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Abstract. Visual attention can support object recognition by selecting
the relevant target information in the huge amount of sensory data, espe-
cially important in scenes composed of multiple objects. Here we demon-
strate how attention in a biologically plausible and neuro-computational
model of visual perception facilitates object recognition in a robotic real
world scenario. We will point out that it is not only important to select
the target information, but rather to explicitly suppress the distracting
sensory data. We found that suppressing the features of each distractor
is not sufficient to achieve robust recognition. Instead, we also have to
suppress the location of each distractor. To demonstrate the effect of this
spatial suppression, we disable this property and show that the recogni-
tion accuracy drops. By this, we show the interplay between attention
and suppression in a real world object recognition task.
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1 Introduction

Object recognition in real world scenarios is a very challenging task. Usually, it
involves problems like cluttered scenes analysis, existence of many distracting
objects, different scaling, spatial positions, rotations of the objects and etc. The
concept of attention can deal with the first two problems, as it can be used to
select the relevant target information among the huge amount of sensory data.
A vast volume of literature could be found in the field of attention-based ob-
ject recognition in real-world scenarios or robotics. Many of them are based on
bottom-up approaches and assume that the objects of interest are sufficiently
salient by themselves. For example Miau et al. [8] combined an attentional front-
end with the well-known object recognition system HMAX [12] to recognize
either real-world scenes or simple artificial objects like circles and rectangles.
Other remarkable real-world applications are the object recognition systems of
Walter and Koch [18] and Frintrop and Jensfelt [3]. Since non-salient objects
are not detected in bottom-up approaches, other researches used combinations
of top-down and bottom-up methods like Hamker [4], Mitri and Frintrop [9],
Rasolzadeh and Björkman [10], and Wischnewski et al. [19] (all are real world
applications). In this paper, based on terms and concepts of visual attention



Fig. 1. The object recognition architecture that simulates the brain’s visual cortex.

mentioned in [2, 5, 4], we demonstrate the impact of spatial suppression on the
robustness of attention-based object recognition. The proposed object recogni-
tion system and the learning of invariant object representations are summarized
in section 2. Then, section 3 explains the interplay of visual attention with sup-
pression and shows how a new task-specific spatial suppression can be modelled.
The accuracy of recognition and localization of the proposed system in presence
and absence of the new spatial suppression mechanism is compared in section 4
and finally section 5 concludes the work.

2 Object Recognition System

The object recognition system (Fig. 1) has been developed for a humanoid robot
within the European project “Eyeshots” [1]. The goal was to develop a cognitive
and biologically plausible object recognition module, so a previously published
anatomically and physiologically motivated model of attention was scaled up to
allow the processing of real world scenes. Biological background can be found
there [5] whereby implementation details reside in [1]. To facilitate reading, its
functionality will be explained in the following:

Real world stereo images are fed into the first stage V1 (primary visual
cortex) which encodes simple visual features like the orientation of edges, local
contrast differences and retinal disparity [13]. The neurons are organized feature-
wise in planes and each plane has the same spatial arrangement as an image
(retinotopic organization). Therefore, a particular V1 neuron will be activated if
the preferred feature is located at the retinal locations of both eyes underlying
its receptive field. The next stage HVA (High Visual Area) encodes features
representing a single view of an object, similar to cells in the brain areas V4 and
IT [7]. HVA is again organized plane-wise and retinotopic. Each view is encoded
by the connection weights between V1 and HVA, so each HVA neuron reacts for
a specific pattern of V1 neurons (Fig. 2b). These weights were determined in an
off-line training phase using unsupervised learning. As this learning should lead
to largely depth and scale invariant representation of an object view, our method
relies on temporal continuity [16]. The idea is that on the short time scale of
stimuli presentations, the visual input is more likely to originate from the same
object under the same view, rather than from different objects or views.

Spatial information is encoded in the Frontal Eye Field (FEF ), simulated by
two maps: FEFv indicates all possible retinal locations of the searched object



(green dots in Fig. 1) whereby FEFm indicates only the final location (single
green dot in FEFm in Fig. 1). The FEFv is computed by taking the maximum
activity over all the features in HVA. The FEFm is calculated from FEFv by
applying a Gaussian filter to reinforce adjacent locations and use competition to
suppress others. The resulting target signal is projected back to HVA to select
the target location in HVA, too. Over time, a single area of activation emerges
in FEFm. If this activity reaches a threshold, a saccade will be triggered towards
this target location. Physiologically, FEFv and FEFm represent the visual and
movement cell types of the FEF [4, 14].

Visual attention is used to search for a particular object. The objects are
encoded in a separate stage, the object memory (OM ), like in the prefrontal
cortex [5]. The bidirectional binding of HVA neurons to an object neuron was
manually designed. In general, attention is defined as selecting a certain feature
or object over the whole scene (feature-based attention) or attending a certain
location (spatial attention). At neuronal level, this process enhances the firing
rates multiplicatively by the amount of received feedback (called gain control
[2, 4, 5]). For searching an object, the signal OM→HVA is used to implement
feature-based attention, i.e. to enhance all HVA neurons that encode a view of
the target object, and to implement feature-based suppression, i.e. to suppress
distractors (section 3). Additionally, spatial attention is used to localize the
target and to segment it from the background. It is implemented by the feedback
projection from FEFm to HVA which enhances all HVA neurons at a certain
location and suppresses all other locations.

This processing searches an object by its object-identifying features and seg-
ment it at the same time. It is executed in parallel via the loop HVA→FEFv→
FEFm→HVA to avoid the chicken-egg problem of segmentation and localization,
i.e. that object segmentation depends on localization, which, in turn, requires
the segmentation itself.

3 Visual Attention and Suppression

3.1 Interplay of Attention and Suppression

Attending a certain object means to select a set of object-related features or its
location. At the neural level, selection usually involves the enhancement of some
neurons and the suppression of others. For the latter, it is crucial to accom-
pany visual attention with a suppression mechanism, typically either through
an inhibitory network structure [5] or via a generic suppressive drive [11]. We
propose to achieve selection via four modulation mechanisms, similar as in other
attention models [2, 4, 5, 11]:

– Feature-based attention which enhances the neuronal activity of certain fea-
tures in HVA over the whole scene. This is used to select the target objects
via their visual features. In previous work [2, 5] and this model, it is imple-
mented via top-down connections to HVA (Fig. 3, signal 1a).

– Feature-based suppression to suppress distractors over the whole scene (next
section).



Fig. 2. a) Misclassified example without spatial suppression (C2): the tape (target,
green cross) was incorrectly recognized as the box (red cross). b) HVA encodes views
of objects. For each object (left), the weights V1→HVA (right) of one exemplary HVA
neuron are illustrated.

– Spatial attention which enhances the neuronal activity of all features present
at a certain location. This mechanism is used to focus attention to a single
target location. In previous work [2, 5] and this model, it is implemented via
the HVA-FEF loop (signals 1a, 2a, 3a and 4 in Fig. 3).

– Spatial suppression which decreases the neuronal activity at certain loca-
tions. This mechanism is used to move attention away from the location of
distractors (next section).

Despite its function in object recognition, this concept of visual attention to-
gether with suppression is justified by neurobiological theories such as biased-
competition [17]. According to the biased-competition framework, competition
takes place when two different stimuli are presented inside a receptive field of a
neuron. In the unattended condition, both stimuli suppress each other slightly
which can be measured as recorded neurons fire less in comparison with a con-
dition where only a single stimulus is shown. However, if attention is directed to
one of the stimuli, the neuron encoding the preferred object fires more strongly
whereby a neuron preferring the other stimulus is strongly suppressed.

3.2 New Task-Specific Spatial Suppression

Here we propose an additional mechanism, which actively suppresses the location
of distractors. We found that the existing suppression mechanism in models
of visual attention [5, 11] were not sufficient to suppress distractors under all
conditions in a real world scenario. A closer examination of the misclassified
cases (Fig. 2a) reveals that a distractor was incorrectly recognized as the target



Fig. 3. Object recognition system. It consists of an excitatory component (orange,
HVA-e, FEF-e) and a suppressive component (blue, HVA-s, FEF-s).

under the condition that some parts of the distractor are visually similar to
some parts of the target, i.e., when the feedforward weights (V1→HVA) of two
view neurons, belonging to different objects, contain a similar pattern. In our
setup, the box and the tape share the inner ring as such a similar pattern (red
circle in Fig. 2b). At the distractor location, obviously HVA neurons encoding
the distractor view (denoted HV AD, Fig. 2a) will react strongly, but also the
neurons encoding the target view (denoted HV AT , Fig. 2a) will respond. This
HV AT response is problematic as it will induce an incorrect FEFm activity
indicating the wrong target location (red cross in Fig. 2a) instead of the correct
one (green cross).

Therefore, a new mechanism was necessary to suppress the HV AT response
at the distractor location. We modeled a task specific spatial suppression in which
at first, each distractor is seperately to the targets encoded in HVA and FEFv.
Secondly, this information is projected inhibitory to FEFm to suppress the dis-
tractor location. Thus, HVA and FEFv are split in an excitatory part (HV A−e,
FEFv−e, orange components in Fig. 3) representing targets, as described in sec-
tion 2, and a suppressive part (HV A− s, FEFv− s, blue components in Fig. 3)
representing distractors. As targets and distractors are typically defined within
a specific task, there exists an excitatory feedback projection from higher corti-
cal areas to HVA-s providing task-specificity. This signal serves as feature-based
suppression (Fig. 3, signal 1b) which enhances the firing rates of the distractors
in HVA-s. This information is subsequently projected (Fig. 3, signal 2b) to a
separate suppressive FEFv layer (FEFv − s, blue) encoding the locations of
distractors. Hence, the system can suppress them in FEFm via inhibitory con-
nections (Fig. 3, signal 3b). The FEFm now contains only the location of the
target object and projects this back (Fig. 3, signal 4) to HVA-e. In Fig. 3, the
spatial suppression effect is visible on the location of the distractor “trapezoid”
(single green dot in FEFv-s): it is incorrectly encoded in FEFv-e (lower middle
green dot), but is successfully filtered out in FEFm (white circle).



Concerning the biological foundation, we assume that a signal originating
from higher cortical areas, e.g. prefrontal cortex [5], is projected back to V4/IT
representing instruction like “ignore these objects”. We expected that suppres-
sion occurs rather rarely in the cortex as it requires a similar encoding of two
different objects (Fig. 2b) which is typically avoided [15]. However, we use al-
ways the suppression mechanism. As the neurons in FEFv-s will respond to visual
stimuli, we denote them despite their suppressive function as visual neurons [14].
However, as their activity can preserve a fixation, they may be interpreted as
fixation cells [14]. Physiologically, the fixation cells suppresses either globally
a saccade or a single one in a specific direction [6], whereby our implementa-
tion results in a suppression of specific locations in the field of view. On the
other hand, we do not model the coordinate system transformation in the cor-
tex, so a suppression of specific directions [6] could be functionally the same as
the suppression of specific location as in our model. But to verify this, more
physiological data is required. Concerning the relation to the standard atten-
tion paradigm, e.g. biased-competition, tuning-curve modulation and surrounds
suppression [11], the new mechanism shares with them the task-specificity, but
serves as a really different function. Hence, it is beyond the scope of this paper
to investigate this relation more closely.

In summary, the task-specific spatial suppression facilitates object selection
especially if the objects are very similar and challenging to discriminate.

4 Experimental Results

The system was tested under two different conditions (C1 and C2) to evaluate
the effect of the new task specific spatial and feature-based suppression:

C1 The system was used with its full capabilities. This is the reference condition.
C2 Spatial suppression was disabled to investigate its influence by cutting the

connection from FEFv-s to FEFm (Fig. 3, signal 3b). As this effectively
disables both spatial and feature-based suppression, both mechanisms are
evaluated together.

The discriminative ability of the object recognition was evaluated on a test set
consisting of 27 real world scenes. Each scene was captured as a grayscale, stereo
image by the robotic cameras (Fig. 2a shows one example). This test data was
separately recorded from the trainings data[1]. Each test scene contains three
objects and each object was recognized separately, resulting in 81 object discrim-
ination and localization tests. The system’s object discrimination rate drops from
100% in condition C1 to 95% in condition 2 (see Tab. 1 left) illustrating the ef-
fect of the proposed spatial suppression. The perfect discriminative accuracy in
condition C1 is likely due to the fact that we benchmarked three objects, only.
As the focus of the original project [1] was on the overall interplay of the mod-
ules, and not on the development of a novel object recognition approach, the
number of recognizable objects was kept low. Nevertheless, the system is able
to represent other views or objects due to its temporal continuity learning and
thus, the approach can successfully be used with a larger number of objects [2].



Table 1. Left) The discrimination abilities (in %) are illustrated by a confusion matrix
for each of the conditions C1 and C2. The ordinate denotes the target object and the
abcise the detected object. In comparison to C1, the new spatial suppression was
disabled in C2. Right) Localization rates in % and maximal mislocalizations in pixel
are denoted for each object under the same conditions C1 and C2.

C1: Full C2: Disabled
Object Box Bot. Tape Box Bot. Tape

Box 100 0 0 100 0 0
Bot. 0 100 0 0 96 4
Tape 0 0 100 11 0 89

C1: Full C2: Disabled
Object Rate Mis. Rate Mis.

Box 96 7 96 8
Bottle 96 20 92 16
Tape 96 6 96 3

The mislocalization of the target was measured to evaluate the spatial preci-
sion of the system. Localization was rated as correct if the saccadic target point
was located within an object border. The amount was measured as the Euclid-
ian distance from the saccadic target point to the closest object border. As this
evaluation should ignore recognition errors and should only measure spatially
inaccurate target coordinates, the distance is always measured to the closest ob-
ject, even if it was an incorrectly selected one. The localization rate was around
96% in condition C1 and 94% in C2 (see Tab. 1 right). Therefore, disabling the
spatial suppression has only little influence on the localization accuracy. That
result is not surprising as the spatial precision of the FEF depends mostly on the
spatial arrangement of the scene which is identical in both conditions. There-
fore, the evaluations shows that this task specific spatial suppression reduces
false recognition in the case of similar views belonging to different objects and
so improve the overall performance.

5 Conclusion
Visual attention can facilitate object recognition by selecting the relevant target
information in the huge amount of sensory data. As such a selection process
requires the enhancement of some part of the data and the suppression of the
rest, it is always crucial to combine the enhancement effect of attention with an
appropriate suppression mechanism.

We proposed a new and biological plausible spatial distractor suppression for
existing models of visual attention and showed that this mechanism improves
object recognition, especially if parts of the target and the distractor are visually
similar. This induces an increase of the recognition rate from 95% to 100%. The
increase of only 5% arises from achieving perfect performance on a benchmark
setup containing only three objects. The low number of objects was requiered
by the orginal project [1], but as the object recognition system is able to learn
invariant representations of arbitrary objects, it can be used in setups with
a greater number of objects [2]. In such a case, it is more likely that views
will contain visually similar parts, so we expect that the new spatial distractor
suppression will become more important in such scenes.
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N. Pugeault, and N. Krüger. A compact harmonic code for early vision based on
anisotropic frequency channels. J Comput Vis and Image Underst, 114(6):681–699,
2010.

14. J. D. Schall. Neuronal activity related to visually guided saccades in the frontal eye
fields of rhesus monkeys: comparison with supplementary eye fields. J Neurophysiol,
66(2):559–79, 1991.

15. N. Sigala, F. Gabbiani, and N. K. Logothetis. Visual categorization and object
representation in monkeys and humans. J Cognitive Neurosci, 14(2):187–98, 2002.

16. M. Teichmann, J. Wiltschut, and F. H. Hamker. Learning invariance from natural
images inspired by observations in the primary visual cortex. Neural computation,
24(5):1271–96, 2012.

17. S. Treue and J. Trujillo. Feature-based attention influences motion processing gain
in macaque visual cortex. Nature, 399(6736):575–579, 1999.

18. D. Walther and C. Koch. Modeling attention to salient proto-objects. Neural
networks, 19(9):1395–407, 2006.

19. M. Wischnewski, A. Belardinelli, W. X. Schneider, and J. J. Steil. Where to Look
Next? Combining Static and Dynamic Proto-objects in a TVA-based Model of
Visual Attention. Cognitive Computation, 2(4):326–343, 2010.


