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Abstract Our goal is to develop cognitive agents based on
neuroscientific evidence. The efficiency of cognitive behav-
ior depends on its capacity to select, represent and manipu-
late sufficient knowledge of the environment to achieve its
goals. We designed a biologically motivated model of basal
ganglia and particularly the prefrontal cortex and here re-
view its foundations of neural learning and summarize our
obtained results.
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1 The Challenges of Building Cognitive Systems

The aim to design cognitive agents has its roots already
in the early days of artificial intelligence and a number of
interesting architectures have been developed (for recent
overviews see [9, 10]). Yet there has been no major break-
through such that we now know how to build cognitive sys-
tems. Vernon, Metta and Sandini [17] distinguished between
two major directions of cognitive systems research: Cogni-
tivist models and emergent approaches, particularly enac-
tive systems. Cognitivist models build internal, abstract, typ-
ically symbolic representations of the world and perform op-
erations on these to determine behavior. Enaction has been
put forward as an alternative to overcome limitations of cog-
nitivist models such as symbol grounding and the strong
dependency on the designer to find a suitable representa-
tion [18]. In enactive systems, the purpose of perception is
to provide sensory information solely for guiding behavior
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of an embodied agent. Thus, there are not necessarily states
representing entities of the world but rather some form of
self-organizing dynamics that fulfill the purpose of generat-
ing behavior. Most practical systems are cognitivist models
with some form of emergence and self-organization. While
there may be several possible research directions to address
the challenges of building cognitive systems, neuroscience
has revealed much data and insight during the last 20 years
of research and the time appears ripe to design cognitive
systems that closely match the functional principles of the
brain. One of those challenges is flexibility, i.e. the ability to
adapt to changes in the environment. Thus, neuro-cognitive
systems should heavily build upon learning. Even relatively
simple tasks such as working memory recruit much knowl-
edge that has been acquired during development. For exam-
ple, we are often not aware that in each moment in time we
memorize only particular aspects from the seemingly end-
lessness of our visual input for each task at hand. This abil-
ity to “know” what is relevant and irrelevant for each given
task should have been learned.

While enactive systems are very appealing [5, 18], they
are difficult to implement without knowing how cogni-
tive abilities develop. In the neurosciences, increasing evi-
dence points towards the basal ganglia and the dopaminer-
gic system to be crucially involved not only in motor con-
trol but also in learning, categorization and decision making
by different parallel cortex-basal-ganglia loops. Learning
such loops depends on the neurotransmitter dopamine which
projects from neurons of nuclei in the midbrain to multi-
ple brain areas [8]. Since the release of dopamine occurs
in behaviorally relevant (unexpected or salient) events [14],
learning takes particularly place in uncertain contexts. This
learning will finally be selective for those neural activities
that allow to improve the prediction so that this mechanism
allows to sort out the relevant from the irrelevant. Indeed the
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machine learning concept of reinforcement learning shows
several similarities to brain mechanisms mediated by basal
ganglia and the dopaminergic system [19].

Different models have already been proposed for some
cognitive functions in which the basal ganglia could be in-
volved (see [4, 19] for an overview). Interestingly, a com-
putational model of basal ganglia has recently put forward
to replace the procedural module in the well known ACT-R
cognitive architecture [15].

2 Neural Learning Mechanisms

As it became clear from the outline above, the develop-
ment of neuro-cognitive systems requires not only a systems
level design but also a set of basic learning rules to be ap-
plied in the system. While recent research has revealed a
dependence of learning on the exact timing of action po-
tentials, so called spike-timing-dependent plasticity, learn-
ing in multiple brain areas can nevertheless be well approx-
imated by firing rate dependent Hebbian learning (see [6]
for a discussion). Thus, we modeled learning by dynamic
Hebbian learning rules using a framework of rate coded
neurons. According to this framework the membrane poten-
tial m; (¢) of a neuron i is described by a differential equa-
tion:
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where 7 is the time constant of the neuron, u () the fir-
ing rate of a presynaptic neuron j, w; ;(¢) the weight be-
tween both neurons, M a baseline membrane potential and
€;(t) a random noise term. The output of a neuron is com-
puted from the membrane potential by a transfer function,
typically just the positive part of the membrane potential
v;(t) = (m;(t))", where ()" denotes that negative values
are set to zero.

Contrary to classical neural networks where learning usu-
ally takes place after each trial using static learning rules, we
developed learning equations that allow continuous learning
throughout the whole simulation period. Basically, learning
refers to a change of the connectivity w; ; between a presy-
naptic neuron u j (1) and postsynaptic neuron v; (¢) and relies
on a variant of the Oja [12] learning rule using a covariance
term:

du),-,j
dt
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The covariance term assigns each neuron as part of a neu-
ral population. The learning rule can be applied in each time
step and states that the weight from the input u(¢) to neu-
ron v; (¢) is increased if the rate u ; (¢) is larger than the mean
response of the input population #(¢) and the postsynaptic
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neuron v;(¢) fires above the mean of its population v(¢).
A weak input u; < u has no effect on learning this partic-
ular weight. A strong input u; > u, paired with weak post-
synaptic response v; < v leads to a decrease of the weight.
Normalization by the second term ensures that the weight re-
source is limited and avoids an increase of the weight with-
out bound. The exact definition of the covariance term can
vary dependent on the goals of learning. This framework has
also been used for learning receptive fields of neurons for
object recognition [21].

However, this learning rule alone would not be sufficient
for designing neuro-cognitive systems. First of all, learning
does not easily ensure that the neural firing rate as well as
the weights are in a meaningful range. Particularly learning
across multiple hierarchical levels faces the problem that the
rates permanently increase if the gain factor determined by
the weights is too large or the neural responses die out if
the weights are too small. This problem of stability in neural
networks could be solved by a mechanism known as synap-
tic scaling [11]. Neurophysiological experiments revealed
that neurons have the ability to multiplicatively scale the
synaptic connections which has the advantage that the over-
all strength of synaptic transmission can be adjusted without
destroying the encoded pattern which is memorized in the
relative connection strength. Our studies [20] revealed that
this physiological observation can be nicely accounted for
by making the parameter & dependent on the firing rate of
an individual neuron i so that

dai(t)
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where v™®* is the target firing rate of the cell and K, a con-
stant that determines the speed of increases of ¢;.

In addition, learning should not be solely unsupervised,
but reinforced by success, i.e. it should be dependent on
the prediction error in form of dopamine (DA) [19]. Thus,
we introduced a third factor f(DA(¢)) which is determined
by a function f that considers the level of dopamine rela-
tive to its baseline. It leads to a weight increase if the ob-
tained reward is larger than the actual received reward and
to a decrease if the predicted reward is smaller than ex-
pected.

Finally, reward is typically delivered after the events that
are relevant for obtaining reward. Thus, some form of mem-
ory is required. While some approaches relied on work-
ing memory [4], alternative neural mechanisms of learning
could provide an essential contribution as well. At least two
different mechanisms could provide a synaptic memory for
minutes up to a few hours. In most synapses, learning criti-
cally depends on the influx of Ca®>* which itself is dependent
on the pre- and postsynaptic response. Ca>* has no long
memory trace but it triggers Ca’>*-dependent kinases, such
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as CaMKII that leads to synaptic changes by protein synthe-
sis during minutes to hours [1] and thus provides a mech-
anism of short term synaptic memory. Moreover, it has re-
cently been discovered that activated synapses can be tagged
and only later, when dopamine has been released, they un-
dergo long-term changes [3, 7]. Thus, we expanded Hebbian
learning rules to include Calcium eligibility traces Ca; ;(t)
[13].

. dCa; j _ —
N =+ Cag = (0 = D) ()~ 7) )
ni"®  if dCa; ; >0
<= dec " ©)
n else.
n©? is the time constant of the calcium trace, '™ a parame-
ter controlling the speed of calcium level increase and 79 a

parameter controlling the speed of calcium level decline. By
using a small value for 7™, the corresponding calcium level
increases rapidly. As 79 is much larger than 5™, the cal-
cium level declines rather smoothly and thus leaves a synap-
tic trace of its previous activation, so that these calcium el-
igibility traces determine the amount of long term changes
(learning) at the time of DA release [13]:
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3 Learning Working Memory

I now illustrate how cognitive control can be learned by the
example of working memory (WM). Working memory de-
scribes the ability of a system to temporally store informa-
tion for its later usage [2]. By maintaining information in
WM, an organism can detach its responses from its immedi-
ate sensory environment and exert deliberate control over
its actions. Working memory requires to determine when
to store a representation (of a stimulus) and to preserve it
from overwriting as long as it is required. Most importantly,
working memory has to be learned specifically for each task,
since it requires the knowledge which of the myriad of stim-
uli are required for future use. Based on anatomical evi-
dence [8] of a brain structure known as Basal Ganglia (BG),
we designed a hierarchical model where a set of (prefrontal)
cortico-BG loops are involved in cognitive control and pro-
vide context information for decisions learned in a paral-
lel motor cortico-BG-thalamic loop (Fig. 1). This architec-
ture of parallel and hierarchically interconnected loops pro-
vides a potential anatomic substrate for how visual, cogni-
tive and motor information can be maintained for extended
periods of time (closed loops) and for how cognitive pro-
cesses can bias response selection [13]. While I here focus

on WM, such closed loops could also provide a neural sys-
tems substrate for conscious processes [16]. Neurons in pre-
frontal cortex provide “high-level” context information for
the “lower-level” motor loop. Thus, the motor loop does not
have to deal with those details that can be solved already at
the higher level and the learning problem becomes easier.

As demonstrated in [13] the model can learn complex
working memory tasks such as the 1-2-AX task. In this task,
a long sequence of letters and numbers from eight possi-
ble stimuli (1, 2, A, B, C, X, Y and Z) is shown and a
button press is required after each stimulus. A right button
press is required after the sequence 1-A-X or 2-B-Y. In all
other cases, a left-button press is correct. Thus, the solu-
tion is not memorizing all stimuli shown but to selectively
memorize a stimulus given the prior presentation of stim-
uli. For example, the occurrence of ‘A’ is only relevant if at
some time earlier ‘1’ has been shown but not ‘2’. Moreover,
this task also requires the selective resetting of memory. The
task has been trained in a three-step shaping procedure ac-
cording to which the model is initially confronted with the
numbers 1 and 2 and a delayed response such that it has to
implement a memory of the numbers. If the model reliably
learned the first step, the letters A, B and C are added to
the sequence and finally the full task is presented. During
the shaping procedure relearning of responses is required as
each shaping step is not simply a component of the final
task. In additional experiments we have shown that once a
task has been learned, additional learning or relearning is
facilitated.

4 Conclusion and Future Work

The review provides the present state of the art in the neural
learning of cognitive control inspired by the function of the
human brain. As illustrated above the usage of biologically
realistic learning rules and homeostatic principles enables
the learning of cognitive functions even if learning takes
place in parallel at multiple sites in the model. In particular,
this model provides an approach that allows to learn internal
memory states and thus it could be further developed as a ba-
sis for goal directed systems. Presently, we scale this model
up to large input and action states. Moreover, we apply this
concept to acquire learning of visual categories. In the long
run, this model could provide an alternative to more classi-
cal, machine-learning approaches of reinforcement learning
for robots.
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Fig.1 Cognitive task and model layout for WM. A stimulus sequence
is presented to the model and the model has to respond after each stim-
ulus with a left (L) or right (R) button press. By learning it has to
discover the underlying rules of the task. The task requires that pre-
frontal cortico-BG-thalamic loops flexibly control WM and guide a
motor loop to choose between a set of possible responses. While the
general layout of prefrontal and motor loops is the same, the prefrontal
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