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Modeling feature-based attention as an active
top-down inference process
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bstract

Vision is a crucial sensor. It provides a very rich collection of information about our environment. The difficulty in vision arises,
ince this information is not obvious in the image, it has to be constructed. Wheres earlier approaches have favored a bottom-up
pproach, which maps the image onto an internal representation of the world, more recent approaches search for alternatives and
evelop frameworks which make use of top-down connections. In these approaches vision is inherently a constructive process which
akes use of a priory information. Following this line of research, a model of primate object perception is presented and used to
imulate an object detection task in natural scenes. The model predicts that early responses in extrastriate visual areas are modulated
y the visual goal.
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. Introduction

Object recognition, generally implemented in a hi-
rarchical bottom-up process (Fukushima, 1980; Perrett
nd Oram, 1993; Wallis and Rolls, 1997; Riesenhuber
nd Poggio, 1999) in which the complexity of represen-
ation along with the receptive field size increases, leads
o a strong overlapping of populations encoding features
elonging to different objects. These ambiguities in cell
opulations encoding features within the same receptive
eld limit the use of these approaches for non-segmented
cenes like natural images.

The closely linked paradigms of active vision, pur-
osive vision and animate vision (Aloimonos, 1993;
allard, 1991) have proposed that bottom-up directed

ision is an ill-posed-problem and suggested each task
equires its own specific algorithm. In this regard, an
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universal, general vision is not possible. According to
these paradigms, the fundamental problem of vision is
the selection of the relevant information within the scene
and the computation of an appropriate representation. An
“active” vision system – in the sense of a visually selec-
tive device – is able to acquire the necessary information
on demand by focusing on the relevant areas within the
visual scene and taking different views from the same
object.

The approach of “Deictic Codes for the Embodiment
of Cognition” aims to provide a framework for describ-
ing the phenomena that appear at about one-third of a
second in the perception–action process (Ballard et al.,
1997). Deictic primitives dynamically refer to points in
the world with respect to their crucial describing features
(e.g., color or shape). The outcome of the processing af-
ter one-third second, which is the natural sequentiality of

body movements can be matched to the natural computa-
tional economies of sequential decision systems through
a system of implicit reference (called deictic) in which
pointing movements are used to bind objects in the world

ed.
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to cognitive programs. Ballard et al. (1997) suggested
visual routines (Kosslyn, 1994; Ullman, 1984; Just and
Carpenter, 1976) to divide one complex task into sub-
tasks, such as selection and identification.

Selective perception has been addressed in attention
related experimental frameworks such as visual search.
The basic idea is that once an object is selected by a focus
of attention it can be connected to an internal pointer and
being processed in high-level areas. This view has its ori-
gin in the classical approach of perception that separates
between a pre-attentive and attentive stage (Treisman
and Gelade, 1980). Computer implementations of these
types of models use a saliency map to indicate a loca-
tion of interest (Koch and Ullman, 1985; Wolfe, 1994;
Itti and Koch, 2000) and compute a focus of attention
that selects an object (Olshausen et al., 1993). This fo-
cus could be guided by some rough knowledge about an
object, such as its color. Feature-based attention is left
to only guide the selection process by weighting the in-
put into the saliency map (Wolfe, 1994; Milanese et al.,
1995; Navalpakkam and Itti, 2005).

We have developed an alternative approach in which
feature-based attention acts on the object representations
itself. Spatially selective attentive binding, however, oc-
curs through reentrant oculomotor loops. The search for
an object or just parts of it produces top-down expec-
tations, which meet the bottom-up processed stimulus
features in the ventral pathway. This initiates a dynamic
and distributed recognition process at different levels
of the hierarchy by enhancing the features of interest.
At higher areas these are typically complex patterns.
At lower levels these complex patterns have to be de-
composed into more simple patterns. Thus, top-down
inference has to rely on reverse weights to decompose
a pattern into its parts. By competitive interactions such
a mechanism would allow to flexibly filter out the in-
formation which is inconsistent with the high-level goal
description. However, the sensory evidence of the en-
coded items does not always allow to rule out all objects
but one. This top-down inference only strengthens the
expected features, which are not necessarily the to be re-
ported ones, and guides goal-directed behavior. Thus, in
parallel, areas responsible for oculomotor selection start
to plan appropriate responses. Specifically, the target lo-
cation of the planed eye movement is used for a location
specific inference operation which in turn filters out ob-
jects at irrelevant locations. This spatial attention effect
could be interpreted as a shortcut of the actual planned

eye movement. It facilitates planning processes to eval-
uate the consequences of the planned action. As a result
of both inference operations, the high-level goal descrip-
tion is bound to an object in the visual world.
86 (2006) 91–99

In this approach vision is an active, dynamic and
constructive process. It allows a more close look onto
the processes of binding objects in the world to cog-
nitive programs that act within one-third of a second.
Our proposed concept relies on top-down connections
in vision, which have been discussed and its useful-
ness has been demonstrated for several times (Grossberg,
1980; Mumford, 1992; Ullman, 1995; Tononi et al.,
1992; Tsotsos et al., 1995; Rao and Ballard, 1999; Rao,
1999; Hamker, 1999; Engel et al., 2001; Hamker and
Worcester, 2002; Corchs and Deco, 2002; Hochstein
and Ahissar, 2002; Rao, 2004; Hamker, 2004b). How-
ever, top-down connections have not been used in an un-
equivocal fashion. The generative approach (Mumford,
1992; Olshausen and Field, 1997; Rao, 1999) predicts
that the top-down signal is subtracted from the bottom-
up signal. Such models predict a reduction of activity
when the predicted input matches with the actual in-
put. Our model predicts an enhancement, as previously
suggested by ART (Grossberg, 1980). We have shown
that this is consistent with cell recordings in IT, V4 and
FEF in visual search (Hamker, 2005a) and in other atten-
tional experiments (Hamker, 2004a,b). Since these sim-
ulations have been done with artificial inputs, we have
recently scaled up this model to simulate object detec-
tion (Hamker, 2005c,d) and change detection (Hamker,
2005b) tasks in natural scenes. Here, we will focus on
feature-based attention in area V4/TEO with respect to
the search task.

2. The model

2.1. Anatomical, pysiological and behavioral
evidence

The brain has developed specific functional areas in
the visual cortex, which can be divided into two major
streams. Form and color travel from V1 to V2, V4 of the
occipital lobe into TEO and TE of the inferior temporal
lobe (Zeki, 1978; Livingstone and Hubel, 1988). This
ventral pathway is known to encode object identity. It
is generally accepted that the complexity of encoded
features increases along the ventral pathway. V1 neurons
can be driven by simple properties of a stimulus, such
as the orientation of a bar. TE neurons, however, encode
highly sophisticated shape properties. These “experts”
have probably evolved to meet the statistics of stimuli
we typically encounter. The receptive field size has also

been suggested to increase along the ventral pathway
as well. Most of the receptive field size mappings have
been done with anestesized monkeys. The idea is that
the increasing receptive field size supports location
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nvariance, since a cell in higher areas is less sensitive to
he position of a stimulus. The ventral pathway has been
ften proposed of having a limited capacity. Referring to
bottleneck, the processing in early stages is supposed

o operate in parallel, whereas further processing in
igher areas has been proposed to require stimulus se-
ection (Treisman and Gelade, 1980; Koch and Ullman,
985; Wolfe, 1994). Recent findings suggest that these
onclusions might depend on the artificial stimuli used in
ttentional experiments. In statistically richer data sets,
uch as natural scenes, the similarity between target and
istractors is probably much lower than in most of the
rtificial stimuli used. For example, it has been shown
hat the detection of animals in natural scenes is easy
ven in dual-task conditions (Li et al., 2002; Rousselet et
l., 2004). These findings suggest that a strong capacity
imitation in the ventral pathway is an overestimation
ue to the used stimulus set. The findings, however,
ould alternatively be taken as evidence that we can do
ll processing of natural scenes within the feedforward
weep. Again, this might depend on the stimuli used:
he detection of trained and thus familiar objects placed
nto natural scenes requires monkeys to serially search
or the target (Sheinberg and Logothetis, 2001).

In order to give priority to one pattern over the other,
.g., by attending to the location of one stimulus, a top-
own bias was proposed (Desimone and Duncan, 1995;
eynolds et al., 1999). Similarly, a feature-based mech-
nism could allow to emphasize one pattern over oth-
rs (Chelazzi et al., 1998; Treue and Martı́nez Trujillo,
999). Thus, more general, feedback allows to resolve
mbiguities and to reveal visual details. Extending the
dea of a mere “attentional” bias, I propose that a tar-
et template travels the ventral pathway downwards via
assive feedback connections (Rockland and van Hoe-

en, 1994; Rockland et al., 1994) and enhances the firing
ate of cells supporting the target template by the pro-
osed inference approach. This mechanism implements
dynamic filter to compute the relevant properties within
general purpose machinery of localized experts.

The target template might be generated in ventro-
ateral prefrontal cortex. Dorsolateral PFC (areas 8, 9
nd 46), which includes the frontal eye field (area 8),
s often reported to code location and motor mapping
nd the ventrolateral part (areas 45 and 47) is more
evoted to categories and features. However, these areas
lso contain cells that show a dependency on both the
ocation and the feature (Rao et al., 1997). There is direct

vidence that prefrontal cortex is involved in providing
isual, top-down directed cues (Tomita et al., 1999).
hypothesize, that the target template is not limited

o simple properties, such as color, it can be highly
86 (2006) 91–99 93

complex. Recent evidence suggests that the prefrontal
cortex relies on an adaptive neural coding (Duncan,
2001) which could compute and provide a rich target
template given the context of the present task to perform.
Thus, I suggest that the prefrontal cortex guides visual
perception by generating an appropriate target template
in time, which is then used for an inference mechanism
implemented by the visual system.

I have proposed that occulomotor areas responsible
for planning an eye movement, such as the frontal eye
field, influence perception prior to the eye movement
(Hamker, 2003). The activity reflecting the planning of
an eye movement reenters the ventral pathway and pro-
vides a spatially selective expectation signal. As one of
many possible, I focus on the FEF as a putative source of
this reentry signal (Hamker, 2005a). The FEF has con-
nections to occipital, temporal and parietal areas, the tha-
lamus, superior colliculus and prefrontal cortex (Schall
et al., 1995). It can be subdivided into a lateral and medial
part. The lateral FEF, which generates short and precise
saccades is connected to the dorsal (LIP, MT, MST and
V3) and ventral (TEO, V4 and V2) pathways and the
ventrolateral prefrontal cortex (Schall et al., 1995). The
projections from V2 and V3 are weak, while the one from
V4 are intermediate. Strong projections from TEO, MT
and MST suggest that the FEF uses features after sev-
eral stages of processing for target selection (Schall et
al., 1995). The neurons in the FEF can be categorized
based on both their responses to visual stimuli and to
saccade execution into visual, visuomovement, fixation
and movement cells (Bruce and Goldberg, 1985; Schall
et al., 1995). There is some recent experimental evidence
that the source of the reentry signal is indeed the FEF
(Moore and Armstrong, 2003), but other sources cannot
be excluded.

2.2. Population-based inference

Population coding has been frequently used as a
theoretical basis for describing computation in the brain.
Much emphasis has been given to investigate how a
population encodes a stimulus. Our population-based in-
ference approach provides a framework to continuously
update the conspicuity of an internal variable using prior
knowledge in form of generated expectations. The pop-
ulation is represented by a set of cells. The selectivity of
each cell is defined by its location i ∈ {1, . . . , 20} in the
population and its activity r reflects the conspicuity of its
i

preferred stimulus. Each cell is simulated by an ordinary
differential equation, that governs its average firing rate
over time. Thus, the model allows to describe the tem-
poral change of activity induced by top-down inference.
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In abstract terms, the top-down signal represents the
expectation r̂ to which the input (observation) r↑ is com-
pared. If the observation is similar to the expectation, the
conspicuity is increased. This increase is implemented
as a gain control mechanism on the feedforward signal.
As far as feature-based attention is concerned a cell’s
response in V4 rd,i,x(t) at location x, selective dimension
d and preferred feature i can be computed over time by
a differential equation (with a time constant τ):

τ
d

dt
rV4
d,i,x = I

↑
d,i,x + IN

d,i,x + IA
d,i,x − I inh

d,x (1)

The activity of a V4 cell is primarily driven by its
bottom-up input I↑. Activity-dependent inhibition I inh

d,x
introduces competition among cells and normalizes the
cell’s response. IN

d,i,x describes the lateral excitatory
influence of other cells in the population. Feature-based
attention is a result of the bottom-up signal I

↑
d,i,x

modulated by the feedback signal from TE rTE
d,j,x′ with

w
IT,V4
i,j,x,x′ as the strength of the feedback connection:

IA
d,i,x = I

↑
d,i,x[α − rV4

d,k,x]+ · max
j,x′ (wTE,V4

i,j · rTE
d,j,x′ ) (2)

[α − rV4
d,k,x]+ implements a saturation of the gain

for salient stimuli, since the expression is zero for
negative arguments (Hamker, 2005d). The proposed
population-based inference mechanism has been devel-
oped to capture the essential observations of attention
on the population level. It has been demonstrated on
data of spatial (Hamker, 2004a) and feature-based
attention effects (Hamker, 2004b). Consistent with the
Feature-Similarity Theory (Treue and Martı́nez Trujillo,
1999), the enhancement of the gain depends on the
similarity between the input and the feedback signal.
A number of studies have investigated various effects
of dynamic gain changes. Such effects might occur
on the biophysical level of a single neuron or on the
network level. Correlated activity of the input could be
another mechanism. Observations revealed an enhanced
correlated activity in the gamma band (roughly 30–80
Hz) prior to any gain increase (Fries et al., 2001), which
in turn could increase the gain (Salinas and Sejnowski,
2001; Azouz and Gray, 2003). A model based on the idea
of synchrony has been proposed by Tiesinga (2005).

2.3. Network model
We simulate the interactions between areas on the
level of a population code. In this model, neural pop-
ulations are defined in a space spanned by the feature
selectivity i and spatial selectivity x ∈ (x1, x2) of the
86 (2006) 91–99

cells. The variable d refers to different channels com-
puted from the image such as orientation (O), intensity
(I) or red–green (RG), blue–yellow (BY), or spatial res-
olution (σ). The conspicuity of each encoded feature is
altered by the target template. A target encoded in pre-
frontal cortex defines the expected features rPF

d,i (Fig. 1).
We infer the conspicuity of each feature in TE denoted
as rTE

d,i,x by comparing the expected features rPF
d,i with

the observation, i.e. the bottom-up input r
TE↑
d,i,x. If the ob-

servation is similar to the expectation we increase the
conspicuity. Such a mechanism enhances in parallel the
conspicuity of all features in TE which are similar to
the target template. The same procedure is performed
in V4 to compute the conspicuity rV4

d,i,x where the ex-
pected features are the ones encoded in TE. The model
is simplified in two aspects. Firstly, the high-level goal
description is not constructed by the model on its own
but a target template is presented to the model. Secondly,
the target template is defined only in low level feature
space. This constraint occurs, since the complexity of the
feature space does not increase along the models “what”
pathway.

In order to detect an object in space the conspicuities
rV4
d,i,x and rTE

d,i,x are combined across all channels d and en-
coded in the frontal eye field visuomovement cells. The
projection from the visuomovement cells to the move-
ment cells generates an expectation in space rFEFm

x . Thus,
a location with high conspicuity in different channels d
tends to have a high expectation in space rFEFm

x . Analo-
gous to the inference in feature space the expected loca-
tion rFEFm

x is iteratively compared with the observation

r
V4↑
d,i,x in x and the conspicuity of a feature with a simi-

larity between expectation and observation is enhanced.
The conspicuity is normalized across each map by com-
petitive interactions. Such interative mechanisms finally
lead to a preferred encoding of the features and space of
interest.

We now briefly explain the simulated areas in the
model. A detailed description can be found in (Hamker,
2005c).

Early visual processing: Feature maps for red–green
opponency (RG), blue–yellow opponency (BY),
intensity (I), orientation (O), and spatial resolution
(σ) are computed. The initital conspicuity is de-
termined by center-surround operations (Itti and
Koch, 2000). Center-surround operations calcu-

late the difference of feature values in maps with
a fine scale and a coarse scale and thus, the ob-
tained conspicuity value is a measure of stimulus-
driven saliency. The feature information and the
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Fig. 1. Model for object detection in natural scenes. From the image, the features of five channels (RG, BY, I, O, σ) are obtained. For each feature
we also compute its conspicuity as determined by the spatial arrangement of the stimuli in the scene and represent both aspects within a population
code, so that at each location a feature and its related conspicuity is encoded. This initial, stimulus-driven conspicuity is now dynamically updated
within a hierarchy of levels. From V4 to TE, a pooling across space is performed to obtain a representation of features with a coarse coding of
location. The target template encodes features of the target object by a population of sustained activated cells. It represents the expected features
r̂PF
d,i

which are used to compute the (posterior) conspicuity in TE. Similarly, TE represents the expectation for V4. As a result, the conspicuity of all
features of interest is enhanced regardless of their location in the scene. In order to identify candidate objects by their saliency the activity across
all five channels is integrated in the FEF perceptual map. The saliency is then used to compute the target location of an eye movement in the FEF
decision map. The activity in this map r̂FEFm

x is fed back, which in turn enhances the conspicuity of all features in V4 and TE at the activated areas in
the FEF decision map. Thus, objects at expected locations are preferably represented. By comparing the conspicious features in TE with the target
t k if the object of interest is encoded in TE. Visited locations are being tagged
b ations”

emplate in the match detection units it is possible to continuously trac
y an inhibition of return. This allows the model to make repeated “fix

conspicuity are used to determine a population
code, so that at each location the features and their
related conspicuities are encoded.

V4: V4 has d channels which receive input from the fea-
ture conspicuity maps: rθ,i,x for orientation, rI,i,x

for intensity, rRG,i,x for red–green opponency,
rBY,i,x for blue–yellow opponency and rσ,i,x for
spatial frequency (Fig. 1). The expectation of fea-
tures in V4 originates in TE r̂

V4F

d,i,x′ = rTE
d,i,x and
while searching for an object.

the expected location in the FEF decision map
r̂
V4L

x′ = rFEFm
x′ . Please note that even TE has a

coarse dependency on location.
TE: The features with their respective conspicuity and

location in V4 project to TE, but only within the

same dimension d, so that the conspicuity of fea-
tures at several locations in V4 converges onto
one location in TE. A map containing nine popu-
lations with overlapping receptive fields is simu-
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lated. The complexity of features from V4 to TE
is not increased. The expected features in TE orig-
inate in the target template r̂

TEF

d,i,x = w · rPF
d,i and

the expected location in the FEF decision map
r̂

TEL
x = w · rFEFm

x
FEF perceptual map: The FEF perceptual map in-

dicates salient locations by integrating the con-
spicuity of V4 and TE across all channels. Its
cells show a response which fits into the cate-
gory of FEF visuomovement cells (FEFv). In ad-
dition to the conspicuity in V4 and TE the match
of the target template with the features encoded
in V4 is considered by computing the product∏

d maxi r
PF
d,i · rV4

d,i,x. This implements a bias to lo-
cations with a high joint probability of encoding
all searched features in a certain area.

FEF decision map: The projection of the perceptual
map to the decision map transforms the salient
locations into a few candidate locations, which
dynamically compete for determining the target
location of an eye movement. This is achieved by
subtracting the average saliency from the saliency
at each location wFEFvrFEFv

x − wFEFv
inh

∑
x rFEFv

x .
Thus, the cells in the decision map show none or
only little response to the onset of a stimulus, such
that their response fits into the category of the FEF
movement cells (FEFm). Their activity provides
the expected location for V4 and TE units.

3. Results

I now demonstrate the predictions of the model on the
early response of cells in extrastriate areas (specifically
V4) in a visual search task using natural scenes.

An object is presented to the model for 100 ms and
the model memorizes some of its features as a target
template. We do not give the model any hints which fea-
ture to memorize. The model’s task is to make an eye
movement towards the target (Fig. 2(A and B)). When
presenting the search scene, TE cells that match the target
template quickly increase their activity to guide percep-
tion on the level of V4 cells. Thus, the features of the
object of interest are enhanced prior to any spatial focus
of attention. This feature-based attention effect allows
for a goal-directed planning of a saccade in the FEF. The
planning of an eye movement provides a spatially orga-
nized reentry signal, which enhances the gain of all cells
around the target location of the intended eye movement.

As a result of these inference operations, the high-level
goal description in PFC is bound to an object in the vi-
sual world. Further simulation results are discussed in
(Hamker, 2005c).
86 (2006) 91–99

We now take a close view on the feature-based at-
tention effects of the model. In this respect we compare
two conditions: attend towards the visual properties of
the lighter (Fig. 2A) and attend towards the cigarettes
(Fig. 2B). Fig. 2C shows the difference activity of both
conditions in V4 prior to any spatial selection as deter-
mined by a low FEFm activity (max rFEFm

x (t) < 0.05).
Our analysis clearly shows that the activity is selectively
modulated according to the task at hand. Thus, the model
predicts feature-based attention effects independent of
focused attention. Although the effect is global in space
it can guide gaze towards the object of interest since it
depends on the content encoded at each location.

To illustrate the effects of feature-based attention on
the cell level we show their time course of activity. Fig.
3A shows the activity of cells with their receptive field
centered on the lighter. A difference in activity between
the attend lighter and attend cigarettes condition reflects
the relative effect of feature-based attention. In the ori-
entation channel (O), cell 01 shows an enhancement in
the attend cigarettes condition whereas cell 08 an en-
hancement in the attend lighter condition. Thus, even
cells with their receptive field on the lighter can be en-
hanced in the attend cigarettes condition. The target tem-
plate for orientation in the attend lighter condition was
close to horizontal and thus increased the activity of cell
08, whereas target template for orientation in the attend
cigarettes condition was vertical and thus enhanced the
sensitivity of cell 01 and adjacent cells. The blue color
of the lighter primarily increased the activity of cells
around cell 14 of the BY channel in the attend lighter
condition. The white color of the cigarette box increased
cell 18 of the intensity channel in the attend cigarettes
condition. We observe also differences in the timing of
the feature-based attention effect, which are based on re-
current interactions between V4 and TE as well as TE
and PFC.

4. Discussion

We predict that goal directed, feature-based search
first selectively modulates feature-sensitive cells prior to
any spatial selection.

This prediction is consistent with cell recordings in
visual search (Bichot et al., 2005; Ogawa and Komatsu,
2004) and recent findings in which the learning of de-
graded natural scenes resulted in a selective enhance-

ment of V4 cells (Rainer et al., 2004). According to this
study, V4 plays a crucial role in resolving an indetermi-
nate level of visual processing by a coordinated interac-
tion between bottom-up and top-down streams.
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Fig. 2. Illustration of feature-based attention. (A) Target object 1 and its detection in the visual scene; (B) target object 2 and its detection in the
visual scene; (C) difference activity in V4 in three channels over time. For a comparison with cell recordings a latency of about 60–80 ms has to
be added to the time axis. Only the difference of the maximal activity at each location is shown irrespective of the feature selectivity. Gray areas
i ondition
t the targ

a
p
i
t
t
c
d
t
i
2
s
(
m
m

ndicate equal (maximal) activity, light areas more activity in the first c
hat parts of the scene are relatively enhanced or reduced according to

Our model further predicts that saliency is encoded
s part of the variable itself through the dual coding
roperty of a population code. Saliency is not encoded
n a single map. Thus, attentional effects can be found
hroughout the visual system. The observation of an at-
entional modulation does therefore not allow to con-
lude that a stimulus has been selected by a spatially
irected focus. For example, V4 also provides a spa-
ially organized map encoding saliency (Fig. 2C), which
s consistent with recent findings (Mazer and Gallant,
003). However, V4 cells are selective for location and

pecific features. Consistent with recordings in the FEF
Schall, 2002), the FEF visuomovement cells in our
odel are more related to the classical idea of a saliency
ap (Itti and Koch, 2001), since they solely encode lo-
and dark areas more activity in the second condition. We can observe
et template.

cation by integrating the activity across all channels and
features. We assume that this information needs an ad-
ditional, decisional stage of processing before it is feed
back such that the saliency information is transformed
into a dynamic, competitive representation of a few can-
didate regions.

The present model uses only simple features
as detectors of visual properties. However, object
recognition requires a much richer set of detectors.
If we want to incorporate those into the model we
have to ensure that the feedforward and feedback

connections are consistent with each other. Learning
appropriate feedforward and feedback connections by
the statistics of the visual scene would allow to generate
consistent complex feature detectors. With such an
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Fig. 3. Illustration of feature-based attention effects on the single cell level. The activity is shown in two conditions with time relative to search
array onset (0 ms): attend towards the lighter (blue) and attend towards the cigarettes (red). The red shaded area between the curves appears when

rientat
O), inte
the activity in the second condition is higher. (A) Selected cells in the o
field center located on the lighter. (B) Selected cells in the orientation (
located on the cigarette box.

extension the model would be able to shed more light
on the puzzling issues of object recognition in natural
scenes.
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