
to the GPe could be useful to increase the overall activity of this
last area and enhance the selection done by the inhibitory connec-
tions from the striatum whereas the projections from GPe to STN
could beuseful to improve competition amongpopulations. The re-
lationship between this two nuclei has been studied as a cause of
the abnormal oscillations associated with Parkinson’s disease (Ku-
mar, Cardanobile, Rotter, & Aertsen, 2011; Rubin & Terman, 2004)
but its function during learning is unknown.

However the present level of abstraction is suitable as the
model is still able to successfully learn a set of cognitive tasks and
to explain some biological phenomena. This is due to our new ap-
proach towards the function of the different cortico-thalamic path-
ways,which develops through the introduction of realistic learning
rules. Through a set of numerical experiments we have shown that
this new mechanism for action selection is a powerful tool that in
the future could even be used to inspire a new generation of brain
inspired cognitive agents or neuro-robotics. Also, our network is
well suited for current neuromorphic hardware (see Schemmel
et al., 2010 for an example system), a combination that should be
exploited in the future for the development of large scale simula-
tions.

Acknowledgments

This work has been supported by the German Research Foun-
dation grant DFG HA2630/8-1 on the German-Japanese Collab-
oration Computational Neuroscience and the German Research
Foundation grant DFG HA2630/7-2 (KFO 247).

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.neunet.2015.03.002.

References

Aron, A. R., & Poldrack, R. A. (2006). Cortical and subcortical contributions to
stop signal response inhibition: role of the subthalamic nucleus. The Journal of
Neuroscience, 26, 2424–2433.

Baunez, C., Humby, T., Eagle, D. M., Ryan, L. J., Dunnett, S. B., & Robbins, T. W.
(2001). Effects of STN lesions on simple vs choice reaction time tasks in the rat:
preserved motor readiness, but impaired response selection. European Journal
of Neuroscience, 13, 1609–1616.

Braak, H., & Del Tredici, K. (2008). Cortico-basal ganglia-cortical circuitry in
parkinson’s disease reconsidered. Experimental Neurology, 212, 226–229.

Brette, R., & Gerstner, W. (2005). Adaptive exponential integrate-and-fire model
as an effective description of neuronal activity. Journal of Neurophysiology, 94,
3637–3642.

Calabresi, P., Picconi, B., Tozzi, A., & Filippo, M. D. (2007). Dopamine-mediated
regulation of corticostriatal synaptic plasticity. Trends in Neuroscience, 30,
211–219.

Chersi, F., Mirolli, M., Pezzulo, G., & Baldassarre, G. (2013). A spiking neuron
model of the cortico-basal ganglia circuits for goal-directed and habitual action
learning. Neural Networks, 41, 212–224.

Czubayko, U., & Plenz, D. (2002). Fast synaptic transmission between striatal spiny
projection neurons.. Proceedings of the National Academy of Sciences of the United
States of America, 99, 15764–15769.

Desbonnet, L., Temel, Y., Visser-Vandewalle, V., Blokland, A., Hornikx, V., &
Steinbusch, H.W. (2004). Premature responding following bilateral stimulation
of the rat subthalamic nucleus is amplitude and frequency dependent. Brain
Research, 1008, 198–204.

Frank, M. J. (2005). Dynamic dopamine modulation in the basal ganglia:
A neurocomputational account of cognitive deficits in medicated and
nonmedicated parkinsonism. Journal of Cognitive Neuroscience, 17, 51–72.

Frank, M. J. (2006). Hold your horses: a dynamic computational role for the
subthalamic nucleus in decision making. Neural Networks, 19, 1120–1136.

http://dx.doi.org/10.1016/j.neunet.2015.03.002
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref1
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref2
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref3
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref4
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref5
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref6
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref7
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref8
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref9
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref10


J. Baladron, F.H. Hamker / Neural Networks 67 (2015) 1–13 13
Frémaux, N., Sprekeler, H., & Gerstner, W. (2010). Functional requirements
for reward-modulated spike-timing-dependent plasticity. The Journal of
Neuroscience, 30, 13326–23337.

Frémaux, N., Sprekeler, H., & Gerstner, W. (2013). Reinforcement learning
using a continuous time actor-critic framework with spiking neurons. PLOS
Computational Biology,.

Goodman, D. F.M. (2009). The brian simulator. Frontiers in Neuroscience, 3, 192–197.
Grillner, S., Hellgren, J., Menard, A., Saitoh, K., & Wikstrom, M. (2005). Mechanisms

for selection of basic motor programs roles for the striatum and pallidum.
Trends in Neurosciences, 28, 364–370.

Gurney, K., Prescott, T. J., & Redgrave, P. (2001). A computational model of action
selection in the basal ganglia. i. a new functional anatomy. Biological cybernetics,
84, 401–410.

Haber, S. N. (2003). The primate basal ganglia: parallel and integrative networks.
Journal of Chemical Neuroanatomy, 26, 317–330.

Humphries, M. D., Stewart, R. D., & Gurney, K. N. (2006). A physiologically plausible
model of action selection and oscillatory activity in the basal ganglia. Journal of
Neuroscience, 26, 12921–12942.

Izhikevich, E. M. (2007). Solving the distal reward problem through linkage of STDP
and dopamine signaling. Cerebral Cortex, 17, 2443–2452.

Kim, H., Sul, J. H., Huh, N., Lee, D., & Jung, M.W. (2009). Role of striatum in updating
values of chosen actions. Journal of Neuroscience, 29, 14701–14712.

Kumar, A., Cardanobile, S., Rotter, S., & Aertsen, A. (2011). The role of inhibition in
generating and controlling parkinson’s disease oscillations in the basal ganglia.
Frontiers in Systems Neuroscience, 5.

Leh, S. E., Ptito, A., Chakravarty, M. M., & Strafella, A. P. (2007). Fronto-striatal
connections in the human brain: A probabilistic diffusion tractography study.
Neuroscience Letters, 419, 113–118.

Li, C.-S. R., Yan, P., Sinha, R., & Lee, T.-W. (2008). Subcortical processes of motor
response inhibition during a stop signal task. NeuroImage, 41, 1352–1363.

Lozano, A. M., Lang, A. E., Galvez-Jimenez, N., Miyasaki, J., Duff, J., Hutchinson, W.
D., & Dostrovsky, J. O. (1995). Effect of gpi pallidotomy on motor function in
parkinsons disease. The Lancet , 346, 1383–1387.

Markram, H., Gerstner, W., & Sjöström, P. J. (2011). A history of spike-timing-
dependent plasticity. Frontiers in Synaptic Neuroscience, 3.

Mink, J. W. (2003). The basal ganglia and involuntary movements: impaired
inhibition of competing motor patterns. Neurological Review, 1365–1368.

Morita, K., Morishima, M., Sakai, K., & Kawaguchi, Y. (2012). Reinforcement learn-
ing: computing the temporal difference of values via distinct corticostriatal
pathways. Trends in Neuroscience, 35, 457–467.

Morrison, A., Diesmann, M., & Gerstner, W. (2008). Phenomenological models of
synaptic plasticity based on spike timing. Biological Cybernetics, 98, 459–478.

Nambu, A., Tokuno, H., & Takada, M. (2002). Functional significance of the
cortico-subthalamo-pallidal ‘hyperdirect’ pathway. Neuroscience Research, 43,
111–117.

Naud, R., Marcille, N., Clopath, C., & Gerstner, W. (2008). Firing patterns in
the adaptive exponential integrate-and-fire model. Biological Cybernetics, 99,
335–347.

Nisenbaum, E. S., & Wilson, C. J. (1995). Potassium currents responsible for inward
and outward rectification in rat neostriatal spiny projection neurons. The
Journal of Neuroscience, 15, 4449–4463.

O’Reilly, R. C., & Frank, M. J. (2006). Making working memory work: a
computational model of learning in the prefrontal cortex and basal ganglia.
Neural Computation, 18, 283–328.

Packard,M. G., & Knowlton, B. J. (2002). Learning andmemory functions of the basal
ganglia. Annual Review of Neuroscience, 25, 563–593.

Plenz, D. (2003). When inhibition goes incognito: feedback interaction between
spiny projection neurons in striatal function. Trends in Neuroscience, 26,
436–443.
Ponzi, A., & Wickens, J. R. (2003). Optimal balance of the striatal medium spiny
neuron network. PLOS Computational Biology, 9.

Ponzi, A., &Wickens, J. (2012). Input dependent cell assembly dynamics in a model
of the striatalmedium spiny neuron network.. Frontiers in SystemsNeuroscience,
6.

Potjans, W., Morrison, A., & Diesmann, M. (2009). A spiking neural network model
of an actor-critic learning agent. Neural Computation, 21, 301–339.

Rubin, J. E., & Terman, D. (2004). High frequency stimulation of the subthalamic
nucleus eliminates pathological thalamic rhythmicity in a computational
model. Journal of Computational Neuroscience, 16, 211–235.

Sage, J. R., Anagnostaras, S. G., Mitchell, S., Bronstein, J. M., Salles, A. D., Masterman,
D., & Knowlton, B. J. (2003). Analysis of probabilistic classification learning
in patients with parkinson’s disease before and after pallidotomy surgery.
Learning and Memory, 10, 226–236.

Schemmel, J., Brüderle, D., Grübl, A., Hock, M., Meier, K., & Millner, S. (2010). A
wafer-scale neuromorphic hardware system for large-scale neural modeling.
In Proceedings of the 2010 IEEE international symposium on circuits and systems
(pp. 1947–1950).

Schroll, H., & Hamker, F. H. (2013). Computationalmodels of basal-ganglia pathway
functions: focus on functional neuroanatomy. Frontiers in Systems Neuroscience,
7.

Schroll, H., Vitay, J., & Hamker, F. H. (2012). Working memory and response
selection: a computational account of interactions among cortico-basalganglio-
thalamic loops. Neural Networks, 26, 59–74.

Schroll, H., Vitay, J., & Hamker, F. H. (2014). Dysfunctional and compensatory
synaptic plasticity in parkinsons disease. European Journal of Neuroscience, 39,
688–702.

Schultz, W. (2007). Behavioral dopamine signals. Trends in Neurosciences, 30,
203–210.

Schultz, W. (2010). Dopamine signals for reward value and risk: basic and recent
data. Behavioral Brain Function, 6.

Shen, W., Flajolet, M., Greengard, P., & Surmeier, D. J. (2008). Dichotomous
dopaminergic control of striatal synaptic plasticity. Science, 321, 848–851.

Smith, Y., Raju, D. V., Pare, J.-F., & Sidibe, M. (2004). The thalamostriatal system: a
highly specific network of the basal ganglia circuitry. Trends in Neurosciences,
27, 520–527.

Stanford, T. R., Shankar, S., Massoglia, D. P., Costello, M. G., & Salinas, E. (2010).
Perceptual decision making in less than 30 ms. Nature Neuroscience, 13,
379–386.

Stewart, T. C., Bekolay, T., & Eliasmith, C. (2012). Learning to select actions with
spiking neurons in the basal ganglia. Frontiers in Neuroscience, 6.

Stocco, A., Lebiere, C., & Anderson, J. R. (2010). Conditional routing of information
to the cortex: a model of the basal ganglias role in cognitive coordination..
Psychological Review, 117, 541–574.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: an introduction. MIT Press.
Temel, Y., Blokland, A., Steinbusch, H. W., & Visser-Vandewalle, V. (2005). The

functional role of the subthalamic nucleus in cognitive and limbic circuits.
Progress in Neurobiology, 76, 393–413.

Tepper, J. M., & Bolam, J. P. (2004). Functional diversity and specificity of neostriatal
interneurons. Current Opinion in Neurobiology, 14, 685–692.

Tunstall, M. J., Oorschot, D. E., Kean, A., & Wickens, J. R. (2002). Inhibitory
interactions between spiny projection neurons in the rat striatum. Journal of
Neurophysiology, 88, 1263–1269.

Wickens, J. R., Reynolds, J. N., & Hyland, B. I. (2003). Neural mechanisms of reward-
related motor learning. Current Opinion in Neurobiology, 13, 685–690.

Wiesendanger, E., Clarke, S., Kraftsik, R., & Tardif, E. (2004). Topography of cortico-
striatal connections in man: anatomical evidence for parallel organization.
European Journal of Neuroscience, 20, 1915–1922.

http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref11
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref12
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref13
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref14
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref15
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref16
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref17
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref18
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref19
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref20
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref21
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref22
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref23
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref24
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref25
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref26
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref27
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref28
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref29
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref30
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref31
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref32
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref33
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref34
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref35
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref36
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref37
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref38
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref40
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref41
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref42
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref43
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref44
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref45
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref46
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref47
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref48
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref49
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref50
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref51
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref52
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref53
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref54
http://refhub.elsevier.com/S0893-6080(15)00049-0/sbref55

	A spiking neural network based on the basal ganglia functional anatomy
	Introduction
	Basal ganglia anatomy
	Previous spiking models of the basal ganglia
	Network description
	Cortico thalamic pathways
	Neurons and synapses
	Learning rule

	Numerical experiments
	Learning and relearning of stimulus--response associations
	Probabilistic learning
	GPi lesioning
	Decision time in conflicting situations

	Discussion
	Acknowledgments
	Supplementary data
	References


