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A computational model of visual stability and change
detection during eye movements in real-world scenes
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Visual cognition and change detection critically depend on attention and gaze. A
central question is the exact involvement of attention in change detection. This
paper proposes a detailed computational model to illuminate the nature of visual
stability and change detection during eye movements. Consistent with experi-
mental findings the model predicts that change detection at the saccade endpoint is
relatively easy. According to our model the planning of an eye movement provides
an enhanced sensory processing of an object at the saccade target. This facilitates
the memorization of that object. A comparison of the memorized target template
with the representation after saccade allows for change detection. We hypothesize
that the spatial reentry signal that emerges from planning an eye movement could
be a crucial neural basis of visual stability.

Change blindness describes the difficulty of humans to notice changes in scenes.
Most studies agree that focused attention overcomes this blindness to changes (for
an overview see Rensink, 2002). Henderson and Hollingworth investigated change
detection to saccade targets and found a high detection rate for saccade target
deletions. According to the saccade target theory of visual stability the object at the
saccade target is special because its location and features have been selected and
memorized prior to the saccade (Currie, McConkie, Carlson-Radvansky, & Irwin,
2000; McConkie & Currie, 1996). The saccade target theory has been contrasted to
extraretinal based theories which assume that an extraretinal eye position signal is
used to remap all retinal locations. In extension to the saccade target theory,
Henderson and Hollingworth suggested a visual memory theory to explain scene
memory accross saccades. Regarding change detection they suggested the fol-
lowing processes: Attention is allocated to the saccade target. Therefore, sensory
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processing of the saccade target is gated and an internal representation of the
stimulus in short-term memory is facilitated. During the saccade the sensory
activity declines. Once the eyes reach the target vision starts with the process of
comparing the stored representation with the new incoming signals. If no match
between both occurs an error signal is generated.

In this paper we investigate visual stability and change detection by means of
a computational approach. In the above-mentioned theories the term
“‘attention’’ is not clearly defined and the specific role of attention in change
detection has not been described in detail. For example, attention in the saccade
target theory is important to identify the saccade target as special. It is well
known that the eye movement is associated with attention (Deubel & Schneider,
1996; Kowler, Anderson, Dosher, & Blaser, 1995; Rizzolatti, Riggio, & Sheliga,
1994) but it is not clear if attention is a separate but linked process or if attention
emerges due to an extraretinal eye position signal. If the latter is the case the
saccade target theory would be less different to the extraretinal based theories.

Several computational models have emphasized different aspects of eye
movement control and some of them have been demonstrated in real-world
scenes (Backer, Mertsching, & Bollmann, 2001; Findlay & Walker, 1999; Itti &
Koch, 2000; Krieger, Rentschler, Hauske, Schill, & Zetzsche, 2000; Rao,
Zelinsky, Hayhoe, & Ballard, 2002). In all of these models the process that
defines gaze is separated from the process that analyses a scene near gaze point.

Our model (see Appendix) is unique with respect to how perception is
influenced by the planning of an eye movement (Hamker, 2003). It has been
successfully shown to be consistent with electrophysiological and behavioural
findings in attention tasks (Hamker, 2003; Hamker, 2004a) and recently
extended to natural scene perception (Hamker, 2005; Hamker & Worcester,
2002). According to our model occulomotor areas responsible for planning an
eye movement, such as the frontal eye field, influence perception prior to the eye
movement. The activity reflecting the planning of an eye movement reenters the
ventral pathway and sensitizes all cells within the movement field. We use this
model to simulate a change detection task that is comparable to the one used by
Henderson and Hollingworth (2003). Consistent with the saccade target theory
the model predicts that a global remapping is not necessary for visual stability.
However, since the spatial reentry signal, which is crucial for the emergence of
attention in our model, can be defined as an extraretinal eye position signal, our
model suggests that the saccade target theory is in part related to the extraretinal
based theories.

THE MODEL

The model (Figure 1) consists of visual areas V4, inferotemporal (IT) cortex,
prefrontal areas that contain the frontal eye field (FEF) for saccade planning, and
more ventrolateral parts for implementing functions of working memory
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Figure 1. Model for visual perception of natural scenes. First, information about the content and its
low level stimulus-driven salience is extracted. This information is sent further upwards to V4 and to
IT cells that are broadly tuned to location. The target template is encoded in PF memory (PFmem)
cells. PF match (PFm) cells indicate by comparison of PFmem with IT whether the target is actively
encoded in IT. Feedback from PFmem to IT increases the strength of all features in IT matching the
template. Feedback from IT to V4 sends the information about the target downwards to cells with a
higher spatial tuning. FEF visuomovement (FEFv) cells combine the feature information across all
dimensions and indicate salient or relevant locations in the scene. The increasing activity of a FEF
movement (FEFm) cell is sent into extrastriate visual areas and facilitates the processing within its
movement field. The IOR map memorizes recently visited locations and inhibits the FEF
visuomovement cells.

(Baddeley, 1986). In addition, we simulate a map for the inhibition of return
(IOR) which might be located in posterior parietal areas.

We investigate the putative interplay of the saccade system onto visual
perception and memory in a change detection task. Change detection and
transsaccadic scene perception requires the storage of visual information in
visual short-term memory (VSTM; Irwin, 1992) and the use of the memorized
pattern to indicate the change.

If we present a visual scene to the model, features such as colour, intensity,
and orientation are computed in different V4 maps. The fact that features that
are unique in their environment ‘‘pop-out’ is to a first degree achieved by
computing center-surround differences. V4 cells compete for representing their
encoded stimuli. This competition is biased by feature-specific reentry from IT
cells and spatial reentry from the frontal eye field movement cells. The growing
receptive filed size along the processing hierarchy requires that a number of V4
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cells encoding identical stimuli at different locations project to a single IT cell.
For simplicity the type of features in V4 and IT is identical. IT receives feature-
specific reentry from the prefrontal memory cells and location-specific reentry
from the frontal eye field movement cells (Hamker, 2003).

Initially, the prefrontal memory is empty. The model is set to memorize a
pattern defined by the cells with the strongest activity in IT just prior to each
saccade. At this time the dynamic representation in IT is strongly influenced by
the occulomotor system, since the movement cell activity provides a delayed
reentry signal to extrastriate areas such as V4 and IT. The assumption of such a
reentry signal is supported by the finding that FEF microstimulation modulates
V4 activity (Moore & Armstrong, 2003).

The planning of the eye movement is implemented as follows. The FEF
visuomovement neurons receive convergent afferents from V4 and IT and add
up the activity across all dimensions (colour, intensity, orientation). The infor-
mation from the target template hold in PF memory cells additionally enhances
the locations that result in a match between target and encoded feature. This
allows the biasing of specific locations by the joint probability that the searched
features are encoded at a certain location. The firing rate of FEF visuomovement
cells represent the saliency and task relevance of locations. The effect of the FEF
visuomovement cells on the FEF movement cells is a feedforward excitation and
surround inhibition. Thus, by increasing their activity slowly over time FEF
movement cells compete for the selection of the strongest location. If a FEF
movement cell exceeds a threshold, an eye movement is indicated towards the
location of the centre of gravity of movement cell activity.

There is currently no clear indication where cells that implement a dynamic
memory for an inhibition of return are located. We assume that each eye
movement triggers a charge of IOR cells at the location of saccade target. This
causes a suppression of the recent saccade target in the visuomovement cells.
IOR cells slowly decay.

The model “‘prefrontal cortex’’ serves for two major functions, memorizing a
pattern in PF memory cells and indicating a match of the incoming pattern with
the memorized pattern in PF match cells. Cells that memorize patterns are
known to exist in prefrontal areas. In studies using a delayed match-to-sample
task elevated firing rates within specific populations have been reported during
the delay (Miller, Erickson, & Desimone, 1996). The activity of such popula-
tions in the prefrontal cortex is robust to interfering stimuli. Other prefrontal
cells indicate a match detection in a delayed match-to-category task (Freedman,
Riesenhuber, Poggio, & Miller, 2002), which is similar to our PF match cells.
The capacity of transsaccadic memory has been shown to comprise about 3—4
items and its content is slow-decaying (Irwin, 1992). An item seems to be an
integrated object representation, which comprises identity, colour, and location
(Irwin, 1992). The present model capacity is only a single item. This
simplification does not allow us to make predictions about the circumstances
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that may define the size of memory. However, it does allow us to simulate
perception of an object at the saccade target.

This model of visual perception has been developed to be consistent with a
range of electrophysiological findings. The model V4 area’ (Hamker, 2004b)
has been demonstrated to quantitatively account for receptive field competition
in V4 (Reynolds, Chelazzi, & Desimone, 1999). A simplified version of the
proposed systems model (Hamker, 2003) has been shown to match the time
course of IT and V4 activity in visual search (Chelazzi, Duncan, Miller, &
Desimone, 1998). The model is also consistent with findings in the FEF (Schall,
2002) and psychophysical data (Hamker & vanRullen, 2002).

We do not explicitly model the properties that emerge from the physical eye
movement. During this period vision is impaired. V4 cells would receive input
from a smeared retinal image and after the eyes land the new retinal image
would mask the most recent representation. In an overt visual search task with a
homogeneous background V4 cells have been shown to persist activity after
saccade onset but the firing rate declines within 100 ms (Chelazzi, Miller,
Duncan, & Desimone, 2001). Due to the large receptive fields and late position
in the hierarchy, IT cells maintain activity during the movement and increase
their rate after the eyes reach the target (Chelazzi et al., 1998). It seems that
perception during a saccade is not necessarily interrupted. Although once the
eye started sweeping across the scene the image in early visual areas is smeared
and masked with the postsaccadic image, late processing areas could maintain
the representation that is present just prior to the saccade in order to support a
continuous percept.

The high foveal resolution of the object at the target location after the saccade
allows a preferred processing (Rolls & Tovee, 1995). Any form of spatial
attention that might be present initially after the eyes land cannot be dissociated
from this fovea effect. Since we do not model the retinal resolution and cortical
magnification we use the decline phase of the reentry signal to simulate the
condition after eye movement. The decreasing reentry signal enhances sensory
processing of the object at the target location for a brief period until it vanishes.

EXPERIMENT

Henderson and Hollingworth (2003) instructed participants to observe complex
scenes to prepare for a later memory test. Participants had been told that they
were shown two scenes: One original and a slightly modified version. They
would have to indicate whether the original and the modified scene differ. More
important is the additional instruction according to which they have to imme-
diately report object changes while studying the original scene. Here we are only
interested in the deletion condition. Objects that were deleted had been placed in
an uncluttered region of the scene. If a subject’s gaze crossed a boundary around
such an object it was removed by displaying a changed scene.
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Figure 2. Experimental paradigm to simulate change detection of objects at the saccade target. A
natural scene is presented to the model. Initially, the selection of the saccade target location is only
guided by stimulus-driven saliency. The most salient location is at the toothpaste. In the present
simulations we use the second saccade, which is directed towards the hairbrush to investigate change
detection. At the time the FEF movement cells indicate the onset of a saccade the scene either
remains identical (no-change condition) or the hairbrush is removed (change condition). The activity
within the model is not reset during the change of the scenes.

This experiment is comparable to a free viewing task, in which the model’s
gaze is only driven by the stimulus saliency. The model scans the scene by
visiting one object after another (Hamker & Worcester, 2002). We set up the
model to memorize the strongest IT pattern in PF memory cells just prior to each
saccade. We use this model’s behaviour for change detection (Figure 2). Once a
location is selected for an eye movement we either do not change the scene or
we remove the object at the saccade target. Thus, we receive simulation data for
no-change and change trials. The PF match cells indicate if the model finds the
memorized pattern in the scene.

RESULTS

We first demonstrate how the model operates in a free viewing task and then
demonstrate change detection. Figure 3 shows the FEF visuomovement and
movement cell activity around the time the model selects the hairbrush. FEF
visuomovement activity can be interpreted as a measure of the strength of
processing at each location since visuomovement cells receive their main input
from V4 and IT and average across all dimensions. Prior to each saccade all
locations with objects are processed in parallel and represent potential targets.
The movement cells read out the information from the visuomovement cells and
select the target location for the eye movement. Thirty ms prior to saccade, the
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Figure 3. Activity of the FEF visuomovement (top) and movement (bottom) cells around the time
of saccade begin (0 ms). Each image is a snapshot of the activity at the time indicated on the axis.
The space within each image refers to the scene shown in Figure 2. The planning of the saccade is a
dynamic process. Visuomovement cells reflect areas of high processing in V4 and IT and thus
potential target locations for saccadic eye movements. The area around the location of the most
recent eye movement is inhibited by cells from the IOR map. Movement cells determine the saccade
target and provide a reentry signal to enhance sensory processing in V4 and IT. Spatial reentry
emerges earlier than 30 ms prior to the saccade and is most prominent at the beginning of the eye
movement.
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model shows a preferred processing around the planned target location. This
effect emerges from the reentry of movement cell activity into V4 and IT. After
target selection the IOR cells get charged by the movement cells and inhibit
visuomovement cells with receptive fields around the target location. The
movement cell activity gets suppressed by FEF fixation cells, that are activated
after the eye movement.

We have explained the mechanisms of overt and covert attention in the model
and demonstrated the models performance. Regarding change detection the
model has to recognize whether the object at the target location is removed or
not. As we have explained in the model section the PF memory cells memorize
the strongest pattern active in IT just prior to saccade selection. Objects at the
target location are most likely to be memorized since the reentry signal enhances
their sensory processing (Hamker, 2004a). Once a pattern is in short-term
memory it biases competition among IT cells by a feature-specific reentry
signal. This form of feature-based attention represents a search process for a
specific pattern in the scene. PF match cells indicate by their activity if the
search template hold in PF memory cells is currently encoded in the scene
(Figure 1). We expect that the removal of an object results in a decline of
activity in IT cells which encode properties of this object. Figure 4A shows this
for the intensity channel in the model. The dark areas of the hairbrush located in
the lower left part of the scene (Figure 2) are represented by cells on the left side
of the feature space (cells 2—3 in Figure 4A). Although the receptive fields of IT
cells cover the full scene the model dynamics at the time of the eye movement
ensures that the removal of the hairbrush results in a decline of representative IT
cells, even if the scene contains other dark areas elsewhere. The higher firing of
IT cells (Figure 4A) in the no-change condition relative to the change condition
is reflected by light areas in the difference signal. Thus, the visual persistence
during the eye movement encoded by IT cells reflects the recently attended item.
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Figure 4. Comparison of IT and PF match cell activity in the no-change and change condition. (A)
IT cell activity in the intensity channel. The model encodes intensity information by a population of
20 cells. Cells with lower numbers are selective for dark patches and cells with high numbers for
light areas. We simulate nine populations of IT cells with different receptive fields (RF). In order the
present IT activity across the full scene we only plot the maximal activity regardless of RF location.
50 ms prior to saccade IT activity is very low since inhibitory cell populations with a larger time
constant suppressed IT activity after a strong firing due to the most recent eye movement. IT cells
increase again their activity and initially encode the scene in parallel. Due to the spatial reentry signal
they focus their processing at the saccade target by suppressing IT cells with RFs that do not contain
the saccade target (not shown). The removal of the object results in a decline of the activity of cells
encoding the objects properties. By taking a difference between the no-change and change conditions
we see that the no-change condition is reflected by a stronger activity of several IT cells (grey
indicates no difference). (B) PF match cell activity in the intensity channel. Despite the obvious
difference in IT activity, change detection is performed by searching for a target template hold in PF
memory cells. In this case the model selects the dark patches of the hairbrush as a search template
since the IT cells encoding this feature fired most prominent prior to the eye movement. After the eye
movement the model continues to search for this pattern. PF match cells indicate a successful search
by their activity since they only fire by the joint activity of a PF memory and respective IT cell.

The detection of a change, however, has to be an active process, which requires
the match of IT activity with the memorized target template hold in PF memory
cells. In the intensity channel the model has memorized a pattern that represents
the dark spots of the hairbrush. Thus, in the no-change condition the PF match
cells (Figure 4B) continue to fire around the time of the eye movement but in the
change condition their activity declines.

PREDICTIONS

First of all the model predicts that an object change at the saccade target location
can be well detected. The reentry signal that necessarily occurs at the saccade
target location enhances sensory processing of objects in its vicinity and
increases their probability to be memorized. The model also predicts that object
properties can be reported when the scene disappeares before the eyes land at the
target location. Irwin & Zelinsky (2002) found a high accuracy of report even
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when the object had never been foveated. Thus, object identification begins
before the eyes actually fixate on the object.

Visual stability might be achieved through continuity. Before the eye
movement spatial reentry generates a representation that prepares for the one
that can be expected after the eye movement. Processing capacity is restricted to
the same issues just prior, during and just after the eye movement. Thus, parallel
changes elsewhere in the scene are likely to go unnoticed.

The model also predicts that change detection is an active process that
requires to actively maintain a search template while the eyes sweep across the
scene. Thus, eye movements recruit resources that could interfere with other
tasks to be done in parallel. For example, it has been shown that mental rotation
(Irwin & Brockmole, 2000) and shifts between global and local judgements
(Brockmole, Carlson, & Irwin, 2002) are impaired during saccadic eye move-
ments.

For simplicity the model searches for the same pattern it has memorized prior
to the saccade. One can only speculate about the exact templates used for
identification. It is likely that the brain generates a prediction instead of a copy.
This makes it difficult to predict the search template used in experiments.
Henderson and Hollingworth (2003) investigated the effect of deletion as well as
type and token changes. The detection rates for type and token changes decrease
with the length of the saccade. Since the spatial resolution is very poor in the
periphery, and predictions are difficult to make based on very little information,
we would expect a slower decline if changes do not affect low frequency
components and the sign of contrast.

DISCUSSION

The perception of a visually stable environment during eye movements is an
ongoing debate. Although perception during eye movements is strongly
impaired we do not perceive the world in snapshots. Von Helmholtz (1896)
argued that image motion during the eye movement could be sensed to com-
pensate for the shift in image position. Extraretinal theories postulate an
extraretinal signal that remaps the full scene during each saccade in order to
achieve a space-constant representation. It was suggested that the motor-related
signal of saccades can be sent back as a “‘corollary discharge’” (Sperry, 1950) or
“‘efference copy’’ (von Holst & Mittelstaedt, 1950). However, the origin and
type of such an extraretinal signal has remained unclear. Perisaccadic mis-
localization experiments in total darkness lead to a hypothetical eye-position
signal that starts to rise 200 ms before the saccade begins and ends after the eyes
have landed (Schlag & Schlag-Rey, 2002). Remapping of receptive fields has
been found in LIP (Kusunoki & Goldberg, 2003), the superior colliculus
(Walker, Fitzgibbon, & Goldberg, 1995), and the frontal eye field (Umeno &
Goldberg, 1997). However, it is not clear if this predictive shift of receptive
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fields contributes to visual stability or primarliy updates the occulomotor
system.

Alternatively to the visual remapping hypothesis a link between the repre-
sentation before and after the saccade could be established by the saccadic target
object or nearby landmarks (Currie et al., 2000; Deubel, Schneider, & Bridge-
man, 2002; McConkie & Currie, 1996). Locating this object at the onset of the
new fixation would be sufficient for relating the contents of the two repre-
sentations with each other (Bridgeman, van der Heijden, & Velichkovsky, 1994).

Our model is consistent with the saccade target theory of visual stability.
However, since the spatial reentry signal from the movement cells can be
defined as an extraretinal eye position signal our model indicates a possible
relation of the saccade target theory to extraretinal theories. We predict a
modulatory signal that is directed to the saccade target. This signal could be
responsible for the reported mislocalization of briefly flashed stimuli towards
the endpoint of the saccade in illuminated rooms (Lappe, Awater, & Krekelberg,
2000; Ross, Morrone, & Burr, 1997).

In extension to a mere theory the presented model helps to reveal the
underlying processes and illuminates those effects often referred to as attention.
Early perception is primarily feedforward driven and meets high-level expec-
tations while late perception emphasizes the features of interest and implements
focal processing (Hamker, 2004a). We suggest that competition and cooperation
implements a dynamic filter that allows the brain to connect planning processes
with the physical world. The neural correlate of visual stability across eye
movements could have its origin in spatial reentry. Perception just prior to a
saccade is focused onto the saccade target and its vicinity and allows to make a
hypothesis about the situation after saccade. The testing of this hypothesis links
cognition before and after the saccade with each other which might be crucial
for perceiving stability. This definition of vision as an active process does not
require a stable space-based representation around the eye movement.

Regarding change detection the saccade target theory refers to attention for
mediating the processes of object selection and memorization. Our model pro-
vides a testable explanation about the underlying neural processes. Spatial
reentry (e.g., from the FEF movement cells) provides an enhanced sensory
processing of the item at the saccade target. It becomes the object of interest, it is
more likely to be memorized and its representation can be used to make an
estimate of the situation after the eye movement. After the saccade the generated
search template allows a comparison with a high-level representation such as in
area IT. Similar as suggested by the coherence theory of Rensink (2000) our
model demonstrates that an all-purpose representation is not necessary. The
representation needed for the task at hand is dynamically created.

This idea receives further support from IT cell recordings during search for
familiar objects in natural scenes. Sheinberg and Logothetis (2001) compared
trials in which a familiar object was present but the eye movement was directed
elsewhere with trials in which the monkey directed his eye towards the familiar
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object. They found significantly different target-selective responses 95 ms
before the eyes move. This provides strong evidence for our assumption that
object analysis occurs even before the object is fixated. Present familiar objects
that are not the goal of the next fixation show no perisaccadic activity. Our
model explains this effect primarily based on the spatial reentry signal, which is
under normal conditions directed to the saccade target location.

Limitations of the model

We do not model the properties that emerge through the physical movement of
the eyes and the decrease of spatial resolution from the fovea to the periphery.
Thus, we are unable to make predictions about the period of time from the
beginning of the eye movement to the new fixation and ignore this period in the
simulation. We think that our assumptions about the conditions after saccade are
plausible. The objects which appear in the fovea will receive an enhanced
sensory processing such that an hypothesis testing is possible without engaging
in a detailed search to locate the object of interest.

Our search template contains simple object features. Thus, change detection
is only possible if these features are unique in the near environment of the
saccade. The grouping of complex parts into some object description is not
implemented in the present version. However, we have demonstrated that the
dynamics of the model suppress the same features elsewhere in the scene. The
limitation due to the simple feature spaces used does not seem to affect the line
of arguments.

Studies suggest that approximately four visual objects or six spatial locations
can be stored in VSTM (Luck & Vogel, 1997; Pashler, 1988). The present model
makes very little assumptions about memory. We have implemented a memory
with a single item capacity. However, even sophisticated models of spatial
working memory are limited to a single entry (Compte, Brunel, Goldman-Rakic,
& Wang, 2000). This limitation is inherent to simple continuous attractor neural
networks that implement a population-based winner-take-all process (Amari &
Arbib, 1977; Deneve, Latham, & Pouget, 1999). The assumption of a fixed
number of storage places with a single item capacity is probably too simple,
since the capacity varies due to experimental conditions. Alternatively short-
term memory could store patterns with nested oscillations in which memory
patterns repeat on each low-frequency (5—12 Hz) oscillation (Lisman & Idiart,
1995). If we would extend the model to have a capacity of four items it would
still predict that the saccade target is special. However, it would allow us to
investigate more subtle aspects of visual salience and task relevance of objects at
other locations. Another factor that limits present neural models of working
memory is that we did not understand sufficiently well how the brain defines an
object as compared to a collection of features. Working memory seems to
encode integrated objects (Luck & Vogel, 1997). Although our model of
working memory is relatively simple it is sufficient to study the interaction of
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perception and memory. In future versions it would be interesting to extend the
model in order to provide predictions for the controversy about the amount of
information that can be maintained during consecutive eye movements (Hen-
derson & Hollingworth, 2003; Irwin & Zelinsky, 2002). Despite these limita-
tions the presented model is a novel and very comprehensive computational
account for explaining the role of covert and overt attention in change detection.
Earlier computational models have typically focused on either recognition and
attention or memory alone. Our model combines these three aspects of per-
ception. It helps to explore the underlying neural mechanisms on the systems
level that cannot be addressed at the level of more abstract theories.
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APPENDIX

We now give a formal description of the model. The model can be divided into a static preprocessing
part that computes stimulus-driven saliency and a dynamic part that simulates the temporal dynamics
of perception.

Preprocessing and saliency. Starting from the colour image, we extract orientation maps O(a, 0)
with varying resolution ¢ and orientation 0, intensity /, red—green RG = R — G, and blue—yellow BY =
B—Y maps (Itti, Koch, & Niebur, 1998).

The conspicuity of each feature is implemented by centre-surround operations ““©”’. We con-
struct orientation contrast (/(c, s, 0), intensity contrast .#(c), as well as red—green £2%(c) and blue—
yellow %%(c) double opponency (Itti et al., 1998). For each feature, we combine the feature
information into an attribute V and its corresponding contrast value into a gain factor P of a
population code. This dual coding principle is a very important characteristic. A feature is presented
by the location of cell activity, and the conspicuity of this feature is represented by the strength of
activity. At each location x;, x, we construct a space, whose axes are defined by the represented
features and by one additional conspicuity axis. The population is then defined by a set of neurons i
€ N sampling the feature space, with each neuron tuned around its preferred value w;. For each
neuron y; we obtain an activity value:

yi=P-g(u—V) 1

Specifically we use a Gaussian tuning curve with the selectivity parameter o:
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- 2
gy — V) =exp <_ w> @

8

To apply the same range of selectivity parameters 6> € {0.05 ... 0.2} for all channels we normalize
the feature values V € {I, RG, BY, 0, o} of each channel between zero and one. The cell activity
within the population should typically lie within the range of zero and one. Thus, we also normalize
the contrast values to .7, %, %, 0. We finally receive the populations for each channel with scale
¢ at each location x:

vi(e,x) = F(e.x) - g(ui — I(c.x))
leG((;’x) = %(Ca x) - glu; — RG(L’X))
P (e.x) = BY(c.x) - g(u; — BY (c,x))
y!(c,x) = max (5(0, 0,x) - g(u; — 0))
0
¥/ (c,x) = rr;ax ((Nﬁ‘(c, 0,x) - g(u; — a)) 3)

We now have #c maps, where #c is the number of center scales, with a population at each point x for
a different centre scale ¢. To combine these maps across space into one map with the lowest
resolution (highest ¢) we use a maximum operation (max, xerr(x))-

Temporal dynamics. Each map in the model represents a functional area of the brain. It contains
at each location x a population of 7 cells encoding feature values (Equation 4), with the exception of
the maps in the frontal eye field and IOR that only encode space (i = 1). In addition V4 and IT have
separate maps for different dimensions d (RG, BY, etc.). The population of cells is driven by its input
yj,viix. Feedback implements an input gain control to enhance the representation of certain features
and biases the competition (Desimone & Duncan, 1995) among active populations. Feature-specific
reentry operates within the models ‘‘ventral pathway’’ and enhances cell populations whose input
matches the feedback signal. Spatial reentry arrives from the frontal eye field and boosts features at a
certain location, generally the target of the next soccade. I/ M induces competition among cells and
1™ causes a normalization and saturation. Both terms have a strong short range and weak long range
inhibitory effect.

d .
Tayd’ix yd”‘+1L+1 —Ydix Ilnhflg.l:h (4)

The following maps use implementations of the general equation quoted above (Equation 4).

V4. Each V4 layer receives input from a different dimension (d) in the feature conspicuity maps:
y,x for orientation, y,x for intensity, y;% RG for red—green opponency, y,x for blue—yellow opponency
and y7, for spatial frequency. V4 cells receive feature specific feedback from IT cells (" =o'
["EI“m

and spatial reentry from the frontal eye field (1 = I°(y

IT. The populations from different locations in V4 project to IT, but only within the same
dimension. We simulate a map containing nine populations with overlapping receptive fields. We do
not increase the complexity of features from V4 to IT. Thus, our model IT populations represent the
same feature space as our model V4 populations. The receptive field size, however, increases in our

model, so that several populations in V4 converge onto one population in IT: yI x> w! mRF( yl d -

Prmemyy and location-

IT receives feature-specific feedback from the prefrontal memory (I* = I*(y
specific feedback from the frontal eye field (I = IG(yFFE"’)).
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PFmem. The memorization of pattern is achieved through recurrent excitation. Whether a pattern
should be memorized depends on the task. Thus, we define a variable 7°"(¢) € {0, 1} that controls
the inhibition and determines that a pattern is memorized prior to each saccade. The first and
strongest pattern closes the gate for other patterns.

h
Im —WthYdJ

(1) = (07 - 0.6 1) > ya (1)
J
yg,,-(l) = (T mem — wee m?xydj(t)) mgXG(Yfi,TLx(f) - C);
a(a) = max(a,0) (5)
PFm. To determine whether a pattern in the visual scene is similar to the pattern in memory we

define PF match cells which compare the current pattern in IT cells with those in PF memory.
Activity rises in PF match cells only if both populations match.

Ilnh = Winh Z yd]
]Zinh t) = Wrinh ZYd.j (1)
Vi) = wTy"‘:“““"( £) max yjh (1 (6)

FEFv. The Visuomovement neurons receive convergent afferents from V4 and IT
yle = wV4 E max yyi o+ wll 2 max  yit + wFEFm yFEFM The information from the target

d iX
iX'€RF(x)
template addltlonally enhances the locations that result in a match between target and encoded
feature y”’ = yPFmem H max yPF’“e"1 y}“‘x at all locations simultaneously. This allows the biasing of

specific locations by the joint probability that the searched features are encoded at a certain location.

FEFm. The effect of the visuomovement cells on the movement cells is a feedforward excitation
and surround inhibition: y| = wFEFY yFEFV _ FEFT FEFT PRV N7 JFEEV - Thyg, by increasing

their activity slowly over time premotor cells compete for the selecti‘on of the strongest location.

FEFf. After the FEFm cells exceed a threshold FEEF and initiate an eye movement at the time ¢,
we assume that the FEFf cells receive input for a brief period 754 and then decay.

ey = W I )~y

e Lif  yFERm(z) > TFEF < g 4 TSAC ™)
0 else

IOR. There is currently no clear indication where cells that ensure an inhibition of return are
located. We regard each location x as inspected, dependent on the selection of an eye movement at
yEEFm(,) > FEEF or when a match in the PFm cells is lost. In this case the IOR cells are charged at
the location of the strongest FEFm cell for a period of time 7'°%. This causes a suppression of the
recently attended location in the FEFv map. IOR cells get slowly discharged by decay with a low

weight Wi,,.

T

IOR (1 w

dtyx

2
I — {exp _E-Tu) 5 5‘1““) if t<te+ TIO% 5 yrE™ = max (y{FF™)
0 ) else ®)

IOR)(

FEFm jFEFm
—Vx Ix

IOR
— Winh)x )



