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Abstract While classical theories systematically opposed
emotion and cognition, suggesting that emotions perturbed
the normal functioning of the rational thought, recent
progress in neuroscience highlights on the contrary that
emotional processes are at the core of cognitive processes,
directing attention to emotionally-relevant stimuli, favoring
the memorization of external events, valuating the associa-
tion between an action and its consequences, biasing deci-
sion making by allowing to compare the motivational value
of different goals and, more generally, guiding behavior to-
wards fulfilling the needs of the organism. This article first
proposes an overview of the brain areas involved in the emo-
tional modulation of behavior and suggests a functional ar-
chitecture allowing to perform efficient decision making. It
then reviews a series of biologically-inspired computational
models of emotion dealing with behavioral tasks like clas-
sical conditioning and decision making, which highlight the
computational mechanisms involved in emotional behavior.
It underlines the importance of embodied cognition in arti-
ficial intelligence, as emotional processing is at the core of
the cognitive computations deciding which behavior is more
appropriate for the agent.
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1 Introduction

Although the successes of artificial intelligence (AI) have
long relied on abstract forms of cognition, like problem-
solving, planning or sensorimotor learning, the interest for
a computational study of emotions has recently grown up
[2]. A large body of emotional research in AI is performed
under the label “Affective Computing” [6, 29]. It is strongly
influenced by the psychology of emotion research and deals
with the recognition and subsequent processing of emotional
responses in humans by artificial agents. The modeling of
emotion takes place at a rather descriptive and functional
level independent of particular brain areas involved. We here
focus on another direction of emotional research in AI which
concerns the incorporation and simulation of emotional re-
sponses in the artificial agents themselves by relying on neu-
roscientific observations. Neuroscience research in the last
15 years has produced a huge wealth of data which can
guide research in AI towards brain-like approaches to in-
telligence. Contrary to the classical view which states that
emotions are competing with cognitive processes to express
behavior [21], it is clearly suggested that emotions are inte-
grant parts of cognition as they contribute to valuate exter-
nal events, evaluate competing goals and infer mental states
[34]. Agents or cognitive robots whose cognitive abilities
incorporate an emotional dimension could therefore inter-
act more efficiently with humans and learn useful tasks in a
complex and weakly predictable environment.

Emotions have acquired through evolution a crucial role
in regulating an organism’s behavior. The emotional re-
sponse to a stimulus can be used by the brain to guide sen-
sory processing towards the relevant features and focuses
attention on the emotional object: visual search is for ex-
ample faster and discrimination more successful when the
objects have an emotional value [26]. Emotions have an im-
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portant role in facilitating the formation of long-term mem-
ory: emotionally-charged events are better remembered [8].
Emotion is also a motivator for behavior, not only because
motor actions are more vigorous towards affective objects,
but also because these objects are more likely to become the
goal of an action. In goal-directed learning, the consequence
of an action, the outcome, has an emotional value which is
associated through learning to the action itself and becomes
itself the goal of the action [3]. The outcome gains therefore
an incentive value that elicits action in order to experience a
given emotion, forming the basis of motivation. This incen-
tive value can moreover be used to decide between two pos-
sible options: the one associated with the greatest incentive
value will be chosen to guide behavior. Emotion acts there-
fore as a common currency that helps to evaluate and decide
between alternatives, even when they lead to physically dif-
ferent outcomes. Interestingly, it has been shown that money
activates the same brain regions as primary rewards like food
or sex, and the relative incentive value of different outcomes
is computed and compared by the same population of neu-
rons, the ventromedial prefrontal cortex (vmPFC) [9].

This predictive nature of emotions can also be used
in planning processes and decision making. The somatic
marker hypothesis of Damasio [5] proposes that the emo-
tional state of the organism (including visceral signals) is
represented in vmPFC and can be used as an emotional emu-
lator by cognitive processes in order to predict the emotional
consequences of a planned action and chose the better op-
tion. This emotional prediction can further provoke the bod-
ily responses corresponding to the prediction, although this
can be controlled and reduced with practice. In other words,
executive structures elaborate different plans in a given con-
text and the emotional system tells if they will lead to a
satisfying situation or not from the organism’s viewpoint.
The same system is activated when observing other people’s
emotions, suggesting an emulation of others’ emotions in or-
der to infer their mental state, forming the basis of empathy
through an emotional mirror system [4].

Despite the accumulation of knowledge about the role
of emotion in cognition and behavior, it is still largely ne-
glected by AI models. One famous exception is the field of
reinforcement learning (RL), which use the delivery of a pri-
mary reward (comparable to an object procuring a positive
emotion) to influence behavior and learning through expec-
tation [39]. Although emotions are hugely simplified and ex-
ist only in terms of positive or negative value, RL has the
merit to introduce emotional processing and its expectation
into cognitive functions. The technical success of this ap-
proach and its relative biological plausibility (see Sect. 3.4)
paves the way for a deeper understanding of the brain mech-
anisms linking emotions and behavior, and for the design of
more flexible cognitive, emotional and autonomous agents
[44].

The first part of this review presents the main brain ar-
eas that are thought to be involved in emotional processes
and influence behavior, by describing their functional roles
and relationships. We propose a functional network of these
areas that focuses on decision making, although emotions
have a much broader role in brain processes, e.g. in mem-
ory, attention or perception. The second part presents a set
of biologically plausible computational models of emotion
in various behavioral tasks such as classical conditioning1

(either aversive or appetitive), reinforcement learning, re-
versal learning2 and decision making. The interested reader
would benefit from reading the excellent review by Levine
on “Neural network modeling of emotion” which spans a
larger array of emotional computational models [23].

2 Biological Groundings of Emotion Processing

The nervous system is anatomically composed of several in-
terconnected assemblies of neurons (called structures, nuclei
or areas) that are specialized for specific aspects but which
interact together by electrically propagating information (in
the form of action potentials), or by releasing neuromodula-
tors that modify neural properties (input/output function) on
a large scale. These structures can be grouped into four ma-
jor categories: the brainstem, controlling basic homeostatic
functions such as breath or cardiac rhythm; the cerebellum,
involved in motor learning; subcortical structures such as the
hippocampus (episodic memory, place coding), the thala-
mus (sensory relay, multimodal integration), the hypothala-
mus (sleep/wake cycles, consumatory behaviors, hormonal
regulation), the amygdala (fear processing, emotional atten-
tion) or the basal ganglia (action selection, decision making,
reinforcement learning); and the cerebral cortex, the most
phylogenetically advanced structure (characteristic of mam-
mals), which is the outermost surface of the brain. The cere-
bral cortex has many functional roles depending of the con-
sidered area, ranging from perception in its posterior part
to movement generation, planning, anticipation or socializa-
tion in its anterior part (the prefrontal cortex).

Although each structure can be described as involved in
some particular functions, they do not compute them as iso-

1Classical conditioning (or Pavlovian conditioning) is the learned pair-
ing of an unconditioned stimulus (US, e.g. food) that produces an un-
conditioned response (UR, e.g. salivation) with a conditioned stimulus
(CS, e.g. a bell) presented a certain amount of time before the US. Af-
ter sufficient learning, the appearance of the CS produces a conditioned
response (CR) that is similar to the UR.
2Reversal learning is a form of operant conditioning where the con-
sequences of two well-learned actions are reversed: if the action A
systematically led to reward and B to punishment, the experimenters
look how fast the animal adapts its behavior when A suddenly leads to
punishment and B to reward.
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Fig. 1 Simplified connection
diagram of the main areas
involved in emotion and
behavior. OFC: orbitofrontal
cortex; vmPFC: ventromedial
prefrontal cortex;
dlPFC: dorsolateral prefrontal
cortex; ventral BG: ventral basal
ganglia; VTA: ventral tegmental
area; AMYG: amygdala;
LH: lateral hypothalamus. The
term “sensory cortex” gathers
here various sensory areas of the
cortex, in all modalities (vision,
audition, smell, taste, touch) and
at various levels of computation
(from basic feature extraction to
object recognition)

lated independent modules, but rather within an intercon-
nected, looped and dynamic network of structures that co-
operate to perform the considered function, one structure
being able to participate to several networks depending on
the context. The several cortical areas are connected with
each other along a complex hierarchy, but also receive sub-
cortical information (relayed and integrated in the thalamus)
from different structures. In the case of emotions, several
structures (called the limbic system) have been identified as
participating mainly in emotional processes, but further re-
searches have extended the emotional brain to various areas
that were previously thought as purely motor or cognitive.
It is know admitted that emotions influence a majority of
brain structures, including perceptive ones, at various lev-
els. Figure 1 represents a simplified schematic diagram of
the major emotional brain areas that play a role in the gen-
eration of behavior. For clarity, it omits many structures and
known connections that play nevertheless an important role
in emotions. This section will present the role of the most
relevant areas and present a tentative overview of the neural
network that underly the influence of emotion on behavior
and cognition.

2.1 Lateral Hypothalamus

The lateral hypothalamus (LH) is the place where the needs
of the organism are evaluated. It maintains homeostasis by
regulating blood pressure, heart rate, and temperature and
continuously scrutinize different bodily parameters such as
the glucose level in blood for hunger or osmolite concentra-
tion for thirst. It releases a variety of hormones that urge the
organism (other brain areas or functional organs) on reestab-
lishing its equilibrium by expressing the appropriate behav-
ior. Its cells particularly respond to food consumption and
its predictors: they respond similarly to the deprivation of
a metabolite (e.g. a low glucose level), its taste (the inges-
tion of sugar) or the associated conditioned stimulus (a bell

that predicts the delivery of sugar) [27]. Some cells respond
selectively for appetitive or aversive gustatory inputs (salt,
fat, sugar, umami, bitter. . . ), when others shows an opposite
pattern of activation: they are excited by appetitive stim-
uli and inhibited by aversive, and vice versa. Interestingly,
these opposite cells show a rebound activation when their
non-preferred stimulus stops: cells that respond for appeti-
tive (resp. aversive) stimuli can become transiently activated
when a painful (resp. rewarding) stimulation stops. This may
form the basis of relief and frustration and can be modeled
by gated dipoles (see Sect. 3.2). Another interesting prop-
erty of LH cells is that gustatory responses are modulated
by the satiety of the organism, which means that a sugared
aliment stops being appetitive when the glucose blood level
is high. In short, LH represents the hedonistic value of ob-
jects relative to the state of the organism and is able to signal
this to other brain areas which in turn can select the kind of
behavior that would be beneficial for the organism.

2.2 Amygdala

The amygdala is the most studied area in emotional neu-
roscience. It was long associated to fear conditioning (a
form of classical conditioning where the US is painful, see
Sect. 3.3) and fear processing because of its increased acti-
vation when viewing fearful objects or faces, but more re-
cent studies have shown that it is also responsive for appet-
itive stimuli, although the appetitive and aversive popula-
tions of neurons are distinct (but not spatially segregated)
[24]. Its output nuclei (CE) has direct projections to LH and
other brainstem nuclei and is necessary to exhibit condi-
tioned response such as freezing, increased blood pressure
or heartbeat rate and can provoke the release of various neu-
romodulators such as serotonin, adrenalin or dopamine. Its
input nuclei (BLA) receives connections from virtually the
whole cerebral cortex (especially high-level sensory areas
and prefrontal cortex) as well as from the thalamus and LH.
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It receives information about both conditioned (CS) and un-
conditioned (US) stimuli and can learn the association be-
tween the two through long-term potentiation (LTP) of its
synapses. It is also a major place where the sensory features
of a stimulus are combined with its hedonistic value (e.g.
taste in LH), leading to a representation of the emotional
value of a stimulus in the context of the organisms’s needs
and its cognitive expectations.

On top of its connections to CE that can generate bodily
responses to the conditioned stimuli, BLA projects back to
the cerebral cortex. Its connections to the visual cortex al-
lows a sharper and faster processing of emotionally-relevant
stimuli and creates an emotional focus of attention [43].
Its projections to the hippocampus also enhance long-term
memory formation by dynamically modulating the learn-
ing of emotionally-charged events through the process of
emotional tagging [32]. Furthermore, it heavily projects to
the prefrontal cortex, especially to the orbitofrontal cor-
tex (OFC) and the ventromedial prefrontal cortex (vmPFC).
The role of these connections is to update (rather than to
store) the motivational value of expected outcomes. Once
this value has been learned, the amygdala is no longer nec-
essary, but animals are not able to update it when the con-
tingency changes without the amygdala [24]. The amygdala
has therefore an important role in computing the emotional
valence of a stimulus in relation to its sensory features, and
in using it to modulate motivation and bias action selection.

2.3 Ventral Basal Ganglia and Dopamine

The basal ganglia (BG) is considered as a central structure
for appetitive behavior and reward processing. The BG is
a set of nuclei in the basal forebrain which creates a func-
tional loop with the cerebral cortex through its massive cor-
tical afferents and its projections to the thalamus. It can be
functionally divided into three main domains depending on
its cortical afferents: associative (dorsolateral prefrontal cor-
tex dlPFC), motor (premotor, motor and somatosensory cor-
tices) and limbic (OFC and vmPFC). These three domains
are largely segregated, but a transfer of information from
limbic to motor exists [18]. We will focus here on the limbic
BG (or ventral BG), but the interested reader can refer to our
review of cognitive and motor models of the BG [41].

The ventral BG (with the nucleus accumbens—NAcc-
as an input nucleus) is critical for learning flexible behav-
iors [19]. It receives connections from the amygdala (emo-
tional value), the hippocampus (contextual information) and
prefrontal areas like OFC and vmPFC (motivational values,
emotional state, goals). Its architecture and its central posi-
tion in the emotional system confer it a role of selection of
behavioral strategies in accordance with the emotional needs
and expectations of the organism. One particularity of NAcc
is its strong innervation by dopaminergic cells in the ventral

tegmental area (VTA) whose firing have been shown to re-
flect the delivery of primary rewards, but also the appearance
of the corresponding CS after conditioning [36]. Dopamine
(DA) is considered as the neuromediator of pleasure, being
released in rewarding situations, but also as a reward pre-
diction error teaching signal thanks its ability to modulate
synaptic learning in prefrontal cortex and BG (see Sect. 3.4).

NAcc is crucial to learn the association between an ac-
tion and its outcome which forms the basis of instrumen-
tal conditioning and goal-directed learning. It transfers the
emotional value of the outcome (learned by classical con-
ditioning processes in the amygdala) into the valuation of
the preceding action: NAcc is critical for these Pavlovian-to-
Instrumental transfer (PIT) processes. It receives informa-
tion about the potential goals (or reachable outcomes) that
are represented in OFC and updates their motivational value
thanks to the information in the amygdala. Due to its fun-
neling architecture, the ventral BG selects only one possible
goal with the higher motivational value and feeds it back to
OFC, influencing the final decision towards that particular
goal.

2.4 Orbitofrontal Cortex

The orbitofrontal cortex (OFC) is an important area for rep-
resenting the motivational value of expected outcomes or
goals. It is central in decision making and goal-directed
learning. Interestingly, there is an anatomical segregation
in OFC depending on the value of the reward association:
the medial OFC monitors the association between a stim-
ulus and a rewarded response, while the lateral OFC deals
with punishing outcomes or outdated rewarded associations
(reversal learning). There is also evidence that OFC cells
show sustained activation to maintain stimulus-reward as-
sociations in working memory [33]. OFC-lesioned patients
are unable to update their action-outcome associations once
it has been learned (reversal and extinction learning3). They
show abnormal perseverance in bad solutions and are unable
to show the cognitive flexibility necessary to solve complex
non-verbal cognitive tasks like the Iowa gambling task [5].
It has been shown that the connection from the amygdala
to OFC is crucial for this updating function and that both
VTA and OFC are necessary in order to learn to obtain new
rewarding outcomes [40]. This emphasizes the role of the
functional network composed of OFC, the ventral BG, VTA
and the amygdala in flexibly evaluating the desirableness of
an outcome and in selecting the most appropriate behavior.
The OFC is in strong interaction with the dorsolateral pre-
frontal cortex (dlPFC), which is involved in executive func-
tions like visual working memory and planning and is able

3Extinction learning is a form of classical conditioning where a learned
CS is no longer associated to an US (or an action to it outcome).
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to learn and execute complex plans in order to achieve the
goal that is selected in the OFC-BG-amygdala network.

2.5 Ventromedial Prefrontal Cortex

The ventromedial prefrontal cortex (vmPFC) is a key struc-
ture in the cognitive control and regulation of emotion [25].
Its inhibitory projections to the amygdala have been shown
to be necessary for the extinction of fear learning: after an
aversive CS-US association has been learned, the succes-
sive presentation of the CS alone should lead to a decrease
in the fear-related bodily responses generated by the amyg-
dala. If vmPFC is lesioned, these responses do not vanish,
showing a role of vmPFC in the anticipation of emotional
events and in the updating of emotional responses by the
cognitive context. Interestingly, hypoactivity in vmPFC is
associated to post-traumatic stress disorder (PTSD—the un-
controllable recall of traumatic events), chronic stress and
phobias [20]. The vmPFC is also considered the place of
the self (individual preferences, self-reflection). It represents
the emotional state with respect to the individual’s past ex-
perience with a common currency: physiologically different
emotional events (like food and money deliveries) can be
compared on an unified basis [9]. It is also involved in the
social communication of emotion and to the internal repre-
sentation of others’ emotions (empathy). Lesions in vmPFC
lead both to impaired social skills and to the inability to de-
cide for advantageous alternatives.

2.6 Summary

Although we take the risk to oversimplify the functional ar-
chitecture underlying the role of emotions in cognition and
behavior, we can stress a few sentences to summarize these
processes, as represented in Fig. 1. The hedonistic value of
an outcome is evaluated in LH (and other nuclei) by compar-
ing the physical properties of the outcome with the biolog-
ical needs of the organism and releasing various hormones
and neuromodulators (including DA) that can influence be-
havior. It is associated in the amygdala with the sensory
features of the outcome and eventually to the conditioned
stimuli that predicted it, provoking anticipatory bodily emo-
tional responses. This associative learning of the emotional
value of an outcome in the amygdala is rather automatic
in classical conditioning, but instrumental learning (goal-
directed) requires the production of the adequate action in
order to obtain that outcome. This action-outcome associ-
ation (motivational value of the outcome) is represented in
OFC and updated by the amygdala. The functional loop be-
tween OFC and the ventral BG, modulated by the amyg-
dala, allows to select the action that leads to the maximum
amount of reward and instruct dlPFC to perform the se-
quence of movements or cognitive operations necessary to

obtain the corresponding outcome. Additionally, the func-
tional loop between vmPFC and the amygdala allows to
express the emotional value of the different possible out-
comes into a common framework that depends on the in-
dividual’s preferences and social interactions. We now re-
view a few computational models of emotional processing
that have minimal biological plausibility by using artificial
neural networks. We first focus on models of conditioning,
both appetitive and aversive, as we saw that conditioning is a
key process in emotional processing, allowing to understand
many involved mechanisms. We then focus on more elabo-
rated models of decision making, including reinforcement
learning approaches.

3 Computational Models of Classical Conditioning

3.1 Associative Models of Conditioning

Early theories of classical conditioning considered that the
animal had learned directly the stimulus-response (S-R) as-
sociation between the CS and the UR, as if the animal
thought the CS was indeed the US. Later theories have rather
suggested that the animal only learns that the CS predicts the
US (stimulus-stimulus association S-S) and that this learned
association strength generates the CR. Rescorla and Wagner
proposed a functional model of S-S association, in which
the associative strength Vt is updated through learning pro-
portionally to the difference between the former association
strength Vt−i and the conditioning strength of the US ! (let
us say the amplitude of the UR, or its emotional value) [31].
This simple error-correction model was already able to ex-
plain several experimental results, such as blocking (a stimu-
lus presented simultaneously to an already conditioned stim-
ulus does not gain association strength), extinction (the CS
is no longer associated to the US) or generalization (a stim-
ulus sharing enough sensory features with a CS can elicit
the same CR). Although it does not deal with temporal rep-
resentations of stimuli and is not specific regarding the CR,
this model influenced a bunch of subsequent models, cover-
ing the remaining observation on classical conditioning but
lacking biological plausibility [35, 38].

Grossberg proposed in [14] an alternative functional
model that has been later transposed into a biologically-
motivated neural network [16]. In these models, both CS
and US are represented in a sensory layer of neurons that
compete with each other through shunting inhibition so that
only one neuron is active at a time (attentional effect). Their
projections to an associational area (corresponding to OFC)
and to a “drive” neuron in the amygdala (which represents
the emotional value associated to the US as well as the need
of the organism for that reinforcer) are learned so that a CS
can at the same time activate the emotional representation
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of its US and become preferentially the target of an action.
On top of its higher biological plausibility, this model has
the advantage to explain classical conditioning not in terms
of S-R or S-S associations, but rather by the emotional value
of the US that is transformed into a motivational value for
responding to the US. In other terms, Pavlov’s dog does not
salivate because he thinks the bell is eatable, but because
the bell prepares it to the action of consuming something
pleasant.

3.2 Gated Dipoles

As the previous model worked with either appetitive or aver-
sive conditioning, but not both at the same time, Grossberg
proposed a model of affective opponent processing called
gated dipoles [15]. If one consider the situation where an an-
imal has to perform a certain action in order to stop a painful
stimulation, the question that arises is: how can an absence
of external stimulation become the goal of an action? He
proposed a neural network where each emotional response
is computed by two opponent ON and OFF channels. These
channels compete with each other and adapt to their inputs
by the depletion of the corresponding neurotransmitter. They
also both receive an arousal input. When the appetitive (resp.
aversive) stimulation is present, the ON channel inhibits the
OFF channel but progressively loses its efficiency. When the
stimulation stops, the OFF channel receives more arousal
than the ON signal because of the neurotransmitter deple-
tion and wins the competition against the ON channel, what
produces a phasic antagonistic rebound of the opposite emo-
tional response without stimulation. This explains the sensa-
tion of relief after the cessation of a painful stimulation, or
the frustration when a pleasant stimulation suddenly stops.
This mechanism is in accordance with the general opponent-
process theory of motivation but, more interestingly, also
provides an account for the observed pattern of rebound acti-
vation in LH. This model was combined with the previous to
explain both primary and secondary, appetitive and aversive,
conditioning [16]. The same author later added time delays
to cope with different intervals between the CS and the US,
and used this Cog-Em (cognitive-emotional) network to ex-
plain a variety of tasks, including the observed emotional
and cognitive deficits in autism [17].

3.3 Fear Conditioning in the Amygdala

The most neurobiologically studied form of emotional con-
ditioning in the brain is fear conditioning in the amygdala,
mostly thanks to the work by LeDoux [22]. He identified the
anatomical pathways supporting a particular form of condi-
tioning where an auditory stimulus (CS) is followed by an
electric shock (US). As shown in Fig. 2, he observed that

Fig. 2 Schematic diagram of fear conditioning in the amygdala.
MG: medial geniculate body of the thalamus; BLA: basolateral amyg-
dala; CE: central nucleus of the amygdala

information reached the amygdala through different path-
ways: the nociceptive information about the US reaches di-
rectly the output nucleus of the amygdala CE to generate
bodily responses, but also the medial geniculate body of the
thalamus (MG) where it is further relayed to the basolateral
amygdala (BLA). Auditory information about the CS also
reaches MG, forming a “fast” route of CS information to the
amygdala. However, auditory information projects further
to the auditory cortex, where it also reaches BLA through
the “slow” route. The auditory cortex has finer discrimina-
tion properties than the auditory thalamus, allowing a better
evaluation of the exact nature of the signal. The BLA is then
able to associate information about the CS and the US, and
its projections to CE can generate the CR. This has been
simulated in a computational model which replicated sev-
eral known properties of fear conditioning as well as neural
firings, and made several predictions [1]. A lot of issues re-
main nevertheless open. Information about the CS and the
US are already integrated in MG, which raises the question
of what is really learned in BLA. In fear conditioning, the
US has only a nociceptive dimension, but no visual one like
in the food delivery in Pavlov’s experiment: what are the
pathways in that case? It would be also interesting to know if
the appetitive conditioning in the amygdala follow the same
mechanism and how it interacts with aversive conditioning.
Further experimental and modeling work is necessary to bet-
ter understand the conditioning processes in the amygdala.

3.4 Reinforcement Learning with Dopamine

The Rescorla-Wagner rule of conditioning was further im-
proved by Sutton and Barto [38] by adding memory traces
for the representation of stimuli that explained that the op-
timal time interval between the CS and the US is around
one second in several experiments. This lead to the develop-
ment of the temporal difference algorithm (TD) that relied
on a temporal derivative of the discounted expected reward
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and paved the way for the field of reinforcement learning
[39]. The reward prediction error signal of the TD algorithm
shows similarities with the firing of dopaminergic cells in
VTA in appetitive conditioning [36], what lead to the de-
velopment of efficient models of DA and BG functioning
[37]. In these models, the ventral BG together with VTA is
thought to play the role of the critic in actor/critic architec-
tures by evaluating the discrepancy between the expected
and the actual reward, the associative and motor parts of the
BG playing the role of the actor.

We reviewed in [41] some of the criticisms made to
this analogy, the most important of them being that the re-
ward prediction error should progressively shift back in time
through learning from the US to the appearance of the CS,
when a simultaneous increase of CS-related and decrease of
US-related DA activation in VTA is observed. Moreover, it
is only able to learn one fixed time interval between the CS
and the US. Other models have since been developed to cope
with these problems [7, 28, 42] by separating the pathways
that generate DA firing for the CS and the US. In particular,
the model proposed in [28] can successfully modulate the
learning of working memory tasks. Nevertheless, as long as
no biological plausibility is required, TD is still a widely
used model to explain DA firing because of its computa-
tional simplicity.

4 Computational Models of Decision-Making

There is a growing number of computational models of
decision-making at various levels of abstraction. We focus
here on models that claim for a minimal biological plausi-
bility. We separate them into two categories depending on
the emphasis they put on cognitive or emotional processes,
although the frontier is blurry.

4.1 Cognitive TD-Based Models

The analogy between the TD algorithm and DA firing, asso-
ciated with the fact that DA strongly modulates processing
in prefrontal areas that are involved in decision-making, led
to the development of cognitive models of decision-making
that rely on RL techniques. In [10], Daw et al. make a dis-
tinction between model-free learning (by associating to each
state or action a value corresponding the expected sum of
reward, like in the TD algorithm) and model-based learning
(by computing on the fly this value through the descent of
a Markovian tree that reflects the expected states encoun-
tered by the system). They assign the former to the basal
ganglia and dopaminergic system, while the latter should be
constructed in the prefrontal cortex. The two systems com-
pete for the final decision by signaling their uncertainty: the

model-free system estimates itself the correctness of its re-
ward prediction, while the model-based one sums the uncer-
tainty of the decision tree’s states. Although this model pro-
vides an interesting account of behavioral data, it is not sub-
ject to learning (the tree is hard-coded) and to exploration.
Moreover, it predicts that the prefrontal cortex learns faster
than BG the changes in action-outcome contingencies, while
the contrary has been experimentally observed.

In [30], Rao elaborates further this Bayesian inference
principle by relying on partially observable Markov deci-
sion processes (POMDP). Instead of evaluating individually
all states of the environment (which are never fully acces-
sible), they compute in the cerebral cortex a posterior prob-
ability distribution called the belief state. Similarly to the
actor-critic models of BG, they assume that the motor do-
main of the BG selects the most appropriate action in this
belief context while the ventral BG should “critic” the cur-
rent belief. Interestingly, the actor can also decide to sam-
ple more deeply its environment when the uncertainty is too
high before taking a decision and risking negative reinforce-
ment. This behavior decreases with successful learning. The
model is able to learn a random dots discrimination task4

and provide an interesting account of the cooperation be-
tween cortical and subcortical structures, as well as of the
role of the dopaminergic signal in uncertain situations. Al-
though the mapping of the different algorithms onto brain
structures is fairly coherent, it remains to map this model
onto realistic neural networks.

4.2 Emotional Models

Deco and Rolls have provided a detailed spiking neurons
model of reversal learning in OFC [11]. They noticed that
such action-outcome reversal occurs sometimes within a
single trial, which is too fast to be accounted for by long-
term synaptic changes. They designed an attractor-network
model of OFC composed of different pools of neurons (or
modules): sensory, associative, rewarding and rule-specific
pools. The different stimulus-reward associations are hard-
coded in the associative pool (combinatory representation)
and biased by the rule pool: for example, rule 1 states that
object A is rewarding and not B, while rule 2 states the con-
trary. Each time an expected reward is omitted (which occurs
at each reversal), the currently active associative represen-
tation is inhibited, the rule is updated and a new stimulus-
reward association is selected. Unsurprisingly, such an ar-
chitecture leads to combinatory explosion when the number

4Random dots discrimination task consists in the visual presentation of
an array of randomly moving dots, biased on average towards a partic-
ular direction (e.g. left or right). The subject has to guess this direction
of movement. Reaction times typically increase with the difficulty (or
uncertainty) of the task.
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of stimulus and rewards increases, but this model gives al-
ready insights on the mechanisms involved in cognitive flex-
ibility. As the network does not learn connections, the model
does not explain how the stimulus-reward associations are
formed in OFC, but it suggests how cognitive rules (pre-
sumably maintained in dlPFC) or self-monitoring of perfor-
mance (vmPFC) can influence the motivational values com-
puted in OFC.

Frank and Claus provided a computational model of
the close cooperation between OFC and the ventral BG
in flexible decision making [13]. They build upon a previ-
ous model of action selection in the BG which was able to
learn probabilistically rewarded stimulus-response associa-
tion, but which failed at learning long-term strategies such as
in gambling tasks (e.g. frequent small losses and rare large
gains that are on average beneficial). This is explained by
the nature of the dopaminergic signal: its stereotypic phasic
activation can not represent adequately the respective im-
portances of gains and losses. They added to this model a
strategical module composed of the OFC (with the medial
part representing the current outcome-response expectancies
and the lateral part representing the previously experienced
reinforcements) and of BLA (representing the magnitude of
the reward). The model successfully learn the Iowa gam-
bling task, reversal learning, and devaluation paradigms. It
explains various aspects of decision making deficits in OFC
damaged patients or Parkinsons patients, and explains risk
aversion. This dichotomy between the evaluation of the fre-
quency of reward delivery by the DA system, and the valua-
tion of behavioral strategies in OFC is of particular biologi-
cal relevance in order to understand the role of emotions in
decision-making.

Dranias et al. proposed an anatomically realistic model of
motivation called MOTIVATOR that successfully addresses
classical conditioning, visual discrimination, devaluation,
extinction and reversal learning [12]. Its architecture con-
tains most of the structures depicted on Fig. 1. It combines
visual and gustatory inputs to the sensory cortex with the
organism’s needs (or drive, like hunger or thirst) in LH to
compute the motivational value of outcomes and to influ-
ence behavior. The network composed of the amygdala and
LH combines sensory and internal information to learn CS-
US associations and provides the emotional value of the CS
to the OFC (again with its lateral and medial parts) which
represents the relative motivational value of responding to
one of the multiple simultaneously present objects. This mo-
tivational value is modulated by the ventral BG which tracks
the discrepancy between the expected and actual emotional
values. When they do not match, the DA signal updates mo-
tivational values in OFC. Dues to its biological plausibility,
this model reproduces a lot of experimental evidence, both
on neuronal firing patterns or behavioral measurements like
saccadic response time or blood pressure changes, and pro-
vides several testable predictions. It studies extensively the

effect of satiety on behavior, or more generally the role of
the needs of the organism in the formation of choices, what
is neglected in most models: they suppose that any reward-
ing object is incentive for action.

5 Conclusion

Neurobiological computational models are very useful to
understand brain processes and human behavior but also to
give valuable insights in order to design intelligent agents
that could interact with humans. The models we reviewed
here demonstrate that the dichotomy between emotion and
cognition does not lead to efficient cognitive strategies if
they are thought as opponent processes. On the contrary,
they interact together with the common goal to improve the
usefulness of behavior. The computational study of classical
conditioning, that may seem too simple for AI, has led to a
better understanding of the role of the prediction of the emo-
tional value of an object in motivated behavior. It highlights
that potential goals are evaluated in terms of emotional sig-
nificance before being processed by cognitive structures and
has led to efficient improvement of RL techniques.

The same procedure may lead to a better understanding
of flexible cognitive abilities. Let us consider for example
the case of risk-taking: in order to reach a highly valuable
object, a robot may need to take the risk to go through a
series of intermediary actions that could probably harm it.
Depending on the value of the reward and on the prob-
ability to be injured (that can depend on its own estima-
tion of performance), the robot should deliberate to decide
whether it engages the action towards the reward, wait for
help or even try to build another strategy. This difficult cog-
nitive ability to estimate trade-offs between long-term re-
wards and potentially immediate punishments in a sequen-
tial strategy may be implemented by a computational model
derived from the anatomical areas depicted on Fig. 1. LH
and the amygdala can learn to assign to both rewarding and
punishing events a value that can compared on the same ba-
sis. The recurrent structure of the loop between OFC and
the ventral BG can compute the motivational value of the
reward by decomposing the sequence of actions required
to obtain it (planned by dlPFC) and estimating the associ-
ated risks. Self-confidence about its own performance can be
monitored by vmPFC and inhibit the amygdala, leading to
a decreased aversive value for the intermediary steps. Such
a computational model would allow to design a cognitive
agent that bases its decisions not only on a model of the ex-
ternal world, but also on its own beliefs about its needs and
performance, which should improve its communicative abil-
ities and “human-like” way of thinking.

The expression of an adequate behavior can not solely
rely on the cognitive manipulation of symbols, but the dif-
ferent events occurring in a dynamical environment should
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rather be emotionally valued in order to: (1) incite the sys-
tem to act, either by responding or by foraging, and (2) prior-
itize the available options. This emotional valuation is only
possible when the cognitive system is not considered in iso-
lation from its surrounding organism, but rather when it
is remembered that its ultimate function is to maintain the
body’s homeostasis at different levels: finding food, water
or a sexual partner, searching for pleasant stimulations and
avoiding painful ones, ameliorating the self-esteem of the
individual and its social integration. This emphasizes par-
ticularly the importance of embodied cognition, whether in
virtual reality or in robotics.
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