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Computational models of visual attention have replicated a large number of data from visual attention
experiments. However, typically each computational model has been shown to account for only a few
data sets. We developed a novel model of attention, particularly focused on explaining single cell
recordings in multiple brain areas, to better understand the underlying computational circuits of
attention involved in spatial- and feature-based biased competition, modulation of the contrast response
function, modulation of the neuronal tuning curve, and modulation of surround suppression. In contrast
to previous models, we use a two layer structure inspired by the layered cortical architecture which
implements amplification, divisive normalization and suppression as well as spatial pooling.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Attention is one of the fields in vision research that has been
strongly influenced by models. While early models have been
rather abstract, over the last 15 years, inspired by data from
neural recordings, the neural correlates of attention have been
increasingly addressed by neuro-computational models. Although
attention operates across multiple brain areas and may help to bind
stimulus properties processed in different parts of the brain, one
important line of research in visual attention aims at understanding
the local circuits of neural interactions. A very influential milestone
has been the discovery of interactions between representations of
stimuli that are placed within a common receptive field – coined
as biased competition (Desimone, 1998; Desimone & Duncan,
1995).

According to this concept, attention should not be understood
as a simple mechanism for gating or an enhancement of neural
responses but rather as a competition for neural representation
which is typically strong if neurons in a single area have spatially
overlapping receptive fields. Thus, if attention is directed away,
the neural response to a single stimulus is typically larger than
the response to two different stimuli, which suggests that the total
stimulus energy is not additive. Attention towards a particular
location in space or towards a stimulus feature implements a
top-down signal which changes the properties of local interactive
circuits almost as if the attended stimulus would be presented
alone, i.e. the response of neurons tuned to the attended stimulus
is amplified and the response of neurons tuned to the not attended
one is reduced. Neural recordings in different brain areas have sup-
ported this basic concept (Chelazzi et al., 1998, 2001; Desimone &
Duncan, 1995; Fallah, Stoner, & Reynolds, 2007; Motter, 1993; Lee
& Maunsell, 2009, 2010a, 2010b; Reynolds, Chelazzi, & Desimone,
1999; Treue & Trujillo, 1999; Zhou & Desimone, 2011). Other
observations of the neural effect of attention revealed multiplica-
tive scaling (McAdams & Maunsell, 1999; David et al., 2008;
Motter, 1993) or sharpening (David et al., 2008; Martinez-Trujillo
& Treue, 2004) effects on the neural tuning curve. Moreover, sev-
eral studies observed that attention typically leads to a shift in
the contrast response function (Li et al., 2008; Martínez-Trujillo
& Treue, 2002; Reynolds, Pasternak, & Desimone, 2000) which sug-
gests that well visible stimuli are not further boosted. A large num-
ber of neuro-computational models have been developed and
demonstrated to account for parts of these data (Ardid, Wang, &
Compte, 2007; Boynton, 2009; Buia & Tiesinga, 2008; Compte &
Wang, 2006; Hamker, 2004, 2005b; Hugues & José, 2010; Lee &
Maunsell, 2009; Ni, Ray, & Maunsell, 2012; Reynolds & Heeger,
2009; Spratling, 2008; Spratling & Johnson, 2004; Wagatsuma
et al., 2013). Basically, each of these models includes lateral or
feedforward inhibition and some form of attentive gain increase.
Further experimental studies shed more light on the nature of
stimulus interactions, e.g. by probing the neural responses to two
identical stimuli (Lee & Maunsell, 2009, 2010a) or led to conflicting
observations of whether attention shifts or scales the contrast
response function (Martínez-Trujillo & Treue, 2002), which
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cumulated into normalization models of attention (Lee & Maunsell,
2009; Reynolds & Heeger, 2009). Although these models are not
completely different than their predecessors, they propose two
essential components that determine the final population
response, an attentive drive that scales the response multiplica-
tively and a suppressive drive that operates after the attentive
drive within a local region and acts divisively on the neural
response. The combination of these two components allowed to
account for modeling competitive interactions of two identical
stimuli (Lee & Maunsell, 2009, 2010a) and to solve the apparent
conflict whether attention shifts or scales the contrast response
function (Reynolds & Heeger, 2009).

Although Reynolds and Heeger (2009) demonstrated that their
model can account for several data, existing models of attention
have so far shown to account only for a very selective set of data.
However, a particular strength of computational models is their
ability to reveal a few potential underlying computational mecha-
nisms that may account for a large variety of data. Thus, from the
computational point of view it is important to find out how much
data can be explained by a small set of computational mechanisms.
The mechanisms of attention can be explained by different levels
of implementation detail, e.g. detailed biophysical neuron models
and their microcircuits, abstract spiking neurons, dynamic rate
coded populations or more abstract mathematical descriptions.
With respect to the available data we here developed a cortical
microcircuit of attention using dynamic rate coded neural popula-
tions inspired by properties of the cortical microcircuit (Douglas &
Martin, 2004). This leaves the exact biophysical implementation
unanswered but allows to reveal the main computational mecha-
nisms that may similarly operate in multiple brain areas regardless
of their exact implementation. Although we mainly address data
from neuronal recordings, the chosen level of implementation
detail allows to discuss and better understand the influence of
attention in psychophysical experiments, such as the effect of spa-
tial and feature-based attention, target selection, and distractor
inhibition.
2. Methods

The mechanistic cortical microcircuit of attention is an attempt
to account for a very large dataset and thus to reveal the essential
(a)

Fig. 1. (a) Proposed mechanistic cortical microcircuit of attention, consisting of a modula
to layer 2/3 via an amplifying signal originating from a higher cortical area, e.g. PFC or IT.
cortices encoding spatial information, e.g. FEF or LIP. (b) Connectivity and influences cen
feedforward excitation (E), feature-based amplification (AFEAT�L4) from layer 2/3, spatial a
associated interneuron (S). The interneuron receives several sources of suppression: the
(SFEAT), and all similar features in the surround in layer 2/3 (SSUR).
aspects of attention common in multiple brain areas. We identify
three core mechanisms necessary for this approach: amplification,
normalization and suppression. A set of Matlab routines imple-
menting the model can be downloaded at: www.tu-chemnitz.de/
cs/KI/supplement/BeuthHamker2015/.
2.1. Model overview and structure

The model (Fig. 1a) is structured in a modulating (cortical layer
4) and in a pool (cortical layer 2/3) layer. A neuron in this model
abstracts from a biophysical description of a cell and rather refers
to a population of interconnected real cells. Similarly, gain amplifi-
cations are described by multiplicative operations. This level of
description is similar to proposed concepts of normalization
(Carandini & Heeger, 2012) and the normalization model of atten-
tion (Reynolds & Heeger, 2009), although we will suggest in more
detail how abstract concepts of normalization and suppression
may be implemented in a simple cortical microcircuit of attention.
A neuron in each layer encodes a certain feature at a particular
(one-dimensional) location, so that a layer of neurons is repre-
sented by a two dimensional matrix. The mechanistic cortical
microcircuit of attention has three inputs: layer 4 receives input
from lower visual areas, from areas that encode space such as the
frontal eye field (FEF) and the lateral intraparietal cortex (LIP),
and layer 2/3 receives a signal from a feature selective higher corti-
cal area. The model mainly refers to physiological properties of area
V4 and MT. However, as attention is a canonical property of the
visual cortex (Saenz, Buracas, & Boynton, 2002), the model is not
restricted to these areas and may account also for other visual areas.

The tuning curve of a neuron has to be determined by the user
to match the particular characteristics of a brain area as tuning
curves largely differ across visual areas. Layer 4 is denoted as mod-
ulating layer as its neuronal responses are calculated by amplifying
or suppressing the excitation given from the input. Neurons in
layer 4 converge onto neurons in layer 2/3 which spatially pool
over them in a broad area (a similar idea as in Hamker & Zirnsak,
2006; Compte & Wang, 2006). Therefore layer 2/3 neurons have
larger receptive fields than layer 4 neurons. The receptive fields
in layer 2/3 are overlapping by a user defined amount (standard
is 50% to each side), so a stimulus will fall within several receptive
fields. Dependent on the amount of overlap and the receptive field
(b)

tory layer 4 and a spatial pooling layer 2/3. Feature-based attention can be deployed
Spatial attention can be deployed to layer 4 via an amplifying signal originating from
tered on a single cell in layer 4, indicated by the electrode symbol. The cell receives
mplification (ASP) from spatial cortices such as FEF or LIP, and suppression from an
feedforward excitation of its associated neuron (E), dissimilar features in layer 2/3
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sizes, layer 2/3 contains typically less cells in the spatial dimension
than layer 4. In all experiments, we report the responses of cells in
layer 2/3 (also indicated by the electrode symbol in each figure).

2.2. Divisive normalization

The neural responses in the model largely follow concepts of
divisive normalization (Carandini & Heeger, 2012; Reynolds &
Heeger, 2009). As a concretization of the original concept used by
Reynolds and Heeger (2009), we propose an implementation via
interneurons. In this implementation, each pyramidal neuron
receives via an inhibitory connection a normalization signal from
an associated interneuron (Fig. 1b, S), which normalizes the
response of the pyramidal neuron. The interneuron receives sup-

pressive influences (SFEAT; SSUR) via excitatory connections plus
the feedforward excitation of the associated pyramidal neuron.
This is supported by the data from Mitchell, Sundberg, and
Reynolds (2007), who found that attention modulates interneurons
twice as strongly as pyramidal cells, and by the anatomical meta-
analysis from Potjans and Diesmann (2012) reporting the required
inhibitory, intra-layer connections from an interneuron to a pyra-
midal neuron, and the necessary excitatory connections from an
pyramidal neuron to an interneuron or another pyramidial neuron.

2.3. Modeling of attention via amplification

Attention is thought to emerge from recurrent connectivity
within the visual and prefrontal cortex (Hamker, 2005b). This com-
putational framework proposes that neurons receive feedback
from higher cortical areas which acts as an amplifying signal. To
distinguish between mechanism and result, we will use ‘‘atten-
tion’’ to describe the psychological effect and ‘‘amplification’’ to
refer to a particular mechanism at the single neuron.

We assume that spatial attention implies a spatial amplification
signal from spatial maps in the brain, such as the FEF (Hamker,
2005b) or the LIP (Steenrod, Phillips, & Goldberg, 2013), denoted

in the model as ASP (Fig. 1b). In the model, this signal amplifies
the response of neurons in layer 4 (similar as in Hamker, 2005b;
Spratling, 2008) as inspired by anatomical observations, e.g. layer
4 of area V4 receives input from the FEF (Barone et al., 2000) and
LIP (Ninomiya et al., 2012). By this mechanism, spatial amplifica-
tion can be directed to one or multiple spatial locations within
the receptive field as needed in experiments with spatial attention.

We presume that feature-based attention implies a feature-
specific amplification of neuronal responses in the visual cortex,
typically invariant to spatial location. This amplification can occur
via an amplifying signal originating from prefrontal cortex (PFC)
which is then projected backwards through the visual cortex.
This assumption is consistent with the attentional control of the
visual cortex as reviewed by Kastner and Ungerleider (2000) for
feature-based and by Miller and Buschman (2013) for spatial and
feature-based attention. Therefore, we model a feature-based
amplification signal originating from a higher visual area, e.g. PFC
or IT, which is projected to V4 or MT. This signal is firstly projected

to layer 2/3 via excitatory connections (Fig. 1b, signal AFEAT�L2) and

then afterwards sent to layer 4 (Fig. 1b, signal AFEAT�L4). We assume
the projection from layer 2/3 to layer 4 occurs indirectly via the
cortical excitatory pathways of layer 2/3 to layer 5 and then to
layer 4. Both projections were found in the physiological connec-
tivity data of the microcircuit (Douglas & Martin, 2004) which
appears to generalize across areas in the visual cortex. In layer 4,
the effects of both spatial and feature-based amplification signals
are summed up additively because this behavior was observed in
several areas in the visual cortex (Treue & Trujillo, 1999: area
MT; Saenz et al., 2002: areas V1, V2, V3A, V4 and MT+).
2.4. Modeling of suppression

Suppression from other neurons (Fig. 1b, signals SFEAT and SSUR)
is modeled via connections from layer 2/3 to layer 4. To our knowl-
edge, it is not known in detail which intra-area connections are
responsible for transporting suppressive signals, however layer 2/
3 is beneficial as starting point because feedback connections from
higher areas end in layer 2/3 and feedback seems to play an essen-
tial role in suppression (Angelucci et al., 2002; Bair, Cavanaugh, &
Movshon, 2003; Carandini & Heeger, 2012; Gilbert, 1998; Hunt,
Bosking, & Goodhill, 2011). Layer 4 is favorable as end point as
its neurons need to receive suppression to balance out the ampli-
fication. To keep the model simple, suppression is implemented
by two separate signals, each representing a particular experimen-
tal condition: feature-based suppression within the classical recep-

tive field (SFEAT), and surround suppression from outside the
receptive field (SSUR). This facilitates the usability of the model as
the amount of suppression can be fitted to a particular experiment
without influencing the other condition.
2.5. Mathematical description of the model

2.5.1. Notation
Firing rates of mean-rate neurons are denoted by r: rIn (Input),

rL4 (layer 4), rL2 (layer 2/3), rPFC (higher cortical area like PFC or
IT) and rFEF (spatial areas like FEF or LIP). The rates rIn; rPFC and
rFEF have to be set by the user to model a particular experimental
condition. Big letters denote influences towards a neuron: E
denotes the excitatory influence, A the amplifying one and S the
suppressive one. Each neuron is addressed within a layer by the
spatial index x and the feature index l. The layer dimensions are
denoted by X and L respectively. The feature dimension is modeled
circular, hence the features l ¼ 1 and l ¼ L encode adjacent fea-
tures. As the model is a recurrent system, we simulate it via ordi-
nary differential equations over time, denoted by t. All firing rates
were recorded in a steady state condition after the system has con-
verged, which typically occurs after 100 ms.
2.5.2. Influences towards a neuron and connectivity
A neuron is influenced via several connections which are either

designed as one-to-one connections or as complex connectivity
patterns. A one-to-one connection connects a single presynaptic
cell with a single postsynaptic cell. Both cells encode the same
location and feature. Influences via one-to-one connections:

Excitation EIn�L4 (input ? layer 4): Excitatory connection from
input layer to layer 4 with the connection strength v In�L4.

Amplification ASP (FEF/LIP ? layer 4): Amplifying connection
from a spatial cortical area, e.g. FEF or LIP, to layer 4 with the
strength vFEF�L4.

Amplification AFEAT�L2 (higher cortical area ? layer 2): Amplifying
connection from a higher cortical area, like PFC or IT, to layer 2/
3 with the strength vPFC�L2.

A complex connectivity pattern connects multiple presynaptic
cells to a single postsynaptic cell, thus multiple presynaptic fea-
tures or locations are integrated to a single postsynaptic feature
and location. We modeled such an influence by an equation like
Epost ¼ v �

P
preðwpost;pre � rpreÞ, using a global scaling factor v and a

connectivity matrix wpost;pre 2 ½0;1�. This modeling via two separate
variables was chosen as the experimental data can be well fitted by
adapting only the scaling factor v and keeping the connectivity pat-
tern w unchanged. Influences via complex connectivity patterns:
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Excitation EL4�L2 (layer 4 ? layer 2/3): The connectivity pattern
wL4�L2

x;x0 for each postsynaptic cell (x; l) is a Gaussian over the spa-
tial dimension of the receptive field (x0) with constant feature
(l). The parameters of the Gaussian are chosen so that the
Gaussian is centered and that it has a value of about 0:5 at
the borders of the receptive field: l ¼ 0; r ¼ 0:4 � s, whereby
s ¼ 5 denotes the spatial extend of the field. Connections exist
only inside the receptive field, except the experiment of
Cavanaugh, Bair, and Movshon (2002a) which needs a broader
connectivity pattern (2 s). The scaling factor of the excitation
is fixed to 1.

Amplification AFEAT�L4 (layer 2/3 ? layer 4): The connectivity pat-
tern wL2�L4

x;x0 for each postsynaptic cell (x; l) is a Gaussian over the
spatial dimension of the receptive field (x0) with constant fea-
ture (l). It is reciprocal modeled to wL4�L2. Scaling factor: vL2�L4.
Feature-based suppression SFEAT (layer 2/3 ? layer 4): The connec-
tivity pattern wFEAT

dl for each postsynaptic cell (x; l) is a linear
function (Eq. (1)) over the feature dimension of the presynaptic
layer (l0) at location (x). It is 0 if pre- and post-synaptic features
are equal (dl 6 L0) and 1 if they are at most dissimilar. As the
feature dimension is modeled circular, the features are most
dissimilar at medial distance (dl ¼ L=2) in the feature space
½1; L�. Scaling factor: vFEAT.

wFEAT
dl ¼

0 dl 6 L0
dl�L0

0:5L�L0
L0 < dl 6 0:5L

1� dl�0:5L
0:5L�L0

0:5L < dl 6 L� L0

0 else

8>>>><
>>>>:

ð1Þ

whereby dl ¼ jl� l0j and L0 ¼ L=8.
Surround suppression SSUR (layer 2/3 ? layer 4): The connectivity
pattern wSUR

x;x0 for each postsynaptic cell (x; l) is a function (Eq.
(2)) over the spatial dimension of the presynaptic layer (x0) with
constant feature (l). It is 0 for the same location, maximal (1.0)
for close surround locations and moderate (0.4) for distant ones.
Scaling factor: vSUR.
wSUR
x;x0 ¼

jx�x0 j�1
w�1 jx� x0j 6 w

1� 0:6 jx�x0 j�w�1
w�1 w < jx� x0j 6 2w

0:4 else

8>><
>>: ð2Þ
whereby w ¼ ðs� 1Þ=2 denotes the radius of the receptive field s.

2.5.3. Neuronal layers
The neuronal responses are simulated by the following equa-

tions. The values of parameters varied across experiments are
listed in Table 1, and the ones kept constant are the following:
rL4 ¼ 0:3; rL2 ¼ 2; vL2�L4 ¼ 1; s ¼ 10 ms.

Layer 4

s
@rL4

x;l

@t
¼ g � Ex;l � Ax;l

rL4 þ Sx;l
� rL4

x;l ð3Þ

Sx;l ¼ Ex;l � Ax;l þ b Ex;l

� �
� SSUR

x;l þ b Ex;l

� �
� SFEAT

x;l ð4Þ

Ax;l ¼ 1þ ASP
x;l þ AFEAT�L4

x;l ð5Þ

Ex;l ¼ v In�L4 � rIn
x;l

� �pE
ð6Þ

With : ASP
x;l ¼ vFEF�L4 � rFEF

x ð7Þ

With : AFEAT�L4
x;l ¼ vL2�L4 � f 1

X
x0

f 2 wL2�L4
x;x0 � rL2

x0 ;l

� � !
ð8Þ

With : SSUR
x;l ¼

X
x0

wSUR
x;x0 � vSUR � rL2

x0 ;l

h ipSUR
ð9Þ
With : SFEAT
x;l ¼

X
l0

wFEAT
l;l0 � vFEAT � f 1

X
x0

f 2 wL2�L4
x;x0 � rL2

x0 ;l0

� � !" #pFEAT

ð10Þ

With : bðEx;lÞ ¼ Ex;l �
rL4 þ Ex;l

g � Ex;l

� �2

ð11Þ

Whereby bðEx;lÞ represents a correction function based on the
excitation (Ex;l) and the inverted divisive normalization function
without modulation, i.e without amplification and suppression
(terms in brackets). The function ensures that suppression causes
the same proportional decrease of the response for all stimulus
contrasts. The parameters rL4; v In�L4 and pE control the shape of
the contrast response function similar as in Carandini and Heeger
(2012). The parameters pFEAT and pSUR control the non-linearity
behavior of feature-based and surround suppression.

The factor g normalizes the firing rates to a maximum of 1 as in
other divisive normalization approaches (Albrecht & Hamilton,
1982; Carandini & Heeger, 2012). It should be chosen as:
g ¼ 1þ r=ðA � E0Þ whereby A � E0 denotes the maximum possible
excitation (here 1).

Layer 2/3

s
@rL2

x;l

@t
¼ g �

Ex;l � 1þ AFEAT�L2
x;l

� �
rL2 þ Sx;l

� rL2
x;l ð12Þ

Sx;l ¼ Ex;l � 1þ AFEAT�L2
x;l

� �
ð13Þ

With : Ex;l ¼ f 1

X
x0

f 2 wL4�L2
x;x0 � rL4

x0 ;l

� � !
ð14Þ

With : AFEAT�L2
x;l ¼ vPFC�L2 � rPFC

l ð15Þ

With : f 1ðxÞ ¼
pPool

4
� x

1
pPool and f 2ðxÞ ¼ xpPool ð16Þ

Whereby f 1ðxÞ and f 2ðxÞ represent non-linearities allowing the
non-linear summation necessary for a spatial pooling operation.
The pooling operation is modeled after the pooling and surround
suppression data of Bonin, Mante, and Carandini (2005), Heuer
and Britten (2002), Hunter and Born (2011), Jones, Wang, and
Sillito (2002) and Pack, Hunter, and Born (2005). The non-linearity
parameter is chosen as pPool ¼ 4.

Baseline activity can be modulated by attention like in the
sharpening of neuronal tuning curves (No. 8a in Table 1), but is also
often unaffected by attention. To model the former case, we add a
small value to the input (parameter a). For the latter case, we add a
small value (parameter b) to the firing rates after the differential
equation system has been converged (Eqs. (17) and (18)). Our
approach is similar as in the normalization model of attention
(Reynolds & Heeger, 2009) to facilitate a comparison of the data
fits.

rL4 ¼ bþ ð1� bÞ � rL4 ð17Þ
rL2 ¼ bþ ð1� bÞ � rL2 ð18Þ
3. Results

In the following, we will identify essential mechanisms of our
model for each attention experiment. We see these mechanisms
as a proposal of how attention might work in the cortical microcir-
cuit of the visual cortex. In each experiment, we first verify the
model by comparing its simulated neuronal responses to physio-
logical data and then link the simulated data to the mechanisms
in the model. Further, we will predict attention mechanisms in
novel paradigms, e.g. in biased competition with surround
suppression.



Table 1
Model parameters which were varied between experiments are listed in the table. The second row ‘‘std’’ denotes the standard values which were used in all experiments if not
otherwise denoted. The input is modeled via a symmetrical exponential function in the feature space with width c and baseline a : f ðxÞ ¼ aþ ð1� aÞ � eð�c�xÞ . If not otherwise noted,
the amplification is modeled via the same parametrized function, but without the baseline (a ¼ 0). The model contains also an unmodulated baseline activity b to simulate
conditions in which attention does not modulate the response.

Fig. no. E SFEAT SSUR A b Tuning function

v In�L4 pE
pPool vFEAT pFEAT vSUR pSUR vFEF�L4 vPFC�L2

Std. 3 2 4 3 2 0.5 1 3 0.5 0 c ¼ 8
L ; a ¼ 0

2 2.5 2 0.15 c ¼ 6
L

3a 2.75 1 c ¼ 6
L

3b 3.5 c ¼ 8
L ; a ¼ 0:15

3c–e 3.5 3 1.25 c ¼ 8
L ; a ¼ 0:1

3f 3.5 2.5 0.05 c ¼ 8
L ; a ¼ 0:15

4 3 0.17 0.15 c ¼ 8
L ; a ¼ 0:1

5 2 1.75 c ¼ 8
L

6 1 c ¼ 8
L

7 2 1.5 0.75 0.1 c ¼ 8
L ; a ¼ 0:1

8a 2 3 c ¼ 8
L ; a ¼ 0:3, Amplification: c ¼ 4

L

8b 2.4 3.5 0.25 c ¼ 6
L

9a 0.5 0.75 2 0.8 2 c ¼ 8
L

9b 1.6 1.25 0.55 2.5 c ¼ 8
L

10 c ¼ 8
L
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3.1. Biased competition

In biased competition paradigms, suppression is observed
between two different stimuli presented inside a receptive field
of a neuron and attention has been observed to modulate this sup-
pression. Biased competition with spatial attention has been
reported in several areas (MT: Lee & Maunsell, 2010a; also Lee &
Maunsell, 2009, 2010b; V2 and V4: Reynolds et al., 1999; V1, V2,
V4: Motter, 1993). In Lee and Maunsell (2010a), two inversely
moving gratings were placed in the receptive field of a neuron in
area MT (Fig. 2a). Attention was either spatially directed to a grat-
ing placed in the opposite hemifield (attend away) or to one of the
two stimuli. They observed that an unattended stimulus alone elic-
its a much stronger neuronal response in its preferred neuron (col-
umn 1 left) as the unattended stimulus pair (column 3). However,
if the preferred stimulus of the pair (column 4) is attended, the
response of the preferred cell will be as strong as to the stimulus
alone (column 4, left) and the response of the anti-preferred cell
will be decreased (column 4, right). The reverse effect is observable
for attending the anti-preferred stimulus (column 5). The data is
adapted from Lee and Maunsell (2010a, Fig. 5) and shows the aver-
age firing rate over the full population and over a time window
between 50 ms and 200 ms after stimulus onset.

In the model (Fig. 2b), spatial attention is modeled by an ampli-
fication signal originating from FEF/LIP to layer 4, amplifying the
response of all cells at the attended location. This location com-
prises only the attended stimulus, here the upward moving one,
so only the response of this feature is increased. This drives layer
2/3 cells, resulting also there in an amplified response of this fea-
ture as observed in the data (column 4, left in Fig. 2a). These neu-
rons in layer 2/3 suppress cells in layer 4 encoding the anti-
preferred stimulus (downward motion), denoted as feature-based
suppression. This in turn decreases also the response of cells in
layer 2/3 encoding the anti-preferred stimulus as observed in
model and data (column 4, right in Fig. 2a).

For simulating biased competition with spatial attention, the
spatial pooling operation in the second layer is necessary. This
operation is one of the main model improvements as previous
models contain only a single layer (Boynton, 2009; Lee &
Maunsell, 2009; Ni et al., 2012; Reynolds & Heeger, 2009) as dis-
cussed in more detail later. Pooling mediates the interaction of
the attended location with the recorded location. The recorded
location is here defined as the center of the receptive field, because
the model uses symmetric receptive fields. The attended location is
classically in the periphery of the receptive field. Therefore, spatial
pooling is required to transfer the attentional modulated response
from the attended location to the center. In addition, spatial pool-
ing is accompanied by a distribution of the suppression. This is
implemented via the suppressive feedback connections from layer
2/3 to layer 4 originating from the center to all locations within the
receptive field. Both mechanisms together allow that a spatial
amplification at one location induces a suppression at the other
location.

Thus in summary, necessary mechanisms for biased competi-
tion are the amplification in layer 4 and in layer 2/3, the suppres-
sion of the anti-preferred feature, and the spatial pooling.

Biased competition has been traditionally tested with different
stimuli raising the question what effect occurs if identical stimuli
are placed within the receptive field. Recent data suggests that a
‘‘feature pooling’’ effect occurs instead of biased competition. The
effect without attention is shown by MacEvoy, Tucker, and
Fitzpatrick (2009) for area V1: no suppression was observed
between equal stimuli, i.e. the response to a single stimulus was
the same as presenting both stimuli (Fig. 3b, right). In the study,
they varied systematically the similarity between the stimuli and
showed that the amount of suppression decreases with increasing
similarity (Fig. 3b). Yet it has to be noted that they used overlap-
ping stimuli whereby the stimuli in biased competition are nor-
mally spatially distinct. Nevertheless, the pooling effect also
occurs with deploying attention to one of two spatially distinct
stimuli in area MT: Lee and Maunsell (2010a) reported for two
equal stimuli a similar attentional modulation as for a single stim-
ulus (Fig. 3a right). The effect could not be induced by the experi-
mental setup as the stimulus similarity has been systematically
varied within the same setup, and biased competition has been
found for different stimuli and pooling for identical stimuli. Our
model reflects this effect as the strength of the suppressive connec-
tions from layer 2/3 to layer 4 depends on the feature similarity
(Fig. 1), so the strength is maximal for different ones and zero for
similar features.

A possibility to quantitatively measure biased competition is by
relating the response of a cell to a single stimulus (selectivity) to its



(a) (b)

Fig. 2. Biased competition experiment with spatial attention. (a) Neurophysiological data (top) in relation to our simulation results (bottom). Data is adapted from Lee and
Maunsell (2010a, Fig. 5). In each column, the left bar denotes the response of a neuron preferring the upward moving stimulus and the right bar the downward direction.
Spatial attention is either directed away (columns 1–3) or to the location of the stimulus marked in red (columns 4 and 5). (b) Model mechanism of biased competition, within
the condition of spatially attending the left location (condition 4 in a). In each layer, exemplary neurons reacting for one of the two stimuli are shown. In addition, the full
population response of layer 2/3 at the recorded location is illustrated at the top right. The connection type (excitation, amplification, suppression; see Section 2) describes
the influence on its postsynaptic neuron. Attentional modulation of neurons and connections are denoted by the increase or decrease of the symbols thickness. For clarity,
interneurons and unrelated connections are not illustrated in the figure.

(a) (b) (c) (d) (e) (f)

Fig. 3. Characteristics of biased competition and related paradigms. Neurophysiological data (top row) is shown in relation to simulation results (bottom row). (a) Neuronal
response depends on the similarity of the two spatially disjunctive stimuli. Biased competition (two different stimuli, left) and feature pooling (two equal stimuli, right) mark
the extreme cases. Experimental conditions are: preferred stimulus alone attended (blue), pair attend preferred (green), pair attend away (yellow) and pair attend anti-
preferred (red). The data shows the average population response in area MT of cells preferring the left stimulus and is adapted from Lee and Maunsell (2010a, Fig. 5). (b) The
same similarity dependency as in (a) can be observed also for two overlapping gratings in area V1. In this study (MacEvoy et al., 2009, Fig. 2a–c), conditions are all without
attention: preferred stimulus alone (blue), pair (yellow) and anti-preferred stimulus alone (pink). (c–e) Effect of attention on the relationship between selectivity (probe –
reference) and sensory-interaction (pair – reference). See text for details. The data represents a population response in area V4 in a biased competition paradigm with spatial
attention (Reynolds et al., 1999, Fig. 11a,b,d). (f) Contrast dependency of responses in area V1 with overlapping competing stimuli (Busse et al., 2009, Fig. 4a). The contrast of
two stimuli (0� and 90� oriented gratings) is systematically varied (0%, 12%, 50%) and the population response is plotted. Contrasts of horizontal gratings (90�) are denoted at
the x-axis and contrasts of vertical gratings (0�) at the y-axis.
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response to a stimulus pair (sensory interaction, Reynolds et al.,
1999). The selectivity of a neuron is defined as the response to a
variable probe stimulus minus the response of an arbitrarily cho-
sen reference stimulus. A positive selectivity refers to cells prefer-
ring the probe whereby a negative value refers to cells preferring
the reference stimulus. The sensory interaction is defined as the
response to the stimulus pair (probe and reference presented
simultaneously) minus the reference alone. A positive value indi-
cates that the cell’s response to the reference is increased by add-
ing a probe whereby a negative value denotes suppression by
adding the probe. The selectivity and sensory interaction indices
for several randomly chosen probe and reference stimuli have been
plotted cell-wise against each other and fitted with a linear
regression curve. In area V4, the slope in the unattended condition
is 0.49 (Fig. 3c). A slope of 1.0 would indicate no suppression
between the stimuli, hence the slope of 0.49 shows for a cell pre-
ferring the probe (positive selectivity) a suppression from the ref-
erence of about 50%. Likewise for a cell preferring the reference
(negative selectivity), it shows a suppression from the probe of
about 50%. Attending the probe results in a slope of 0.83 (Fig. 3d)
which demonstrates an increase to the pair response for cells pre-
ferring the probe (positive selectivity) and a decrease to the pair
response for cells preferring the reference (negative selectivity).
Contrary, attending the reference (Fig. 3e) will evoke the opposite
effect and thus resulting in a slope of 0.21. Additionally to area V4,
Reynolds et al. (1999) investigated also area V2 and found a



(a) (b)

Fig. 4. Biased competition experiment with feature-based attention. (a)
Neurophysiological data (top) in relation to our simulation results (bottom,
recorded cell is indicated in (b)). The average neuronal response of area V4 for
the preferred stimulus (1), anti-preferred stimulus (2) and pair (3–5). In the latter,
feature-based attention (denoted by red) is either directed away (3), to the
preferred (4) or anti-preferred (5). Data adapted from Chelazzi et al. (1998, Fig. 10a
and b). (b) Mechanics of biased competition with feature-based attention. The
notation of the figure is similar to Fig. 2. Attentional modulation of neurons and
connections are denoted by the increase or decrease of the symbols thickness. The
mechanics are based on the experiment illustrated in (a), condition 4.
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qualitatively similar effect. The model can replicate the data well
(Fig. 3c–e) with the previously outlined mechanisms involved in
biased competition.

All the above experiments were carried out with stimuli of
equal contrast. However, the amount of suppression depends on
the contrast of each stimulus. Stimulus contrast is defined in this
context as the contrast between the stimulus and the background,
hence it describes the strength of a stimulus. Busse, Wade, and
Carandini (2009) used overlapping gratings of 0� and 90� orienta-
tion, varied systematically the contrast of both orientations and
recorded the neuronal population via electrode arrays (Fig. 3f). If
a single stimulus is presented alone (shown as 0% contrast of the
other stimulus in Fig. 3d), the response is characterized by the con-
trast response function (CRF, Albrecht & Hamilton, 1982). The CRF
is implemented in the model by divisive normalization in layer 4:
rL4 ¼ ð1þ 1

rÞ � E
rþE, whereby the excitation E represents the stimulus

contrast. This divisive normalization explains the strong non-linear
influence of the contrast on the response. If a pair of differently
contrasted stimuli is presented (12% and 50% contrast in Fig. 3f),
the population response is dominated by the higher contrasted
stimulus. This implies a non-linear suppression towards cells pre-
ferring the lower contrasted stimulus, realized in the model by the
same feature-based suppression mechanism as in biased competi-
tion: suppression occurs from cells in layer 2/3 preferring the 50%
contrasted stimulus towards cells in layer 4 preferring the 12%
contrasted stimuli. Afterwards, the decreased response in layer 4
is projected to the recorded neuron in layer 2/3. The observed
non-linear effect occurs because the suppression originates in a
non-linear manner from the neuronal response in layer 2/3 (rL2):
S ¼ ðrL2ÞpFEAT ; and because this suppression operates divisively on
the firing rate in layer 4: rL4 ¼ ð1þ 1

rÞ � E
rþEþbðEÞ�S. These mechanisms

are present in the model in all conditions, but the non-linear effect
is mostly visible in cases with different contrasted stimuli. With
two equally contrasted stimuli, the data shows another effect, an
equally strong suppression towards both stimuli and under all con-
trasts. This expected result proves that suppression occurs at all
contrasts which implies that also biased competition should occur
at all contrasts.

Feature-based attention (review: Maunsell & Treue, 2006) can
also modulate the suppression between stimuli in a biased compe-
tition paradigm, similar to the effect described for spatial attention
but with a feature-selective bias. Studies reported the effect for
area V4 (Chelazzi et al., 2001; Fallah et al., 2007; Zhou &
Desimone, 2011), MT (Treue & Trujillo, 1999), and IT (Chelazzi
et al., 1998). In the study of Chelazzi et al. (1998), the task of three
rhesus monkeys was to execute a saccade to a previously shown
target object that was presented together with distracting objects
(Fig. 4a). The target object was previously shown at a different
location to ensure that the setup causes only feature-based atten-
tion. The presented data (Fig. 4a, a, top) illustrates the population
response of neurons preferring the target in area IT. The response
was obtained by averaging over 58 neurons and over a time span
from 150 ms to 300 ms after stimulus onset. The time window
was chosen so that it starts at the onset of the full response and
ends before the neuronal response changes due to onset of the sac-
cade, similar as used by Lee and Maunsell (2010a) for their setup of
biased competition. The data demonstrates the typical biased com-
petition effects: the unattended, preferred stimulus alone (Fig. 4a,
condition 1) elicits a much stronger neuronal response than the
unattended stimulus pair (condition 3). However, if the preferred
stimulus of the pair is attended, the response is amplified
(condition 4) whereby a decrease of the response is observed if
the anti-preferred stimulus is attended (condition 5). Yet, it is
still higher as the response to the unattended, anti-preferred
stimulus alone (condition 2). Although this task initially deploys
feature-based attention as the location of the target object is varied
across trials, it has been proposed and modeled that saccade prepa-
ration induces a delayed spatial reentrant signal which affects the
late response (Hamker, 2005b). However, as we here focus on the
cortical microcircuit of attention, we simplify the modeling and
only apply a feature-specific bias.

The mechanisms of biased competition with feature-based
attention are illustrated in Fig. 4b. The search array composed of
target and distractor excites respective cells in layer 4 and layer
2/3. A feature-based amplification originates from a higher cortical
area and is projected to layer 2/3 amplifying the neuronal response
of the attended feature. This in turn enhances via amplifying con-
nections the neuronal response of this feature in layer 4 and
decreases via suppressive connections the response of the distract-
ing feature in layer 4, which also reduces the excitatory signal to
layer 2/3 neurons selective for the distracting feature.

3.2. Attentional modulation of the contrast response function: contrast
gain or response gain

The amount of attentional modulation depends on the stimulus
contrast. Contrast gain (definition: Reynolds et al., 2000) describes
that attention amplifies the neuronal response mainly at lower
stimulus contrasts whereby at high contrast, the neuronal
response saturates to the same value without an explicit threshold
on the response. This results in a leftward shift of the contrast
response function (CRF, Albrecht & Hamilton, 1982). The response
gain denotes the appealing simple idea that attention amplifies the
neuronal response by a fixed factor, as already suggested very early
by McAdams and Maunsell (1999) or Treue and Trujillo (1999).
There has been experimental evidence for both, contrast gain and
response gain, as explained in the following.

Reynolds et al. (2000) observed contrast gain in single-cell
recordings of area V4 involving spatial attention. Their data
(Fig. 5a) illustrates the contrast response function of a population
of V4 neurons to a grating. In this study, the task of two rhesus
monkeys was to spatially attend inside (attend preferred, Fig. 5a
left) or outside the receptive field of the recorded cell (attend away,
Fig. 5a right).

Reynolds and Heeger (2009) already suggested by means of
model simulations that whether attention leads to contrast gain



(a) (b)

Fig. 5. Contrast gain resulting from the attentional modulation of the contrast
function. (a) Neurophysiological data (top) in relation to simulation results (bottom,
recorded cell is indicated in (b)). The average neuronal response of area V4 as a
function of contrast (data adapted from Reynolds et al. (2000, Fig. 5a)). (b)
Mechanics of contrast gain. Neuronal activity in layer 2/3 occurs only at a small
region as illustrated by the spatial response profile at the top right, showing across
space the response of neurons preferring the stimulus. The notation of the figure is
similar to Fig. 2. Attentional modulation of neurons and connections are denoted by
the increase or decrease of the symbols thickness.

(a) (b)

Fig. 6. A mix of response and contrast gain resulting from the attentional
modulation of the contrast response function. (a) Neurophysiological data (top) in
relation to simulation results (bottom, recorded cell is indicated in b). The average
neuronal response of area V4 as a function of contrast (CRF, data adapted from
Williford and Maunsell (2006, Fig. 6g)). (b) Mechanisms responsible for a mix of
response and contrast gain. Neuronal activity in layer 2/3 occurs at multiple
locations as illustrated by the spatial response profile at the top right, showing
across space the response of neurons preferring the stimulus. The notation of the
figure is similar to Fig. 2. Attentional modulation of neurons and connections are
denoted by the increase or decrease of the symbols thickness.

(a) (b)

Fig. 7. Scaling of the neuronal tuning curve due to spatial attention. (a)
Neurophysiological data (top) in relation to simulation results (bottom, recorded
cell is indicated in (b)). Color denotes conditions of attend away (blue) and attend
preferred (green). Data adapted from McAdams and Maunsell (1999, Fig. 4). (b)
Mechanics: spatial amplification enhances all features at the attended location with
a similar factor, resulting in a multiplicative scaling of the tuning curve. The
notation of the figure is similar to Fig. 2. The variable stimulus excites each neuron
differently strong according to its feature preference (indicated by dotted arrows).
Attentional modulation of neurons and connections are denoted by the increase or
decrease of the symbols thickness. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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or response gain depends on the stimulus size in relation to the
attended region. Reynolds et al. (2000) used a rectangle as a cue
that was much larger than the stimulus, presumably resulting in
a broader field of attention compared to the size of the stimulus.
Besides area V4, Li et al. (2008) reported contrast gain in area V1
with fMRI using spatial attention. Furthermore, Martínez-Trujillo
and Treue (2002) reported the effect in area MT for exemplary neu-
rons, but they also found neurons with a response gain.

In our model, contrast gain occurs if the attended region is
much larger than the stimulus (Fig. 5b). Thus, spatial attention is
deployed very broadly to layer 4, but amplifies only a few neurons
as only a few features at a single location will be excited due to the
small stimulus size. This response is projected to layer 2/3, activat-
ing only neurons within a very narrow region. Thus no suppression
from neurons at spatially adjacent locations occurs, allowing the
response to saturate. At high contrast, the response saturates to
its maximal possible value, so attentional amplification occurs only
at low contrasts. Both effects together, the saturation at high and
the attentional amplification at low contrasts, induces the typical
leftwards shift of the contrast response function (Fig. 5a).

A mixed effect between contrast and response gain was
observed by Williford and Maunsell (2006), in area V4.
Furthermore, evidence for response gain has been found in fMRI
data by Boynton (2009) in areas V1, V2; by Li et al. (2008) in areas
V2, V3, V3A, V4s; and by Murray (2008) in areas V1, V2, V3.
Williford and Maunsell (2006) recorded the contrast response
function (CRF, Albrecht & Hamilton, 1982) for a population of V4
neurons and obtained an average CRF (Fig. 6a) over all neurons
with a significant attentional modulation and a significant contrast
enhancement of the CRF. The task of two macaque monkeys was to
spatially attend a grating either inside the receptive field of the
recorded cell (attend preferred, Fig. 6a left stimulus) or outside of
it (attend away, Fig. 6a right). The cueing stimulus was a grating
of the same size as the stimuli, presumably resulting in an
attended area that has roughly the same size as the stimulus.

In our model, spatial attention leads to a pure response gain if
the stimulus is much broader than the attended area (similar as
in Reynolds & Heeger, 2009) and in a mix of response and contrast
gain if the stimulus and the attended area are similar in size
(Fig. 6b). In both cases, the stimulus falls within the receptive fields
of multiple, spatially-adjacent neurons in layer 2/3. In the unat-
tended case, the broad responses in layer 2/3 result in a
suppression to layer 4 which in turn results in a moderate response
in layer 4 (left cell) and also in layer 2/3 (left cell). This occurs sim-
ilarly at all contrast levels. The suppression occurs between differ-
ent locations similar as surround suppression, thus we model it via

the same signal ASUR. In the attended case, attention is deployed to
only a small area amplifying only there the neuronal response.
Thus, the previously moderate response is amplified. As this mech-
anism is contrast independent, the response gain is observed under
all contrasts.

A response gain is observed in many of the other simulated
experiments (biased competition: Figs. 2, 4; attentional modula-
tion of neuronal tuning curve: Figs. 7, 8; attentional modulation
of surround suppression: Fig. 9b). In some experiments, it is shown
directly by the modulation of the contrast response function
(Fig. 9b). In the other experiments, only high contrasted stimuli



(a) (b) (c)

Fig. 8. Modulation of neuronal tuning curves due to feature-based attention. (a and b) Neurophysiological data (top) in relation to simulation results (bottom). (a) Sharpening
of the neuronal tuning curve due to feature-based attention in a single-stimulus setup. The recorded cell is indicated in (c). The data illustrates the response of a
representative MT neuron for different orientated stimuli (adapted from Martinez-Trujillo and Treue (2004, Fig. 4a)). (b) In biased competition, feature-based attention leads
to a scaling of the neuronal tuning curve. Data is adapted from Treue and Trujillo (1999, Fig. 3b). (c) Mechanisms: in the single-stimulus setup of (a), feature-based attention
results in a sharpening as it amplifies the response of only the attended feature and increases suppression to opposing ones. The notation of the figure is similar to Fig. 2. The
variable stimulus excites each neuron differently strong according to its feature preference (indicated by dotted arrows). Attentional modulation of neurons and connections
are denoted by the increase or decrease of the symbols thickness. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

(a) (b) (c)

Fig. 9. Attentional modulation of surround suppression. (a) and (b) Neurophysiological data (top) in relation to simulation results (bottom, recorded cells are indicated in (c)).
(a) The average neuronal response in area V1 for gratings of increasing diameter size (data adapted from Cavanaugh et al. (2002a, Fig. 8a)). The stimulus contrast was also
varied whereby the highest is denoted by the darkest points. The peak in a response curve marks the border of the receptive field, denoted by black arrows. (b) The average
response of neurons in area V4 as a function of contrast if one stimulus is presented in the center and another one in the surround of the classical receptive field (cRF). Yellow
denotes this case (condition: surround), green denotes a control setup without the surround stimulus (condition: center). Data was adapted from Sundberg et al. (2009,
Fig. 6f). (c) Mechanisms of attentionally modulated surround suppression. The notation of the figure is similar to Fig. 2. Attentional modulation of neurons and connections
are denoted by the increase or decrease of the symbols thickness. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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were presented. In this case, an increase of the neuronal response
through attention indicates the response gain effect (Fig. 2, 4, 7, 8).
According to our model, a response gain is observed if suppression
is similar strong among different contrasts, as observed for exam-
ple in the study of Lee and Maunsell (2010b) (same data as Lee &
Maunsell, 2010a shown in Fig. 2). This setup involves spatial atten-
tion and the neuronal responses in the conditions attend preferred
and attend anti-preferred were recorded. A response gain is
observed because this setup induces similar effects across all con-
trasts: In the condition attend anti-preferred, a strong suppression
from layer 2/3 to layer 4 results in a moderate response (Fig. 2);
and in the attend preferred condition, the neuronal responses layer
4 are amplified. As amplification and suppression mechanisms
modulate the responses similarly strong for all contrasts, a
response gain effect is observed.

3.3. Attention modulation of neuronal tuning curves

3.3.1. Scaling of the neuronal tuning curve
Attention also affects the neuronal tuning curve in the feature

space, resulting in either a scaling (Fig. 7a) or sharpening
(Fig. 8a) of the curve (Ling, Liu, & Carrasco, 2009).

Typically, the deployment of spatial attention results in a mul-
tiplicative scaling of the tuning curve, as observed by single-unit
recordings in V1 (Motter, 1993), V2 (Motter, 1993) and V4
(McAdams & Maunsell, 1999; David et al., 2008; Motter, 1993).
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We simulated the study of McAdams and Maunsell, 1999 who have
recorded tuning curves in area V4 (Fig. 7a). In their study, two rhe-
sus monkeys have to either report the color equality/difference of
successive blob-stimuli presented in the left hemifield (condition:
attend away) or the equality/difference of successive presented
gratings presented in the right hemifield (condition: attend pre-
ferred). The stimulus in the right hemifield was placed within
the receptive field of the recorded neuron. Furthermore, its orien-
tation was varied to obtain the neuronal tuning curve. The data
shows the average population response which was acquired by
shifting the preferred tuning of each single neuron to the center
of the plot and then afterwards averaging the responses.

According to our model, the scaling effect occurs because spatial
attention amplifies the response of all features within a population
in layer 4 with a similar factor (Fig. 7b). The increased activity is
projected to layer 2/3 neurons. Feature-based suppression is not
important in this paradigm as the amount of suppression is rela-
tively similar in both experimental conditions attend away and
attend preferred. The amount of suppression depends on the differ-
ences between the neuronal responses within layer 2/3, because a
cell receives feature-based amplification from its own feature and
suppression from opposing ones. As these response differences do
not change with spatial attention, the suppression remains con-
stant between both conditions. In addition, suppression from adja-
cent neurons occurs as the stimulus is large enough to fall within
several receptive fields, similar as in the response gain experiment
(Fig. 6). In summary, suppression occurs, but the effect is primarily
based on the very crucial property of attention, the amplification
mechanism.

3.3.2. Sharpening of the neuronal tuning curve
Feature-based attention leads to an amplification of the

attended feature and to a suppression of unattended ones, known
as sharpening (Fig. 8a), as suggested by single-unit recordings in
MT (Martinez-Trujillo & Treue, 2004) and V4 (David et al., 2008).
Our simulations suggest that the effect is a general property of
attention in the cortical microcircuit as it is based on two very
basic properties: the amplification mechanism and suppression.

Martinez-Trujillo and Treue (2004) illustrate this effect for a
representative neuron in area MT (Fig. 8a). Their experimental
setup contains two identically moving random dot patterns
(RDPs) at two locations (right location was recorded). In the task,
two macaque monkeys have either to spatially attend to the fixa-
tion point (condition: attend away; Fig. 8a blue) or to the moving
RDP at location ‘left’ (condition: attend preferred; Fig. 8a green).
This setup ensures feature-based attention at the ‘right’ position:
spatially attending the left RDP induces spatial and feature-based
attention to it, presumably resulting in a deployment of feature-
based attention to all identical RDP in the scene, hence also to
the right RDP. The tuning curve is sharpened by attention as the
neuronal response to the preferred motion direction is increased
and the response to the anti-preferred direction is decreased.

In our model (Fig. 8c), sharpening occurs if feature-based atten-
tion is narrowly tuned and thus amplifies only the response of cells
in layer 2/3 and layer 4 preferring the attended feature. Amplifying
this response leads to a stronger suppression from layer 2/3 to the
other (and non-attended) features in layer 4 resulting in a
decreased neuronal response. This in turn decreases also the
response of opposing features in layer 2/3 (opposing motion direc-
tion are at 180� and �180�). These suppression effects induce the
sharpening of the tuning curve (Fig. 8a).

3.3.3. Neuronal tuning curve in biased competition
Treue and Trujillo (1999) investigated the modulation of the

tuning curve within an additional distractor by using a biased com-
petition paradigm with feature-based attention. Unexpectedly, this
setup results in a scaling of the tuning curve instead of a sharpen-
ing (Fig. 8b). They reported neuronal tuning curves of a represen-
tative neuron in area MT and placed two stimuli in the receptive
field of a cell: a target random dot pattern (RDP) with variable
motion direction to record a tuning curve and a distractor RDP with
fixed anti-preferred motion direction of the recorded cell.
Attention was deployed either to the target or to the distractor
by cueing a third RDP placed in the contralateral hemifield which
had the same feature as the attended object. As cue and attended
object have different locations, this setup ensures pure feature-
based attention. The task of the two macaques was to detect a
motion change in the target stimulus. The data shows a multiplica-
tive scaling of the tuning curve when attending the target (up-scal-
ing) or distractor (down-scaling).

A pure multiplicative scaling is surprising as other data shows a
sharpening of the tuning curve (Fig. 8a) and other models
(Reynolds & Heeger, 2009) could not provide a solid explanation
for this discrepancy. However, our modeling of the experiment
clarifies that the sharpening effect does not occur due to a strong
suppression from the additional distractor. The presence of the dis-
tractor suppresses the flanks of the tuning curve as the neuronal
responses are zero for anti-preferred targets in the attended-away
condition (Fig. 8b, blue curve at motion directions in the range:
�180 to �120� and 120� to 180�). Contrary, these responses are
non-zero in the data showing the sharpening (Fig. 8a). In the
model, suppression is most powerful at the flanks of the tuning
curve. It is weaker at the center due to competition between neu-
rons preferring the target and the distractor. Due to this suppres-
sion of the flanks, a further sharpening does not occur.
3.4. Attentional modulation of surround suppression

Attention can also modulate the amount of received suppres-
sion in center surround experiments. Within a classical receptive
field (cRF), attentional modulated suppression is well explained
by the biased competition paradigm (Section 3.1). Thus, the sur-
round paradigm is especially interesting as it addresses the ques-
tion of attentionally modulated suppression beyond the cRF. In
such center surround experiments (Gilbert, 1998), a stimulus in
the surround of the cRF suppresses the cell’s response as demon-
strated by Cavanaugh et al. (2002a) for area V1. They systemati-
cally increased the size of a grating beyond the size of the cRF
and observed that the average neuronal response starts to decrease
after the stimulus size exceeds the cRF showing the suppression
effect (Fig. 9a). Furthermore, they found a larger cRF at lower con-
trasts. The cRF size was defined in their study as the stimulus size
invoking the maximum response (grating summation field). Our
attention model can account for this effect if we presume a weaker
surround suppression at lower contrasts by setting pSUR ¼ 2:0. At
higher contrasts, the strong suppression removes layer 4 activity
at the flanks of the stimulus area, leading to a narrow spatial
response curve. Contrary at lower contrasts, the response remains
broad in the spatial dimension. Layer 2/3 neurons integrate so over
a broader activity at lower contrast, resulting in higher responses.
This approach is similar to the ‘‘gain’’ model of Cavanaugh et al.,
2002a which fitted at best the data.

We have simulated the experiment as follow. The input was
simulated via a Gaussian in the spatial dimension. Its standard

deviation represents the area of the stimulus: r � p d2

4 , with stimu-
lus diameter d. Layer 2/3 neurons need to integrate information
beyond their cRF borders, so layer 4 and layer 2/3 are weakly con-
nected outside the cRF too. In all other experiments, the layers
have for simplicity only connections inside a cRF. In both cases,
the width of the cRF is the same as the connectivity weights are
modeled via the same Gaussian.
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Surround suppression is widely observed in the visual cortex: in
LGN (Bonin et al., 2005); V1 (Bair et al., 2003; Cavanaugh et al.,
2002a, Cavanaugh, Bair, & Movshon, 2002b); V2 (Ito & Gilbert,
1999; Willmore, Prenger, & Gallant, 2010); V4 (Sundberg,
Mitchell, & Reynolds, 2009); MT (Allman, Miezin, & McGuinness,
1985; Hunter & Born, 2011; Pack et al., 2005); MST (Orban,
2008); and LIP (Falkner, Krishna, & Goldberg, 2010). In IT, no study
reported this effect, probably because receptive fields are very
large thus it is experimentally very difficult to place a stimulus out-
side the receptive field. However, Miller, Gochin, and Gross (1993)
found suppression between pair of stimuli within a receptive field.

The surround effect can also be modulated by attention as
attending the center of the receptive field or the surround stimulus
amplifies or respectively suppresses the neuronal response.
Sundberg et al. (2009) observed this effect by recording neuronal
responses in area V4 (Fig. 9b). Their setup (yellow, Fig. 9b) consists
of three gratings with variable contrast, one in the opposite hemi-
field (left stimulus in Fig. 9b), one in the classical receptive field
(cRF) of the recorded cell (right stimulus marked with a ring) and
one in the remote surround of the cRF (lower right stimulus).
Stimulus contrast was varied for the stimulus inside the cRF and
was fixed to the maximum for the stimulus in the surround. As a
control (green), they replicate the known attentional modulation
of the cRF for a single stimulus (Fig. 5 in Section 3.2). In both set-
ups, they investigated the conditions of attending the grating in
the opposite hemifield (attend away), in the center of the cRF
(attend center, right stimulus), and in the surround (attend sur-
round). They found that in the attend away condition, the surround
stimulus slightly suppresses the neuronal responses (yellow versus
green curve). Compared to the data of Cavanaugh et al. (2002a)
shown in Fig. 9a, the weak suppression may be explained by the
fact that Cavanaugh et al. (2002a) covers the whole surround with
a large surround stimulus whereby Sundberg et al. (2009) uses a
single and small surround stimulus. Attending the surround
slightly increases the amount of surround suppression. In contrast,
attending to the center stimulus diminishes the surround suppres-
sion (overlapping of the yellow and green curve). In addition,
attending to the center stimulus increases the absolute response,
indicating a response gain effect in addition to the surround effect.

The mechanics in the model will be explained by the example of
the study of Sundberg et al. (2009) (Fig. 9c). The center and the sur-
round stimulus excite neurons in layer 4 and in turn in layer 2/3 at
both the surround (left in Fig. 9c) and the center location (right).
The layer 2/3 response from the surround is projected back via sup-
pressive connections to layer 4 in the center, decreasing the neu-
ronal response which in turn also decreases the layer 2/3
activations in the center. As this suppression does not occur if no
surround stimulus is present, its influence is visible by comparing
the responses with and without surround stimulus (yellow versus
green in Fig. 9b). An opposite suppression effect occurs also from
the center to the surround location (not shown). If the surround
is spatially attended, the responses in both layer 4 and 2/3 are
amplified which increases the suppression to layer 4 in the center.
Attending the center invokes the opposite mechanism, resulting in
a decreased response at the surround.

Besides the study of Sundberg et al. (2009), a few other studies
investigated the effect of attention in center surround experiments
and found similar results: Chen and Martinez-Conde (2008) found
the effect in area V1 by spatially attending the center or the sur-
round with a variable task difficulty. On the highest difficulty, they
found an amplification of about 140% when attending the center.
Ito and Gilbert (1999) shows the effect also for area V1 in the con-
ditions of attending away, the center, or four surround locations
simultaneously.

Until now, we have considered only the surround suppression
between similar stimuli in cases where the suppression is
independent of the spatial arrangement of the surround. This is
the most typical case (Zanos et al., 2011) and so implemented as
standard in the model. However in general, the effect is more com-
plex as reviewed by Gilbert (1998) or Spratling (2010) (the latter
study particularly focused on V1). Bonin et al. (2005) found the
condition that suppression occurs from all features in the sur-
round, independently of their similarity. This was also observed
for random dot patterns which create a strong suppression inde-
pendent from spatial arrangement. However in the paradigm
denoted as contour linkage (or flanker effect, Gilbert, 1998), adja-
cent stimuli can even enhance each other if they form together a
large contour. The model might also account for these effects if
the amplifying and suppressive connections from layer 2/3 to layer

4 (AFEAT and SSUR) are adjusted appropriately.
3.5. Predictions

The model predicts interactions between many of the previ-
ously outlined paradigms as the underlying mechanisms will nor-
mally interact with each other. We will exemplarily investigate the
interactions of biased competition and surround suppression. The
competition between a stimulus pair can be favored for one of
them by attending it (biased competition). However, a surround
stimulus can also favor one of them by selectively suppressing
the other one. An exemplary setup is depicted in Fig. 10a, third
row. It consists of a preferred (vertical grating) plus an anti-pre-
ferred stimulus (horizontal grating) inside the classical receptive
field (cRF), and an additional anti-preferred stimulus in the sur-
round (horizontal grating). Stimulus contrast is high and equal
for all stimuli. We propose to record from a neuron in area V4 as
biased competition and surround suppression effects were
reported for this area (Reynolds et al., 1999; Sundberg et al.,
2009). As surround suppression strength depends on the stimulus
size (Cavanaugh et al., 2002a) and as the suppression is weak in V4
for small stimuli (Sundberg et al., 2009), we use a large surround
stimulus to obtain a strong effect (3� of the cRF size). Compared
to this, the stimuli inside the cRF are much smaller (1/5 of the
cRF size). The interaction between surround and stimuli inside
the cRF can be very complex (Section 3.4). We assume here the
most typical case in which only similar stimuli suppress each
other.

The model predicts that an anti-preferred surround stimulus
decreases the response to an anti-preferred stimulus in the cRF,
leading to an increased response of a preferred stimulus in the
cRF. We simulated three setups (Fig. 10a): the preferred stimulus
alone (first row), biased competition (second row), and biased
competition with a surround stimulus (third row). For all setups,
we simulated the attentional conditions of (1) attend away, (2)
attend preferred, (3) attend anti-preferred, and (4) attend surround
stimulus. The model uses in all simulations its standard parame-
ters (Table 1 in Section 2). The first setup contains the preferred
stimulus only and so illustrates the response without suppression
from other stimuli. Unattended, the response is already strong due
to the high stimulus contrast, so attending the stimulus increases
the response only marginally. The second setup shows the classical
biased competition effect, namely the average response to the pair
of stimuli if attention is directed away. Furthermore, if one of the
two stimuli is attended, its response is amplified and the other
one suppressed. The third setup combines biased competition with
surround suppression. In the attended away condition, the
response of neurons encoding the preferred stimulus is halfway
between the response to the stimulus alone and to the pair in
the biased competition setup. Complementary, the response of
neurons encoding the anti-preferred stimulus is lower. Both
responses indicate that the surround stimulus suppresses the



(a) (b)

Fig. 10. Prediction of biased competition with surround suppression. (a) The setup consists of a preferred (vertical grating) and anti-preferred stimulus (horizontal grating)
inside the classical receptive field (cRF), plus an anti-preferred stimulus in the surround. Three setup variations were simulated: the preferred stimulus alone (first row),
biased competition alone containing the preferred and anti-preferred stimulus in the cRF (second row), and biased competition with the additional anti-preferred stimulus in
the surround (third row). Model responses are illustrated in the condition of attending away or of attending one of the three stimuli. The attended stimulus is marked in red.
Responses are not displayed if the attended stimulus is absent in a setup. (b) Model mechanisms, illustrated in the condition of spatially attending the surround stimulus (last
condition in a). The notation of the figure is similar to Fig. 2. Attentional modulation of neurons and connections are denoted by the increase or decrease of the symbols
thickness.
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anti-preferred stimulus in the cRF. Attending the surround stimu-
lus increases this effect. Attending one of the two stimuli inside
the cRF results in the previously shown biased competition effects
with a minor influence of surround suppression, illustrating that
the amplification has a stronger influence than the surround
suppression.

Attending the surround stimulus has the most prominent effect
(Fig. 10b). In the model, it amplifies the response of neurons encod-
ing this stimulus, which strongly suppress neurons encoding the
anti-preferred stimulus inside the cRF. Contrary, neurons encoding
the preferred stimulus are not suppressed as surround suppression
occurs only between neurons encoding similar features, here the
features of the anti-preferred stimuli. In the cRF, the reduced
response of those neurons diminishes the feature-based suppres-
sion to the neurons encoding the preferred stimulus. The response
of the neurons selective for the preferred stimulus is so almost
similar as in the condition of presenting the preferred stimulus
alone. If the surround stimulus is not attended (attend away condi-
tion), the mechanisms operate identical but are weaker. If a stim-
ulus inside the cRF is attended, the mechanisms of biased
competition have more influence than surround suppression.
Attending the preferred stimulus removes the influence of the
weak suppression from the distractor in the cRF, so the response
increases slightly. Attending the anti-preferred stimulus amplifies
the response of neurons encoding it, which diminishes the influ-
ence of suppression. This suppression results from the neurons in
the surround as well as from the neurons encoding the preferred
stimulus (feature-based suppression). Thus, the accumulated sup-
pression has still a notable influence and the response of those
neurons is less increased as in biased competition. This lower
response results in less feature-based suppression back to the neu-
rons encoding the preferred stimulus, so their rate is less decreased
as in biased competition.

4. Discussion

Experimental investigations that focused on the attentional
modulation of the neuronal response in visual areas have led to a
large set of data. In order to understand the underlying mecha-
nisms of attention, computational models can help if they allow
to explain the observations by only a few core mechanisms. In
the proposed model, these are amplification, normalization, spatial
pooling and suppression. In the following, we will review the
abilities of existing models and the mechanisms they incorporate.
Besides, we will discuss limitations of the proposed model.
Furthermore, we will discuss the physiological foundation of the
approach, especially concerning the implementation of the
suppression.

4.1. Relation to existing single-area models

The motivation for a unified model of visual attention arises
mainly from the facts that each of the more recent existing sin-
gle-area models can account for only a subset of the data
(Table 2) and that most models do not explain the involvement
of underlying mechanism within the cortical microcircuit.

The model of Reynolds and Heeger (2009) is probably the most
popular one as it can replicate data from several experiments:
modulation of the contrast response function, modulation of the
neuronal tuning curve and biased competition with feature-based
attention. Essential ingredients for its abilities are divisive normal-
ization (Carandini & Heeger, 2012) accounting for all contrast
related properties, and a generic attention plus a suppression field
to simulate amplification and suppression respectively. Reynolds
and Heeger (2009) state that they made no assumption how and
over which connectivity these interactions are carried out in the
cortical microcircuit. This improves the flexibility of the model,
however it is a drawback in terms of specific predictions about
the putative implementation within the microcircuit. As compared
to our model, their model has no clear definition of a receptive field
as it lacks the spatial pooling operation in layer 2/3. So it cannot
replicate experiments where spatial attention is directed to only
a part of the receptive field, e.g. biased competition with spatial
attention and selectivity versus sensory interaction (Table 2, rows
1 and 3).

To recapitulate, the biased competition experiments with spa-
tial attention (Reynolds et al., 1999) use two stimuli which are
placed within a receptive field at different positions. In our model,
a spatial pooling operation is realized by excitatory connections
from layer 4 to layer 2/3. By these converging connections, the
neuronal responses of a neuron in layer 4 stimulate the recorded
neuron (Fig. 11b, green arrow) which defines the receptive field
by its bottom up connectivity. Thus, any amplification caused by
spatial attention to a part of the receptive field will amplify also
the recorded neuron (blue versus green curve in layer 2/3). Using
this mechanism, the proposed model replicates the physiological



Table 2
Capabilities of existing single-area models to account for a particular attention experiment. The symbol ‘+’ denotes cases were the publication shows simulation results for a
certain experiment.

Fig. No. Experiment Reynolds and Heeger
(2009)

Boynton
(2009)

Lee and Maunsell
(2009)

Ni et al.
(2012)

Spratling
(2008)

Wagatsuma et al.
(2013)

2, 3a Biased competition with spatial
attention

+ + +

3a, b Feature pooling + +
3c-e Selectivity vs. sensory interaction
3f Contrast dependency of suppression
4 Biased competition with feature-based

attention
+ +

5 Contrast gain + +
6 Response gain + +
7 Scaling + + + +
8a Sharpening + + + +
8b Tuning curve in biased competition imprecise fit
9a, b Surround suppression

(a) (b) (c) (d)

Fig. 11. Comparison of our model with spatial pooling (a, b) with the model of Reynolds and Heeger, 2009 lacking pooling (c, d), in a spatial biased competition experiment.
(a) The proposed mechanistic cortical microcircuit of attention. Notation is similar to Fig. 2. Attentional modulation of neurons and connections are denoted by the increase or
decrease of the symbols thickness. (b) For our model with spatial pooling, the responses of the input layer, layer 4 and layer 2/3 are illustrated over all location within the
receptive field. The responses of the upward moving stimulus are denoted by blue (unattended) and green colors (attended own) whereby the downward one is shown in red,
but for simplicity only in the input. The model assumes symmetrical receptive fields, thus the recorded cell is located in the center, denoted by a dotted line. (c) Model
without spatial pooling proposed by Reynolds and Heeger (2009). Notation is identical to (a). To facilitate a comparison with (a), the mathematical formulation of the model is
illustrated as a neuronal circuit. (d) For the model without spatial pooling, responses of the input and the recorded layer. Notation is identical to (b). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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data (Section 3.1), i.e. that the attended response is higher as the
unattended one.

Contrary to our model, Reynolds and Heeger (2009) (Fig. 11c
and d) use a spatial broadening of the stimulus instead of a pooling
operation. Indeed, in the unattended condition, this approach is
effective as the neuron at the center location is activated
(Fig. 11d, blue). Attending the stimulus location amplifies also
the neuronal response at the location of the stimulus (Fig. 11d,
green). However, this amplified response induces a stronger sup-
pression at the other locations, thus the response will decrease at
the recorded neuron located at the center. This decrease is obvi-
ously in contrast to the observed amplification in biased competi-
tion (Lee & Maunsell, 2010a) as shown in Fig. 2 (Section 3.1).
However, if the model of Reynolds and Heeger (2009) would be
extended by a spatial pooling layer, it could theoretically simulate
this biased competition paradigm. In summary, any attention
experiment which requires to spatially attend only a part of the
receptive field and to record at another location, cannot be simu-
lated by a single layer neuronal model.

Others (Boynton, 2009; Lee & Maunsell, 2009, 2010a, 2010b)
published simpler computational models based on divisive nor-
malization. The model of Boynton (2009) is primary intended to
simulate the modulation of the contrast response function. Thus,
their model has a contrast and feature dimension, but no spatial
dimension and no attention or suppression field. Attention is mod-
eled in a very abstract parametric fashion and not by an intrinsic
mechanism, rather it is applied via three independent parameters:
the multiplicative scaling of a tuning curve, a baseline gain and a
shift of the tuning curve to the left. These parameters allow to fit
the model to data with respect to the attentional modulation of
the neuronal tuning curve and contrast response function
(Table 2), but make it unlikely that the model can account for other
data. In particular it lacks any suppression mechanism.

Another simple model based on divisive normalization is from
Lee and Maunsell (2009) (also used and described in Lee &
Maunsell, 2010a, 2010b). Their model simulates a response based
on a driving input and a normalization which may involve one or
two stimuli. The normalization term in the denominator of the
neuronal response function operates as suppression. It is simulated
via an exponential function based on the contrast and a non-linear-
ity, a somewhat different type of normalization compared to
Carandini and Heeger (2012). A stimulus is only encoded by a sin-
gle rate variable instead of a neuronal population, so the model
lacks tuning curve characteristics. To overcome this limitation,
they model only the interactions between two stimuli. More pre-
cisely, they firstly calculated the tuning curve for a single stimulus
from the physiological data without using their model. Secondly,
they simulate the interactions by passing the previously calculated
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tuning curves of the two stimuli to their model which then modu-
lates and normalizes the responses (Lee & Maunsell, 2010a). Due to
this procedure, their model can explain the change in the neuronal
response when a second stimulus is added in the receptive field,
but not the response towards the single stimulus itself. In sum-
mary, they simulate biased competition and feature pooling, both
with spatial attention (Table 2, rows 1 and 2). The research group
of Maunsell uses in Ni et al. (2012) a new model to explain their
findings that neurons are modulated differently strong by atten-
tion. Their approach is called tuned normalization and it is more
in line with the approach of divisive normalization. Otherwise, this
model incorporates the same ideas as the previous one (Lee &
Maunsell, 2009, 2010a, 2010b). In summary, their model contains
all necessary mechanisms (amplification, normalization and sup-
pression) except spatial pooling to simulate all considered atten-
tion experiments (Table 2), so it could theoretically simulate
more experiments as the published biased competition
experiments.

Spratling (2008) proposed an attention model which has a
higher biological plausibility as the previously reviewed models
because it explicitly includes neural connections. The model con-
tains two stages, possible representing two different brain areas
(Spratling, 2012), whereby each stage contains two sublayers: a
prediction and an error layer. The prediction layer sends an expec-
tation signal to the error layer, so the error layer can minimize the
reconstruction error. Attention signals are deployed to the predic-
tion layer, which are then transported to the error layer. Spatial
attention is applied to stage 1 and feature-based attention to stage
2. Thus their and our model have a similar structure because both
use two layers to simulate a single cortical area, but their model is
fundamentally different in all other aspects. Spratling (2008) can
replicate a few attention paradigms with his model: modulation
of the contrast response function, modulation of the neuronal tun-
ing curve, and the decrease of reaction times (Table 2). A different
version of his model (Spratling, 2010) can replicate additionally the
data of MacEvoy et al. (2009) (competition and feature pooling
without attention) and of Cavanaugh et al. (2002a) (surround sup-
pression without attention). However, this model variant does not
contain attention signals and so we do not include it into our list of
attention models (Table 2).

An attention model which has the advantage to precisely simu-
late the cortical microcircuit is Wagatsuma et al. (2013). Their
model is a revised version of an existing model of the V1 microcir-
cuit (Potjans & Diesmann, 2012) consisting of layers 2/3, 4, 5, and 6.
Their model uses spiking neurons to allow a precise modeling of
the temporal effects of attention. Thus the model is focused on
replicating such effects like oscillations, but it can also replicate
two experiments considered here (Table 2): the scaling and the
sharpening of neuronal tuning curves. However, due to the high
complexity of the neuronal circuit, it cannot easily explain which
mechanisms are necessary for a particular attention effects.
Moreover, the range of simulated experiments is presently too
small to draw general conclusions about the role of connections
in the simulated microcircuit. There exist also a few other models
based on spiking neurons (Ardid et al., 2007; Buia & Tiesinga, 2008;
Hugues & José, 2010), but with much less realistic modeling of the
microcircuit and no further advantages.

4.2. Model limitations

The proposed model of visual attention focuses on the explana-
tion of single unit recordings by means of a mechanistic cortical
microcircuit of attention. Thus, the model covers the information
processing necessary for replicating the neural firing rates emerg-
ing in these experiments, but it simplifies all other aspects as much
as possible to keep the model simple and focused. For example, the
model contains only layer 4 and layer 2/3 of the cortical microcir-
cuit (Douglas & Martin, 2004) and only the necessary part of its
connectivity.

Furthermore, to allow an easy visualization of neuronal
responses, we model only a single feature dimension, and a single
spatial dimension instead of two spatial retinotopic dimensions.
We also do not simulate any feature integration or learning in
the visual cortex, hence all layers use the same features.

As the model focuses on the simulation of a cortical microcircuit
of attention, experiments involving multiple areas cannot be sim-
ulated. In previous studies, we focused on the interaction of the
visual cortex with the frontal eye field (Hamker, 2005b) to address
the temporal dynamics of attention and the interplay between fea-
ture-based and spatial attention. Moreover, splits of spatial atten-
tion have been addressed (Zirnsak, Beuth, & Hamker, 2011).
Furthermore, attention effects operating simultaneously on multi-
ple levels cannot be simulated as this case might also involve mul-
tiple areas. One exemplary experiment is object based attention in
the form where a subpart of an object is attended which induces
attention to the whole object and to other subparts (Mitchell,
Stoner, & Reynolds, 2004; Reynolds & Heeger, 2009).

Furthermore, temporal effects of attention are beyond the grasp
of this model. For example, attention modifies the pattern of neural
oscillations (Jensen, Kaiser, & Lachaux, 2007; Grossberg & Versace,
2008), decreases the transmission delays (Sundberg et al., 2012),
decreases the variability of the neuronal response (Mitchell et al.,
2007) or enhances the temporal coupling of neurons (Gregoriou
et al., 2009). These findings may be crucial to understand the full
neural implementation of the proposed cortical microcircuit of
attention and would require a different level of implementation
detail.

4.3. Physiological origin of suppression

At present, it is not accurately known (Reynolds & Heeger,
2009) how the basic mechanisms of attentional processing, i.e.
amplification, normalization and suppression, are implemented
in the cortical microcircuit of a visual area (Douglas & Martin,
2004). As the mechanics of amplification and normalization in
our model are inspired by Reynolds and Heeger (2009) and
Carandini and Heeger (2012), we would like to refer to this litera-
ture about the physiological foundations of the first two mecha-
nisms. Very recent research shows also additional possibilities,
for example Brosch and Neumann (2014) have proposed an imple-
mentation of amplification via interneurons. Concerning the sup-
pression mechanism, our model proposes a new and more
concrete implementation, so we will substantiate this point by
relating our model to the suppression literature.

In our model, suppression is implemented for simplicity only
via connections from layer 2/3 to layer 4. In the cortical microcir-
cuit (Potjans & Diesmann, 2012), such connectivity could be real-
ized by a chain of anatomical connections: excitatory
connections from layer 2/3 to layer 5/6, excitatory connections
from layer 5/6 to layer 4, and inhibitory connections within layer
4. However, we are aware that there exist also other possibilities
to implement the suppression in the cortical microcircuit
(Potjans & Diesmann, 2012). We have chosen layer 2/3 as starting
point for the suppression as layer 2/3 is the entry point for feed-
back connections from higher areas (Douglas & Martin, 2004).
Feedback seems to transport suppressive signals from higher to
lower areas.

In principle, suppressive signals can be transmitted via feedfor-
ward, lateral or feedback connectivity (Gilbert, 1998). Feedback
connections seem to be involved in surround experiments. The
reviews of Carandini and Heeger (2012) and Gilbert (1998) rule
out feedforward connections, Bair et al. (2003) concludes that
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suppression of neuronal response originates from feedback signals,
and Angelucci et al. (2002) found a correspondence between the
spatial extend of feedback connections and of surround suppres-
sion. Lateral connections seem mostly to be involved in low con-
trast experiments. Angelucci et al. (2002) found that the
receptive field size of low contrast stimuli corresponded to the
extent of lateral connections. Hunt et al. (2011) found that excita-
tory lateral connections typically resemble large structures avail-
able in natural scenes, like edges or circles, denoted as co-
linearity or co-circularity. A study by Cass and Spehar (2005) links
these two facts together: they found that the range of collinear
contrast facilitation is consistent with long-range horizontal trans-
mission. In conclusion, suppression mediated by feedback from
higher areas can be easily incorporated into our model.
4.4. Relevance of the model for psychophysical experiments

The proposed attention model of the cortical microcircuit can
explain the data of several physiological attention experiments,
but the model mechanisms are also very relevant for psychophys-
ical experiments.

One psychophysical aspect of attention is its selective process-
ing, because it selects task relevant stimuli under many distractors
(Carrasco, 2011). The selection might be necessary to not overload
the visual systems limited capacity (Todd, Fougnie, & Marois,
2005), or to save energy as the brain’s metabolic cost depends
mostly on the neuronal activity (Carrasco, 2011). In the model,
such a selection can be achieved by amplification of the target
and by suppression of distractors. Visual search (Lee & McPeek,
2013) is a typical experiment involving such a selection.
Suppression is also observed in crowding (Whitney & Levi, 2011)
where the visibility of a stimulus is reduced if it is shown with
nearby stimuli. One influential factor for the reduced visibility
may be our proposed top-down suppression mechanism.

Besides the selection of stimuli, attention increases the behav-
ioral acuity of subjects by increasing contrast sensitivity, by
decreasing reactions times, or by reducing external noise
(Carrasco, 2011). The increased contrast sensitivity is also visible
in the simulated physiological data as attention causes an appro-
priate modulation of the contrast response function (Section 3.2).
Noise reduction can be realized by amplifying the neuronal
response of the target, and by suppressing all other neuronal
responses. Therefore, many psychophysical aspects of attention
will rely on the mechanisms proposed in our model.
4.5. Influence of model parameters

Our model contains several free parameters that have been
tuned to fit different data sets. However, the model should not
be dominated by the particular setting of its parameters. Hence,
the model should be able to qualitatively fit the data with a fixed
parameter set, and parameter variations should only be necessary
for a quantitative fit. The model includes parameters (Table 1) to
modify the contrast response function (parameters vE; pE), to scale
the influence of amplification (vFEF�L4;vPFC�L2) or suppression
(vFEAT; pFEAT;vSUR; pSUR), to add an un-modulated baseline (b), and
to change the neuronal tuning in the feature space (tuning curve).
We evaluated if the model can qualitatively fit the data by fixing all
parameters to a reasonable value, denoted as standard parameter
set (Table 1, row ‘std’). Only the neuronal tuning curve was allowed
to be freely chosen because of the heterogeneous response charac-
teristics of neurons in different cortical areas.

The results, illustrated in the Supplementary Materials, show a
satisfying qualitative fit for nine of the twelve experiments. In two
experiments (Sundberg et al., 2009, Fig. 9b; Williford & Maunsell,
2006, Fig. 6), our results reproduce all significant effects of the orig-
inal publication, but differ notable from the data. In one experi-
ment (Cavanaugh et al., 2002a, Fig. 9a), a significant effect cannot
be reproduced. The deviations result in all three data sets from
an inappropriate strength of the surround suppression.

We found that the surround suppression strength (vSUR) and
non-linearity (pSUR) vary strongly among data sets (Table 1). In
the V4 data of Sundberg et al., 2009 (Fig. 9b), the surround sup-
pression is weak which we quantitatively fit by setting
vSUR ¼ 0:55. Contrary, the V1 data of Cavanaugh et al. (2002a)
(Fig. 9a) was best fitted with a strong surround suppression of
vSUR ¼ 0:8. Besides these two data sets, the surround suppression
mechanism is also used for suppression from close, adjacent neu-
rons in four data sets (Figs. 3b, 6, 7, 8a). These were fitted optimally
by vSUR ¼ 0:5;1:0;0:75;0:5. Thus the standard value for vSUR is cho-
sen as a compromise of all these values: vSUR ¼ 0:5.

The strength of the non-linearity pSUR varies as well. In the data
sets of Sundberg et al. (2009) and Cavanaugh et al. (2002a),
pSUR ¼ 2:5 and pSUR ¼ 2:0 results in the best fit. However, in exper-
iments with suppression from close, adjacent neurons, disabling
the non-linearity by setting pSUR ¼ 1 results in the best fit. The
diversity might depend on factors such as if the suppression orig-
inated from neurons in the far (Fig. 9a, 9b) or close surround
(Fig. 3b, 6, 7, 8a). We have chosen as standard value pSUR ¼ 1 as this
value allows to fit more data sets. Unfortunately, this standard
value prevents that the model can reproduce the significant
increase of receptive field at lower contrasts in the data of
Cavanaugh et al. (2002a), as discussed in the supplementary mate-
rials. Yet, the model still shows suppression from the surround at
all contrasts. As a side effect, high values for pSUR decrease the
influence of the suppression as well.

Therefore, the fits of Sundberg et al. (2009) and of Williford and
Maunsell (2006) differ notable as the suppression has an incorrect
strength. The standard values of vSUR ¼ 0:5; pSUR ¼ 1:0 results in a
suppression which is too strong for the experiment of Sundberg
et al. (2009), which is optimally fitted by vSUR ¼ 0:55; pSUR ¼ 2:5,
and is too weak for the experiment of Williford and Maunsell
(2006), which is optimally fitted by vSUR ¼ 1:0; pSUR ¼ 1:0.

In summary, the standard model can replicate the main effects
of all data sets with minor deviations regarding surround suppres-
sion effects. Thus, all parameters could be fixed for a qualitative fit
except the surround suppression parameters vSUR; pSUR. Therefore,
we conclude that primarily the model mechanisms, and not the
free parameters are responsible to account for the data sets.
5. Conclusion

In this work, we proposed a new mechanistic model of the cor-
tical microcircuit to explain the neuronal response modulation
caused by visual attention. For this purpose, we unify existing pro-
posals of attention into a new neurocomputational model and
underline psychophysical and physiological concepts of attention
with constraints from neuroanatomy. We found that many visual
attention effects can be explained by a few mechanisms: (1) ampli-
fication of the response of a single neuron, (2) divisive normaliza-
tion of this response, (3) spatial pooling within the receptive field,
and (4) suppression between neurons encoding different features
or different locations. By these effects (Table 3), we are able to
explain the following broad variance of physiological single-unit
observations by a single model: biased competition with spatial
or feature-based attention; modulation of the contrast response
function resulting in contrast or response gain; modulation of the
neuronal tuning curve resulting in scaling or sharpening; and mod-
ulation of surround suppression. Moreover, our model can predict



Table 3
Overview about the primarily involved mechanisms in each experiment. The related explanation of a mechanism in a particular experiment can be found in Section 3.

(1) Amplification (2) Normalization (3) Spatial pooling (4a) Feature-based suppression (4b) Surround suppression

Biased competition with spatial att. + + +
Biased comp. with feature-based att. + +
Contrast gain + +
Response gain + + +
Scaling +
Sharpening + +
Surround suppression + +
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attention effects and mechanisms in novel paradigms, which we
demonstrated by combining the paradigms of biased competition
and surround suppression.

The current model could be used as a core element in larger
models of visual attention that include multiple areas in the visual
cortex and control structures like FEF/LIP and PFC/7a. Such a sys-
tem-level model could simulate very well psychophysical experi-
ments as already demonstrated by a previous system-level model
of attention of our group (Hamker, 2005b, 2005a) for receptive
field dynamics (Hamker & Zirnsak, 2006), spatial compression
(Zirnsak & Hamker, 2010), or the split of spatial attention
(Zirnsak et al., 2011). Besides psychophysics, our model may also
inspire computational vision models for robots, e.g. Antonelli
et al. (2014).
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