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Abstract

Technologies such as video surveillance and vision guided robotics require flexible vision
systems that interpret the scene according to the current task at hand. Attention has been sug-
gested to play an important role in the process of scene understanding by prioritizing relevant
information. However, the underlying processes that allow cognition to guide vision have not
been fully explored. Our procedure has its origin in current findings of research in attention.
We suggest an approach in which high-level cognitive processes are top-down directed and
modulate stimulus signals such that vision is a constructive process in time. Prior knowledge
is combined with the observation taken from the image by a population-based inference in
order to dynamically update the conspicuity of each feature. Any decision, such as object
detection, is based on these distributed conspicuities. We demonstrate this concept on a
goal-directed object detection task in natural scenes.
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1. Introduction

Emerging new technologies require vision systems to flexibly focus on the relevant
information in a visual scene. The processing of a full scene in parallel up to a high
level description has turned out to be problematic and not fully successful in comput-
er vision [1–3]. Attention might be the solution. The idea is to control the informa-
tion flow and thus to improve vision by focusing the resources merely on aspects of
the whole visual scene. Early, preattentive, and parallel vision modules compute a set
of basic features from the scene, which are then attentively integrated and further
processed. Such attentive processing has been described as a �spotlight of attention�
[4] that highlights an area of interest by routing that information into higher areas
for further processing [5–7]. The guidance of an attentional focus can be implement-
ed by a winner-takes-all process within a saliency map which indicates potentially
relevant locations [6]. Based on this paradigm, sophisticated models of information
control have been developed, in which the complex problem of scene understanding
is transferred into a sequential analysis of image parts. Such spatial selection is com-
putationally efficient [1,2]. However, we have to consider other crucial issues of effi-
ciency as well. First of all, selection should be effectively guided by the task at hand.
It would be problematic if we had to scan several salient items before focusing the
relevant item. Thus, we have to elaborate mechanisms that integrate high level
knowledge into the selection process. Second, the mechanisms of attention must re-
sult in a representation that facilitates further processing. For example, object recog-
nition in natural scenes would not benefit a lot if we simply determined a point in
space by some competitive mechanism. Even a region of interest can be problematic
if it does not sufficiently cover the object of interest. Thus, we need forms of selection
that enhance the features of an object in space.

The most crucial issue of attention deals with the integration of information from
different modules (or brain areas). This could be implemented as a central process
that collects the information from different modules and then controls those by a sin-
gle attentional signal. For example in the Guided Search framework [8] a bottom-up
map is combined with a top-down map in order to determine the activity in a master
map of locations. The location of the highest activity could then be used to control a
single attentional focus. An alternative has been outlined by the integrated competi-
tion hypothesis [9], in which different specialized modules (or brain areas) have to
coordinate themselves to let a distributed system operate on the same event. We pres-
ent an approach that follows this idea. At its core is a population code that encodes
in a dual coding principle a feature and its respective conspicuity. The term conspi-
cuity here reflects stimulus-driven saliency as well as task relevance and relates to the
probability that a feature is present in the scene. We developed a population-based
inference approach to continuously update the conspicuity using prior knowledge in
form of generated expectations.

The idea is that all mechanisms act directly on the processed variables and modify
their conspicuity. Attending a certain feature or a region in space enhances the prob-
ability of a feature being detected. In this respect, attention emerges in the vision pro-
cess in order to serve in a flexible manner the needs of the task at hand.
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Before we explain our approach in more detail the most influential concepts in
modeling attention with relevance to computer vision are discussed.

2. Approaches to modeling attention

2.1. The spotlight of attention

The most often used analogy of attention is the spotlight metaphor. Ahmad [10]
literally implemented a spotlight as a circular focus which gates processing to the
next stage. The Selective Tuning model [11,12] and SCAN [13] offer an illustrative
explanation of the spotlight within a hierarchy of processing layers. In each of those
processing layers a set of gating nodes determines which information is allowed to
project to the next higher layer. In the Selective Tuning model, competition among
the gating nodes starts from the top of the hierarchy and is sent downwards such that
a beam emerges which covers the area of the selected feature surrounded by inhibi-
tion. Mozer and Sitton [14] proposed an elastic spotlight model which essentially
emerges by a competition among populations.

The Shifter Circuit model [15] and related approaches [16,17] preserve the spatial
relationship of features within a window of attention for invariant object recognition
by routing a retinal input via a connection matrix or copying procedures into a focus
of attention.

In addition to a spotlight in space, a selection of the level of spatial resolution has
been proposed [18].

2.2. The saliency map

An essential aspect of all models of attention is the origin of selection. The Selec-
tive Tuning model [11] starts with looking for a feature on a very broad scale and
then tracking it to the image resolution, whereas most other models use a spatially
organized saliency map [6]. They try to find conspicuous scene sections in each fea-
ture map and integrate them into a single saliency map [19,20]. One of the most influ-
ential among these approaches uses center-surround operations to determine the
conspicuity of each feature [21,22]. In this model attention is purely stimulus-driven.
Other models try to include top-down, task-driven knowledge into the saliency map
[23,24] or determine probability values of feature–target pairs [25]. Other approaches
have suggested to dynamically adapt the saliency map according to the task at hand
by controlling the preattentive flow of information by a neural network [26]. Despite
the fact that such a top-down influence is computationally efficient, the guidance in
visual search has been psychophysically verified in numerous experiments and illus-
trated in the Guided Search model [27,8].

2.3. Segmentation and gating

Many connectionist models of attention follow the spotlight metaphor. The idea
is that the area of a spotlight is highlighted and its content is gated into higher levels
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for further processing. Thus, computation at high levels typically requires prior selec-
tion. In computer vision which deals with natural scenes a simple spotlight does
hardly serve other processes such as object recognition. Thus, the dominant para-
digm of modeling attention in computer vision is a parallel computation of key fea-
tures followed by parsing the image into constituent components which define a
region of interest [19,28–32]. The idea is to provide an object-related focus of atten-
tion, similar as suggested by the Selective Tuning model [11].

2.4. Feature maps

The Feature Integration Theory [5] suggested that basic features �pop-out� and
can easily be detected without extensive serial search. Although several features such
as color, motion, and depth can provide very good cues for selection, a universal set
of features has not been identified. Since serial search is expensive, research in com-
puter vision has been directed to find the feature maps which best provide reliable
cues for a given task (e.g. [33]).

2.5. Attentional selection

To implement the selective behavior of attention a winner-takes-all process has
been suggested [6]. As an alternative to this most common approach, dynamic neural
fields [34] have been used [35,30,36,20]. As compared to a simple winner-takes-all
process, which detects the highest entry in a saliency map, dynamic neural fields de-
tect an area of highly salient entries by forming an activity cluster.

The decision where to attend is usually determined after the selection process is
settled. Selection does not necessarily has to occur at a single place (e.g., in a saliency
map). Recently, models have been proposed in which selection operates on a global
scale, although competition is defined locally [37–42]. These distributed approaches
are able to accumulate evidence over time and over different areas (or modules), and
estimate the consequences of a planned but not finalized decision.

2.6. Feature-based attention

In applied computer vision usually only the task-relevant features are computed
and weighted according to their correspondence with the goal. A more task-indepen-
dent approach could dynamically enhance the relevant target features for the task at
hand. Indeed there is evidence for a global feature-specific feedback signal in the
brain [43–45]. Only recently models of vision have started to incorporate aspects
of feature-based attention [46,11,47,37,48–50,41,42].

2.7. Grouping and object-based attention

Although attention is typically linked to space there is evidence that objects are
considered as an entity rather than a collection of features in space [51]. Object-based
attention is far from being understood and has computationally only been addressed
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on the level of principles [52–55]. Sun and Fisher [56] presented an algorithm that
translates the idea of salient locations [21] to grouped units and demonstrated its per-
formance on synthetic and natural scenes. However, the difficult grouping process
has been assumed to occur prior to their algorithm.

2.8. Feature tuning

A number of single unit recordings have shown that attention correlates with an
increase of visual salience. More systematic studies observed the effect of attention
on the tuning curve. For example, a cell�s orientation tuning curve is determined
by systematically varying the orientation of a stimulus presented within the receptive
field of a cell and observing the cells response. These studies have revealed that the
tuning curve increases by a gain factor when attention is directed to the stimulus
[45,57]. Such effects have only been modeled within a computational neuroscience
framework [58,59]. However, this finding seems to be relevant for computer vision.
If we consider neural cells as feature detectors indicating the probability that the
encoded feature is present in the scene, this finding provides a concept of how to in-
crease the conspicuity of a feature.

2.9. Biased competition

The Biased Competition framework [60] is also routed in electrophysiology. It has
been observed that neuronal populations compete with each other when more than a
single stimulus is presented within a receptive field. Such competition can be biased
by top-down signals. As a result, the irrelevant stimulus is suppressed as if only the
attended one had been presented. The idea of Biased Competition has been explored
with several computational models [61–63,37,55,38,39,41,64], but so far it has not
been applied in computer vision. However, competition among feature representa-
tions could be a useful mechanism to filter out irrelevant stimuli for object recogni-
tion. A spatial focus of attention can reduce the influence of features outside the
focus, whereas a competition among features has the potential to select objects with-
out the need of a segmentation on the image level. We have recently shown that such
a competition among features allows to detect objects in natural scenes [65].

3. Approach

We propose a model for generic computer vision, which, in the long run, could be
used for object recognition and tracking (e.g., in autonomous robots). As discussed
in Section 1, there seems to be no generic, data driven solution to computer vision,
but rather the model itself (by a cognitive control structure) has to provide appropri-
ate top-down knowledge for each task. Top-down connections modulate the process-
ing along the levels of the hierarchy by inference. Attention is a natural consequence
of using top-down knowledge in solving a task. It arises in the vision system and
serves to emphasize the task-relevant information.
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The present version is in many regards simplified. We use a simple feature set
which only allows for object detection rather than object recognition. We also do
not address the issue of invariance in object recognition. Thus, the emphasis of
the present approach lies on the demonstration of the attentional mechanisms for
goal-directed visual search in real world scenes. We show how a cognitive goal
can penetrate vision to direct the processing resources towards the relevant aspects
in a visual scene.

3.1. Population code

Decision making requires information being adequately represented. If we want
to make a decision whether an object is in the scene, we have to accumulate evidence
from several sources. Each process, however, will accumulate its own evidence nec-
essary to make a decision, so that the information is distributed across processes. For
example, if we want to find a vertical bar, the fit of contours in an image with an
appropriate filter influences our decision. Moreover, the surrounding can make the
bar more visible. Prior knowledge about the exact shape of this bar can improve
its detectability as well. Provided we have an initial guess about its location we
can use space information for inference as well.

Decision making also involves uncertainty arising from noise in sensation and the
ill-posed nature of perception. Thus, we have to represent alternatives until a deci-
sion is found. Such constraints can be well handled by a population code. Population
coding has been used as theoretical basis for describing the computation in the brain
[66,67,47,68]. It offers a dual coding principle. A feature is represented by the loca-
tion of a cell i within the population, and the conspicuity of this feature is represent-
ed by a value ri—its firing rate. The conspicuity represents the accumulated evidence.
Our algorithm describes the local rules that will affect the conspicuity of each feature.

3.2. Overview

Fig. 1 illustrates our approach. For the purpose of a clear notation we distin-
guish between feature space and physical space. The preferred feature value of a
cell is determined by the counter i and x is the center of an area (the receptive
field) from which a cell receives input. We also introduce the variable d which
refers to different channels such as orientation (O), intensity (I) or red-green
(RG), blue-yellow (BY), or spatial resolution (r). From the image we compute
d sets of features Fd at each location x = (x1,x2). Each feature set is modeled
as a continuous space with i 2 N sampling units by assigning each unit a conspi-
cuity rd, i,x. The initial conspicuity is determined by center-surround operations in
contrast maps given the scene [21] and then continuously updated to reflect the
task-relevance.

The relevance of each feature is determined by the search template (target). For
simplicity we define the target Td by the same sets of features Fd . Thus, a target
object is defined by the expected features r̂Fd;i, independent of their location. For visu-
al search we infer the conspicuity rd, i,x by comparing the expected features r̂Fd;i with
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the observation r"d;i;x at each position x in parallel. If the observation is similar to the
expectation we increase the conspicuity. As we will explain, we apply a population-
based inference approach in which the expectation enhances the gain of the observa-
tion. In this typical visual search situation, the search space is initially focused in the
feature dimension and invariant in location.
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To detect an object in space we combine in parallel the conspicuity across all d
feature sets as well as all i sampling units and generate an expectation in space r̂Lx.
The higher the individual conspicuity rd, i,x across d at one location relative to all
other locations the higher is the expectation in space r̂Lx at this location. Thus, a loca-
tion with high conspicuity in different channels d tends to have a high expectation in
space r̂Lx. Analogous to the inference in feature space we iteratively compare the
expected location r̂Lx with the observations r"d;i;x in x and enhance the conspicuity
of all features with a similarity of expectation and observation. The conspicuity is
normalized across each map. Such iterative mechanisms finally lead to a preferred
encoding of the features and space of interest. Thus, attention emerges by the
dynamics of vision.

We perform this iterative procedure not only on a single level but in a hierarchy
of processing levels, to which we refer as level I and level II. It is well known that
the receptive field size and the complexity of features increases along the ventral
pathway [69]. In the present version we consider only an increase of the receptive
field size.

3.3. Determination of initial conspicuity values

It is well known that the arrangement of stimuli determines perception [70]. For
example, if we present a red bar surrounded by green bars, it is more easily detected
than a red bar within a more heterogeneous collection of bars. Center-surround
operations have been shown to provide a good estimate of such a stimulus-driven
saliency [22,71]. Thus, in order to determine the initial conspicuity values we: (i) cre-
ate multi-resolution feature maps, (ii) compute multi-resolution contrast maps using
center-surround operations and (iii) combine both in feature conspicuity maps. For
computing the first two steps we largely follow Itti et al. [21]. Details are given in
Appendix A.

Fig. 1. Model of attentive vision. From the image we obtain d = 5 feature maps (d 2 {RG, BY, I, O, r}).
For each feature at each location x we compute its conspicuity in the contrast maps. The feature-
conspicuity maps combine the feature and conspicuity into a population code, so that at each location we
encode each feature and its related conspicuity. This initial, stimulus-driven conspicuity is now
dynamically updated within a hierarchy of levels. From level I to level II we pool across space to gain
a representation of features with a coarse coding of location. The target template holds the to be searched
pattern regardless of its location. It represents the expected features r̂Fd;i which are used to compute the
(posterior) conspicuity at level II. Similarly level II represents the expectation for level I. As a result, the
conspicuity of all features of interest is enhanced regardless of their location. In order to identify candidate
objects we integrate across all five channels to determine the saliency. The saliency is then used in the eye
movement map to compute the expected region of an object r̂Lx, which in turn enhances the conspicuity of
all features at levels I and II within the expected region. Thus, objects at expected locations are preferably
represented. By comparing the conspicious features in level II with the target template in the match
detection we can continuously track if the object of interest is within the expected region. If we loose a
match an inhibition of return is triggered which marks the expected region as being visited. Otherwise the
expectation increases until an overt shift occurs.

b
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3.3.1. Feature maps

We currently use color, intensity, and orientation as basic features. Starting from
r, g, and b, the color values (red, green, and blue) of the input image, an intensity
image I = (r + g + b)/3 and the color maps R = r � (g + b)/2 for red,
G = g � (r + b)/2 for green, B = b � (r + g)/2 for blue, and Y = (r + g)/2 � |r � g|/
2 � b for yellow are obtained. The color values are transferred into color opponency
(RG,BY). All features are represented within a Gaussian pyramid, which is con-
structed by progressively low-pass filtering and sub-sampling the input images of
the channels [72].

The detection of local orientation at each point in the image x1,x2 is achieved
using overcomplete steerable filters O (r,h) [21,73] with varying resolution (or fre-
quency) r and 20 different orientations h.

3.3.2. Contrast maps

Contrast maps represent the conspicuity of each feature. In analogy to the known
influence of lateral excitation and surround inhibition, center-surround operations
�§� calculate the difference of maps with a fine scale r and a coarse scale
s = r + d. This operation across spatial scales is done by interpolation to the fine
scale and then point-by-point subtraction. The variation of the distance d between
resolutions results in a multi-scale feature extraction [21]. For each pixel of the res-
olution r we create intensity contrast maps Iðc; sÞ ¼ jIðcÞ � IðsÞj by subtracting the
map with the coarse scale s from the one with center scale c. A similar mechanism is
applied in the color channels, which leads to the known double opponent system
RGðc; sÞ, BYðc; sÞ. In the center, the cells are exited by one color (e.g., red) and
inhibited by its opponent (green), while in the surround the opposite takes place.
Double opponency determines the conspicuity of a stimulus, but does not alter the
stimulus feature.

We average the maps obtained by a different course scale s = r + d to receive one
contrast value per channel and center scale IðcÞ, RGðcÞ, and BYðcÞ. To obtain ori-
entation contrast maps Oðc; s; hÞ we apply for each orientation h the center surround
operation with a fine scale c and a course scale s = r + d.

The orientation channel is not averaged across scale s, since we use this informa-
tion to determine another channel termed �spatial frequency� as described in the next
section.

3.3.3. Feature conspicuity maps

We now compute the initial conspicuity ri by combining the feature value V, as
determined in the feature maps, with its gain P into a population code. We construct
a space, whose axes are defined by the represented features and by the conspicuity
(Fig. 2). As we have explained earlier, conspicuity is related to contrast. Thus,
although we encode absolute values like the intensity, there will be no response on
a black scene, since there is no contrast. The population is defined by i 2 N units
sampling the space, with each unit tuned around its preferred value ui. The preferred
value is the feature value for which the response of the unit is maximal. For each unit
i we obtain an initial conspicuity value:
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ri ¼ P � gðui � VÞ; ð1Þ
using a Gaussian tuning curve g. We perform this at each location x1,x2 and for each
feature value V 2 {h, I,RG,BY} with the associated conspicuity
P 2 fO;I;RG;BYg. After normalizing the conspicuity value to fit into a range be-
tween 0 and 1, we obtain the populations for intensity (rI, i (c,x)), red–green
(rRG, i (c,x)), and blue–yellow (rBY, i (c,x)) with scale c. The orientation information
is transferred into two channels, one for scale or spatial frequency rr, i (h,x) and
one for orientation rh,ic,x).

We now have #c maps, where #c is the number of center scales, each with a
population at every position x. To combine these maps across different levels of
spatial resolution into a single map with the lowest resolution (highest c) we
introduce the notion of a receptive field (RF). We have to consider that variables
V (x) are encoded at each location x within a RF and that the encoding popula-
tion can get input from different locations within the receptive field. We use a
convergent mapping function R of the projection from areas S 2 RF (x) to the
target population T:

R: S 7! T ; rTi;x ¼ max
x02RF ðxÞ

rSi;x0 . ð2Þ

In a pyramidal structure the RF can be defined as the number of units necessary in
each resolution encoding an area of equal size, e.g., the RF at the level of c = 3 is
determined by one unit in x and at c = 2 by 4 units and so on. By means of this oper-
ation we achieve the final feature conspicuity maps rh, i (x), rI, i (x), rRG, i (x), rBY, i (x),
and rr, i (x).

3.4. Modification and transformation of conspicuity values

We now address how we represent conspicuity, the rules that allow us to modify it
and to transform the conspicuity of features into other maps. We will explain the

Fig. 2. Feature conspicuity for the intensity channel, illustrated at two positions. At each location x1,x2
we obtain a population of the conspicuity CðIÞ ¼ I over the feature values V = I. Thus, at each location
the feature values and their related conspicuity is represented.
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population-based inference approach and determine how we can cope with multiplic-
ity in a hierarchical architecture. Please refer to Appendix A for a more detailed
mathematical explanation of the model.

3.4.1. Population-based inference
We now explain how prior information iteratively shapes the conspicuity in each

channel d 2 {h, I,RG,BY,r}. The system is given as a set of difference equations
suited for computer implementation. We define the conspicuity rd, i,x at time step
t + h as

rd;i;xðt þ hÞ ¼ rd;i;xðtÞ þ
h
s
Drd;i;xðtÞ;

Drd;i;xðtÞ ¼ G r"d;i;x; r̂
F
d;i;x; r̂

L
x

� �
� H rd;i;x;

X
i

rd ;i;x;
X
x

max
i

rd;i;x

 !
;

ð3Þ

where G( ) is an activation term that determines the match of the actual observation
r"d;i;x with the expected feature r̂Fd;i;x and with the expected location r̂Lx, respectively.
The idea of Bayesian probability theory is to use prior knowledge about scenes
which is combined with image features to infer the most probable interpretation
of a scene [74]. However, a true Bayesian inference would require to determine prob-
ability density functions and to ensure the independence of the prior from the
observation. Based on earlier work [75], we developed a related but simpler popula-
tion-based inference approach in which we combine the observation with the prior
on the population level in order to compute the posterior conspicuity (Fig. 3).

Gð Þ ¼ r"d;i;xðtÞ þ r"d;i;xðtÞ �
X
j

wd
ijrd ;j;x þ

X
x0

wd
x;x0rd;i;x0

 !

þ C A�max
i

ðrd;i;xÞ
� �

� wLr"d;i;x � r̂Lx þ wF max
x0

ðr"d;i;x � r̂Fd;i;x0 Þ
� �

;

CðaÞ ¼ maxða; 0Þ. ð4Þ

The activation term increases if the expected feature matches the actual observation.
This is consistent with the idea that a global feature-based feedback signal (the prior)
enhances the gain of a cell (Section 2.6). In addition, there has been evidence for a
spatial gain control of V4 cells by the frontal eye field [76]. The effectiveness of infer-
ence is reduced with the strength of the maximal conspicuity which relates to the con-
trast dependence of attention [77]. On the population level the inference approach
tunes the expected feature by increasing the gain (Section 2.8).

H( ) induces competition and normalizes the activity. It is explained in more detail
in Appendix A. From Eq. (3) we see that the conspicuity is constant if G( ) and H( )
are balanced. It is important to note at this point that the conspicuity indicates the
evidence and relevance of a certain feature. This approach may remind the reader to
relaxation approaches in the sense that we aim to reduce iteratively the ambiguity
between the representation in the system and the search template. Given the template
as a constraint and the connections in the network as coefficients we have defined a
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cooperative/competitive algorithm. A crucial difference to relaxation labeling, how-
ever, is that we do not assign each pixel a label nor do we wait until the relaxation
process settles down to a final value. Our algorithm uses slight advantages to enforce
a quick decision. This avoids an unpleasant slow convergence, as predicted by exten-
sive simulations. The result of the population-based inference is consistent with the
Biased Competition framework (Section 2.9), since the network shifts into a state in
which it filters out the irrelevant stimuli.

3.4.2. Invariance to multiplicity

An efficient processing within a population code requires that the conspicuity of
each feature is adequately combined across hierarchy levels. Due to the increase in
RF size, the conspicuity of features from different locations converges onto a single
location. A weighted sum of the conspicuity of identical features across space shows
a multiplicity effect: increasing the number of identical stimuli within a RF enhances
the conspicuity [59]. Assume a cell whose preferred stimulus is a vertical bar. If we
model the receptive field with a weighted sum over all inputs the input will increase
with the number of vertical bars (or with a similar orientation) placed within the
receptive field. A better strategy would be to separate between the content and rel-
evance of a stimulus independent of the number of stimuli.

Let us assume we project from hierarchy level I to level II. Thus, we want to deter-
mine the observation at position x on level II given the conspicuity rId;i;x0 on level I at
the positions x0 2 RF (x) within the receptive field of x. The strength of the feedfor-
ward projection depends on the similarity of the encoded feature, i.e., the distance in
feature space between the unit at level I uIi and the unit at level II uIIi . We define the
weighting function F ðrId;i;x0 Þ ¼ rId;i;x0 � gðkuIIi � uIikÞ using a Gaussian g. In extension to
Eq. (4) we write for the activation term

Fig. 3. Illustration of the population-based inference approach. As an example we illustrate the effect of a
feature specific inference at level I with the expectation r̂Fd;i;x. In order to compute the conspicuity at each
time step the observation rI"d;i;x is modulated by the expectation. As a result, the conspicuity of the features
that match the expectation is enhanced, whereas the conspicuity of other features is slightly reduced.

F.H. Hamker / Computer Vision and Image Understanding 100 (2005) 64–106 75



Gð Þ ¼ max
i;x02RF ðxÞ

F rId;i;x0
� �� �

þ max
i;x02RF ðxÞ

F rId;i;x0
� �� �

�
X
j

wd
ijr

II
d;j;x þ

X
x00

wd
x;x00r

II
d;i;x00

 !
þ C A�max

i
ðrIId;i;xÞ

� �
� wL max

i;x02RF ðxÞ
F rId;i;x0
� �

� r̂IILx0

� �
þ wF max

i;x02RF ðxÞ
F rId;i;x0
� �

� r̂IIFd;i;x0

� �� �
; ð5Þ

that now considers a convergent mapping of the conspicuity at locations x0 at level I
to the location x at level II using a maximum operation. The conspicuity from dif-
ferent locations does not add up, but is simultaneously represented in the feature
space. Thus, the presentation of two equal objects does not result in an increase
of the conspicuity. Two different objects are encoded in parallel by different conspi-
cious features. It has been shown that such a max-pooling allows to reproduce the
data of Reynolds et al. [63] showing the influence of attention on the competition
within a receptive field [59]. The following maps are implementations of the general
Eqs. (3)–(5) above.

3.4.3. Level I

Level I has d channels which receive input from the feature conspicuity maps:
rh, i,x for orientation, rI, i,x for intensity, rRG, i,x for red–green opponency, rBY, i,x
for blue–yellow opponency and rr, i,x for spatial frequency (Fig. 1). The expectation
of features at level I originates in level II r̂IFd;i;x0 ¼ rIId;i;x and the expected region in the
eye movement map r̂ILx0 ¼ w � rmx0 . Please note that even level II has a coarse dependen-
cy on location.

3.4.4. Level II

The features with their respective conspicuity and location in layer I project to
layer II, but only within the same dimension d, so that the conspicuity of features
at several locations in level I converges onto one location in level II:

rII"d;i;x ¼ wmaxi;x02RF ðxÞ ðF ðrId;i;x0 ÞÞ. We simulate a map containing nine populations with

overlapping receptive fields. For simplicity, we do not increase the complexity of fea-
tures from level I to level II. The expected features at level II originate in the target

template rIIFd;i;x ¼ w � rTd;i and the expected region in the eye movement map

r̂IILx ¼ w � rmx .

3.4.5. Target template

When we present an object to the model, its ‘‘working memory’’ memorizes a tar-
get template, i.e., the most conspicious feature in each channel. The memory units
can hold a pattern even when the input is removed. They receive their input from
the full visual field, i.e., from all nine locations of level II units. It is important to
note that these units are able to encode a stimulus without spatial attention. In a
visual scene with more than one object a spatial selection would ensure that the
information in each channel belongs to a single object.
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3.4.6. Match detection

To determine if an actively encoded pattern at level II fits with the target template
we define match detection units (md) that compare in parallel the encoded pattern
with the target template. This allows to close the loop from setting a target template,
over selection to recognition. If both, the encoded and expected pattern are similar,
the activation term G is high.

Drmd
d;i ¼ G rTd;i;max

x
ðrIId;i;xÞ

� �
� H rmd

d;i ;
X
j

rmd
d;j

 !
. ð6Þ

3.4.7. Perceptual map

The perceptual map (v) indicates salient regions by integrating the conspi-
cuity of level I and II across all channels as defined by the first two terms of
G( ).

Drvx ¼ G
X
d

max
i

rId;i;x;
X
d

max
i

rIId;i;x02RF ðxÞ; r
m
x ; r

I
d;i;x; r

T
d;i

 !

� H
X
x

rvx;
X
x00

wd
x;x00r

v
x00

 !
. ð7Þ

In addition to the conspicuity in level I and II the activation term G( ) includes the
match of the target template with the features encoded in level I at all locations
simultaneously by the product

Q
d maxi;x02RF ðxÞ rTd;i � rId;i;x0 . This implements a bias to

regions with a high joint probability of encoding all searched features in a certain
area. The variation in x0 ensures that the expected feature in each channel can slight-
ly vary in location.

3.4.8. Eye movement map

The projection of the perceptual map onto the movement map (m) transforms
the salient regions into a few candidate regions which provide the expected region
for level I and level II units. We achieve this by subtracting the average saliency
from the saliency at each location wvrvx � wv

inh

P
xr

v
x. Simultaneously, the movement

units indicate the target location of an eye movement. This is consistent with sev-
eral findings indicating a strong overlap between spatial attention and eye move-
ments [78–81]. Please refer to [64] for a discussion about the origin of spatial
attention and eye movement planning. A shift of the visual scene as a conse-
quence of moving the eye is not explicitly modeled. All movement units can be
inhibited by the activity of a fixation unit rf.

Drmx ¼ G wvrvx � wv
inh

X
x

rvx

 !
� H rf ;

X
x

rmx ;
X
x00

wd
x;x00r

m
x00

 !
. ð8Þ
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3.4.9. Inhibition of return

An inhibition of return avoids revisiting a region during covert and overt scan-
ning. We regard a location x as inspected, dependent on the selection of an eye
movement, or when the match detection units indicate no match, given a region
shows a high expectation. An eye movement occurs at the time t0 when the activity
of a movement unit exceeds a threshold ðrmx ðt0Þ > Cm

0 Þ.
In this case the IOR units are charged with the signal Imx around the location of the

strongest unit in the movement map xm for a period of time TIOR. This reduces the
saliency of the recently attended region. IOR units get slowly discharged by a decay
with a low weight winh.

DrIOR
x ¼ ð1� rIOR

x ÞðwmImx � winhrIOR
x Þ;

Imx ¼ expð� ðx�xmÞ2
0.01 Þ if t < t0 þ T IOR

0 else

(
; rmxm ¼ max

x
ðrmx Þ.

ð9Þ

4. Results

We illustrate our approach with a conjunction visual search task. We then dem-
onstrate the model�s properties and the emergence of attention in an object detection
task using 16 different target objects in various natural scenes.

4.1. Conjunction search

We simulated a conjunction visual search task in which overt attention (eye
movement) is allowed. In conjunction search a target is unambiguously defined
by the conjunction of two or more separately processed features. Conjunction
search was often associated with serial search—and feature search with parallel
search [5]. Parallel search is defined as a visual search condition showing no
set size effect. Otherwise, search is assumed to be serial. Under the assumption
that each item in a scene is analyzed separately, the performance of search can
be expressed by the number of scanned items per second. However, the time to

Fig. 4. Conjunction visual search, while allowing the model to overtly search until it selected the target.
The target is the green, vertical bar. (A) Scan path. (B) Conspicuity values of level II and level I units in the
red-green and orientation channel over time. The conspicuity is indicated by brightness. Red lines indicate
the time of the eye movement. The target color ‘‘green’’ is encoded by units with lower numbers (e.g., unit
5) and the target orientation vertical as well (e.g., unit 1). To illustrate the conspicuity of features over time
we removed all spatial information by simply taking the maximum conspicuity of each feature regardless
of its location. The time depends on the time constant in our equations and on the chosen connections.
Since we start presenting an input to level I which is comparable with V4 one would have to add another
80 ms to compare the amount of time the model requires to make a decision with the time of responses in
experiments. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this paper.)

c
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complete search shows a high variability in feature and conjunction search [82]
such that knowing the number of items per second does hardly allow to predict
the underlying search mode. In addition, the assumption that each item is visited
one after the other predicts a very fast covert scan of the scene of about 30–40 ms
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per item for which no physiological counterpart has been found yet. There is
more evidence for a slow serial component in search (at least larger than
100 ms to shift spatial attention) as found in a rapid visual presentation task
[83], difficult visual search [84], and EEG [85].

In our example, the model searches for a green, vertical item in a scene composed
of other green and vertical items. The model takes a serial search and finds the target
after the 5th eye movement (Fig. 4A). Note, that Motter and Belky [86] found a pref-
erence for color over orientation in the guidance of visual search. We could account
for this finding by decreasing the feedback weight in the orientation channel. How-
ever, this does not reveal anything new about the underlying architecture of guidance
in human vision. From the perspective of computer vision, the channels are equiva-
lent and if necessary, the weights could be tuned for a given task.

The initial conspicuity of each feature depends on the local arrangement of the
stimuli. In the model the difficulty in conjunction search arises due to the high
target-distractor similarity. The population-based inference for green and vertical
is independent of each other, so that distractors manage to increase their conspi-
cuity as well (Fig. 4B). The advantage of two simultaneous matches (in the
red–green and orientation channel) within a localized area does not necessarily
overrule the stimulus-driven saliency. Thus, the model performs additional eye
movements until the target is detected. This idea of guidance is similar to the
Attentional Engagement [70] and Guided Search [8] proposal. However, these
models are very abstract. Since our model operates on a much deeper level of
the putative underlying mechanisms we now briefly discuss some predictions of
the model.

4.1.1. Variability of the time to complete visual search

Although the model takes a serial search mode, the time it takes to make an eye
movement is highly variable (as indicated by the red bars in Fig. 4B). First, our mod-
el predicts that spatial selection is slow as we have discussed in-depth elsewhere [42].
Second, the time of the decision about the location of the potential target varies. We
have shown with an earlier version of the model using artificial input that the vari-
ability in time depends on the target-distractor similarity [42] and on the strength of
the top-down signal [64]. Thus, we explain the variability in visual search by the
number of shifts of spatial attention and by the variable amount of time to make
a decision where the potential target is located—a variability in a parallel decision
process.

4.1.2. Distributed nature of attention

Initially, the expectation to find a green, vertical target, reinforces the conspi-
cuity of green and vertical in level II so that these features dominate the response
as soon as the activity travels upwards from level I to level II. The conspicuity at
level II provides the expectation for level I so that the target template travels
downwards. The conspicuity of other features at level I decreases due to the nor-
malization but remains at a significant level. The selection of a non-target in the
eye movement map involves a spatial expectation which reinforces the conspicuity
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of all features in the respective regions so that prior to the first eye movement the
conspicuity of red increases at level I and II (Fig. 4B). The distribution of con-
spicuity across the feature red is much broader, since it emerges from increasing
the gain of the whole tuning curve of each neuron encoding a stimulus within the
expected region. The region of the selected target emerges dynamically by reading
out the perceptual map through the eye movement map. The perceptual map can
be compared to the saliency map (Section 2.2). The primary difference is, howev-
er, that the selection dynamics are more distributed over the network. The model
goes beyond of selecting an item in space and passing the features within the
selected area to some arbitrary recognition module as proposed by the classical
approach of gating and segmentation (Section 2.3). The model integrates the
‘‘what’’ and ‘‘where’’ aspect of vision by adapting its internal representation
(updating the conspicuity of feature variables). This is the groundwork of all
other processes that operate on these variables—and thus, the mechanisms that
implement attention ensure a distributed type of processing and a dynamic
binding.

4.1.3. Variable focus of attention

A more close look into the spatial selection process reveals that not just a single
region is picked but a bunch of potential ones (Fig. 5). This pattern of selection does
not necessarily fit with the spotlight hypothesis (Section 2.1). Although the model
shows a spatial organization of the distribution of expectation values in the move-
ment map, it is related to items and much more flexible than a unitary focus. The
general idea is that spatial selection is a dynamic process [14]. We call this the reentry
hypothesis of spatial attention [41,42]. Indeed there is mounting evidence against a
unitary spotlight from experiments showing a split of spatial attention [87–90]. This
item related reentry signal in our model predicts that more than a single item could
be analyzed in parallel per scan—a hypothesis that was also acknowledged by advo-
cates of serial search [5,8].

4.2. Object detection in natural scenes

We now demonstrate the performance of our approach for object detection in dif-
ferent natural scenes, with emphasis on the flexibility and variability of the model.
The model is able to handle a stream of images. We will present a target object
on a black background to the model for 100 ms and it will memorize conspicious fea-
tures of the object. We only apply this procedure to ensure that the features taken
into memory are from the target object. We do not give the model any hints which
feature to memorize. It is also possible to present the model a natural scene and let it
memorize the first object to which it makes an eye movement [91]. We do not use an
optimization method (e.g., learning) for target-distractor discrimination. We then
present a black scene for 50 ms in order to let the conspicuity decay, which prevents
the location of the target from influencing the result. The model works as well with-
out the black scene in between, but then the performance of the model could depend
on where we presented the target to be memorized. Finally, the search scene is pre-
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sented, and the model�s task is to make an eye movement towards the target, whereas
it should avoid making an eye movement to a distractor. We now present a few illus-
trative examples in detail and then give an overview of all 16 tested trials—none of
the tested trials was rejected in order to tune the impression about the models per-
formance. All runs were performed with a single parameter set, the same as in the
conjunction search.

4.2.1. Correct eye movement selection

Fig. 6A shows an example in which the first eye movement of the model is correct.
The conspicuity in level II immediately follows the target template (Fig. 6B) which in
turn guides level I to emphasize the features of the target as well. In the blue–yellow
channel the target template is not dominant initially, but the modulation by the
expectation from level II overwrites the initial conspicuity. This emphasis of specific
features allows for a good discrimination in space so that the model quickly converg-
es to the correct region.

4.2.2. Covert search

In the previous example attention emerged as part of the process of planning an
eye movement. Although spatial attention occurred as well, it did not play an impor-
tant role, since the initial guidance of level I had been already correct. We now show
an example in which spatial attention turns out to be crucial for the task (Fig. 7). The
model visits three regions before it executes a correct eye movement to the target
(Fig. 7B). Here, the feature-based inference does not allow to sufficiently discrimi-
nate the target in order to immediately determine its location. The model first expects
the target as being at the location of the man in white, as indicated by the high expec-
tation in the eye movement map at 75 ms (Fig. 7D). As we have explained, the model
continuously compares the encoded conspicuity in level II with the target template.
The high expectation around the man in white increases the conspicuity of features in
this region. If those features do not match the target template the model re-fixates
(i.e., inhibits the expectation in the movement map) and initiates an inhibition of re-
turn in order to mark this region as being visited and analyzed. Fig. 7C reveals that
the orientation channel first indicated a poor match with the template. The level II
clearly shows a high conspicuity of a non-target feature. Although initially the target
features have a high conspicuity, the reinforcement of features at a non-target region
begins to dominate the level II and suppresses the conspicuity of target features. In
the orientation channel the dominant vertical orientation of the man�s shape sup-
presses the horizontal orientation of the van. In the second and third deployment
of spatial attention the intensity channel first indicates a poor match.

This example demonstrates that covert search can emerge from an overt search
process under the additional constraint to make an eye movement only to the target.
It is not necessary to implement a separate covert search process. Covert spatial
attention emerges in this model by a planned but not executed eye movement. In
addition, attention serves a specific purpose, it guides the eye and reduces interfer-
ence to improve recognition. However, overt search and covert search are not equiv-
alent. Overt search shifts the fovea, the area of the highest resolution in the retina, to
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allow for an inspection of an object in high resolution. Outside the fovea, the spatial
resolution decreases with increasing eccentricity. These retinal effects are not consid-
ered in the model.

Fig. 6. Visual search in natural scenes. The asprin bottle in the upper left corner was presented to the
model before the scene appeared and in each dimension the most conspicious feature was memorized in
order to generate a target template. Then the model searched for the target. (A) Indication of the first eye
movement, which directly selects the target. (B) Conspicuity values of level II and level I units in all
channels over time. The strength of conspicuity is indicated by brightness. The red line indicates the time
of the eye movement. The target template is indicated by the bars at the top of each figure. The conspicuity
of each feature occurs first in level I and then travels upwards to level II. Level II, however, first follows the
target template, which then travels downwards to level I. This top-down inference is clearly visible in the
blue-yellow channel, where initially other features than the target feature are conspicious. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this paper.)
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4.2.3. Split of spatial attention

Early findings in attentional research suggested a unitary spotlight [4] or a zoom
lens [92], which allows a variation in size. However, recent experiments have reported
a split of spatial attention [87–90]. Our reentry model results in a behavior which is
more consistent with the latter findings. In the recent example (Fig. 7) spatial atten-
tion was allocated to unitary regions in space, which is typical for the model. We now
show an example where a split of spatial attention occurs (Fig. 8). Due to the sim-
ilarity of the target features obtained from the deo stick with the features of the shav-
ing cream, high expectations at two noncontiguous regions are generated. They are
almost equally strong 49 ms after onset (please bear in mind that a comparison with
primate data requires to add the time a stimulus needs to reach V4). However, the
different regions compete with each other and at the time of the eye movement at
79 ms the expectation around of the shaving cream is almost dissolved. Since there

Fig. 7. Mechanisms for overt and covert scan. We initially present the target shown in (A) for 100 ms to
the model and allow the model only to make an eye movement to the target. (B) Locations of overt (red)
and covert (blue) attention. The model covertly visits three locations until it makes an eye movement to the
target. (C) Conspicuity in level II. The target template is indicated by the bars at the top of each channel.
The model did not achieve a sufficient match in either the orientation or the intensity channel, as indicated
by the blue line. The blue line refers to the channel in which a match was poor and as a result, an inhibition
of return was initiated. (D) Expectation in the movement map at each covert or overt shift. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this paper.)
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is still some expectation left, the location of the eye movement is slightly shifted to
the left of the target. Mozer and Sitton [14] proposed an �elastic� spotlight model
which initially selects all regions with input and as time increases regions with less
strong input drop out and the remaining area shrinks towards a compact region.
They further assume that these selection units gate processing for recognition. This
is different from our approach. First, expectation only biases processing [42]. Second,
not all areas with input are selected, only areas with the strongest input build up a
high expectation in space. Third, spatial attention is late, it needs time to develop.

Our own experimental data best fits with the idea that the observed split of atten-
tion correlates with such a transient competitive state in which spatial attention is
first distributed to more than a single region and then settles onto a single region [89].

Can such a behavior be beneficial to vision or is this an artefact of competition
over time? Attention has been often claimed to be necessary to reduce the compu-
tational burden of parallel processing beyond simple features. However, at present
we have no final answer about the amount of possible parallelism [93]. A split of
spatial attention can indeed be valuable, e.g., to track two important displays in
parallel. Another example is a same/different comparison of two objects, like two
faces or the shape of two red objects. This could either be done in parallel or
sequentially. In the parallel approach one could directly compare the activation
of features, whether they overlap or show separate clusters. In the sequential solu-
tion one has to memorize the first set of features and then make a comparison with
the second set. A split of attention could also be beneficial to identify a ranking of
potential targets. All interesting objects could then be analyzed in more detail to

Fig. 8. Illustration of a split of spatial attention in the model. (A) Presented target. (B) Target detection.
(C) Expectation in the movement map. In this specific case the model develops two centers of high
expectation and thus two foci of spatial attention. Initially they are almost equal but over time one is
favored against the other.

86 F.H. Hamker / Computer Vision and Image Understanding 100 (2005) 64–106



reveal whether they fulfill the needs of a task. If we use the initially high expecta-
tion as an entry into a spatial memory, we could implement a purely spatial search
to localize the potential target before we start with the analysis. Thus, only a single
feature-based search would be necessary. All other potential targets could be local-
ized by a faster spatial ‘‘search.’’ Without this ranking one would have to initiate
for each potential target a feature-based search and ensure to avoid visiting regions
twice. Thus, spatial cognition seems to be easier if one could highlight more than
one region if appropriate.

4.2.4. Feature-based attention

The final example illuminates the role of feature-based attention in object recog-
nition. Computational solutions for object recognition have been shown to be quite
robust if we have cues available that help to segment the scene prior to recognition.
However, for a general purpose vision system this is a chicken-egg problem. How
can I segment an object before identification? Direct low level cues like color, bound-
ary and motion are only reliable in specific tasks such as the detection of single part
objects [29]. Spatial attention could help to localize a potential target but it does not
offer robust tools to improve recognition in cluttered scenes. Quite the contrary, a
purely spatial focus like a spotlight can be misleading if it does not sufficiently cover
the object of interest.

We now demonstrate that feature-based attention can be beneficial for object rec-
ognition. The steerable filter responses of the lighter in isolation are vertical at the
left and right corner (red color) and close to horizontal in the middle (green color)
(Fig. 9A). The algorithm has obviously no problem in detecting the lighter in a clut-
tered scene (Fig. 9B), although it memorized only the slightly tilted orientation (Fig.
9C). However, the spatial focus (Fig. 9D) increases the conspicuity of all features
within its area, so that the vertical edge of the cigarette box gets dominant as well
(Figs. 9C and E). The level I conspicuity in the orientation channel initially exhibits
a dominance for horizontal edges due to the top-down guided feature-based search
(Fig. 9E). The emergence of a spatial focus (Fig. 9D), however, increases the conspi-
cuity of all features within its area. Thus, a spatial focus of attention does not suffi-
ciently resolve the interference of distractors. In densely cluttered scenes features
from distractors are enhanced as well. A purely feedforward approach of object rec-
ognition could be impaired by the clutter.

Feature-based attention helps, since knowing the target features keeps those
dominant against the influence of distractors, so that even when distractor fea-
tures become conspicuous the target features remain represented to allow a
match. Thus, feature-based attention serves as a cue to ‘‘segment’’ the object fea-
tures in feature-space similar in effect to cue based region segmentation. However,
a crucial difference is that the feature-based attention mechanism is not limited to
low-level cues—any knowledge about an object can be used to increase the con-
spicuity of object features without the need of an engineer to pre-determine the
cue information. In our model we have demonstrated the influence of feature-
based attention using just simple features. By learning appropriate feedforward
and feedback connections any complex feature detector can be used to enhance
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object related features. With such an extension we would get close to the idea of
object-based attention (Section 2.7), where the object is supposed to group as a
whole, even when it consists of a collection of different low-level features.

Fig. 9. Illustration of feature-based and spatial attention. (A) Target and the conspicuity of its features in
the level I orientation channel during cue presentation (at 70 ms). At each point in space we show the most
conspicious orientation out of 20 by means of a color code as explained in (E). (B) Target detection in the
scene. (C) Conspicuity in level II. Initially the conspicuity of target features is represented in the
orientation channel. Prior to the correct detection a non-target feature raises its conspicuity. (D) The
spatial expectation is directed towards the location of the target. (E) Color code of the level I conspicuity
within the map. Each of the 20 units is assigned a hue value. We only show the highest conspicuity at each
location. The strength of the conspicuity is scaled by the intensity.
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4.2.5. Overview of all tested scenes

We have tested our approach on detecting different target objects on 16 trials in
three different natural scenes (Fig. 10). In 13 of them it found the target among the
first four covert or overt shifts. However, the model�s task was not to make an overt
shift of attention to a non-target. In this regard, any overt shift to a distractor would
count as an error. Nevertheless, in only two of the 13 examples a wrong eye move-
ment to a non-target occured. Among those 11 valid examples the model made cov-
ert shifts of attention in three cases before if detected the target. It immediately
detected the target object in eight trials. The model never rejected a target object.

Among the three cases in which the model did not detect the target within the first
four shifts (Figs. 10D, M, and N) are a ball and an ashtray. Both of them are not
salient in the scene and the model does not have anything like a detector for round
objects. The girl (Fig. 10N) was almost detected by the first eye movement but the
conspicuity of the man in white was considerably higher so that we decided not to
count the first eye movement as a valid trial. In a similar case (Fig. 10J) where the
target was the street lamp, we found a high conspicuity in level I for the features
of the lamp, so that we count this trail as valid.

The aim of this overview is to demonstrate that the proposed mechanisms robust-
ly work in real world environments (Table 1). The emphasis is not on object recog-
nition. Given the simple feature space and sparse target template the model works
very well. Please note that the target is in most cases presented on a different back-
ground during cue presentation than during search.

5. Discussion

We have presented a new approach to modeling vision in a distributed architec-
ture. Vision in this model is inherently driven by internal goals, it operates in parallel
and is top-down guided.

The model�s principles are strongly routed in neuroscience and psychology
[41,59,42,64,91]. Regarding anatomy and temporal dynamics, level I can be com-
pared to V4 and level II to IT, the perceptual map to frontal eye field (FEF) visuo-
movement cells and the movement map to FEF movement cells. The present
approach, however, does not account for the complexity of the feature space in
V4 and IT. With reference to the biological point of view, the activation in the level
II units is very sparse. This seems to contradict our earlier simulations [41] of a visual
search experiment performed by Chelazzi et al. [44] who placed objects on a plain
background. In those simulations we used an artificial input for which we could con-
trol the target-distractor similarity. Due to the low level features used here target and
distractors can be very similar. In order to ensure the rejection of attended non-tar-
gets we had to implement a strong competition in order to suppress the conspicuity
of features at level II which are supported by the target template. However, other
experiments that used natural scenes also find highly selective responses in IT
[94,95], so that the strong selectivity in our model does not necessarily contradict
with experimental data.
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Fig. 10. Overview of the target detection and localization in all tested scenes. A covert shift of spatial
attention is indicated in blue and an overt shift in red (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this paper.).
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We have demonstrated that the earlier proposed neurobiological principles also
hold for object detection in natural scenes. We are confident that this neurobiologi-
cal approach provides a high potential for future computer vision tasks. Especially
robots that are supposed to operate in the same environment as humans, must be
equipped with a highly flexible vision unit that is under cognitive control. Our model
provides an interface to cognition, in which cognition determines the templates that
guide vision. In our demonstrations, we presented a target object to the model and it
memorized some of the objects features. However, in future systems we have to
develop cognitive architectures that provide these internal cues. If a task requires
to detect a certain person, the knowledge about this person, global shape, face or
clothing will be loaded into working memory. Once this information is uploaded
it can automatically guide vision without describing and defining each step, like shift-
ing attention, making eye movements, etc., by a central control unit. In our design,
the complex problem of scene understanding is transformed into the generation of an
appropriate target template. Once a template is generated, we have shown that a sys-
tem can detect an object by an efficient parallel search as compared to purely salien-
cy-driven models which rely on a sequential search strategy by rapidly selecting parts
of the scene and analyzing these conspicuous regions in detail. Classically, a selection
on a saliency map defines which stimulus is gated into later processing stages (Sec-
tion 2.3). Most of the present computational models and machine vision approaches
follow this idea. A potential problem can arise from an erroneous segmentation. A
poor segmentation will affect all following processes, such as recognition. In our ap-
proach, an expectation about an object of interest will increase the conspicuity of the
relevant features and filter out the irrelevant ones, which leads to several potential
candidate locations. The spatial inference then narrows down the physical search
space. Thus, in our approach selection and recognition are ultimately connected with
each other.

Tsotsos [96] has pointed out, that attention is rarely mentioned in the computer
vision literature. Thus, we would like to stress the function of attention from our
point of view. In many computer vision problems the search space has been already
seriously reduced before the visual processing takes place [96]. For example, the ob-
ject detection task simulated by our model could have been also solved by defining
an appropriate filter and repeatedly convolving the image with the filter and then

Table 1
Overview of the performance on 16 test scenes (Fig. 10)

Criterion Performance (%)

Target detection (within four shifts) 81
Immediate selection (no scan) 50
Distractor selection 25
Rejection of the target 0

A correct target detection is defined as a selection of the target object by an overt shift. An immediate
selection refers to a parallel search. The criterion distractor selection considers all cases in which a
distractor has been selected by an overt shift. The rejection of the target is defined as a covert shift towards
a target. In this case the target would have been inspected but not recognized as such.
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determining the maximal response. Nevertheless, this can still result in an expensive
search. Attention is often introduced in models to speed up such serial processing. In
this respect, a cheap and fast filter is applied first and expensive computations are
only performed at some candidate regions. However, is there any more fundamental
need for attention that goes beyond spatial guidance? Shifter-circuit models [15,17]
suggest a location-based attention mechanism in which a subimage is shifted into
a central module to facilitate invariant recognition. A drawback is the enormous
amount of image copies required. In parallel architectures translation invariant ob-
ject recognition could be solved in a hierarchical fashion [97–99]. These models, how-
ever, fail in natural scenes. The problem lies in the interference inherent to a
convergent projection. Purely hierarchical, bottom-up approaches require that suffi-
ciently complex features are employed, possibly at the level of complexity of the ob-
jects themselves, which in turn would lead to a combinatorial explosion of the
number of units required [96,17]. Imposing a top-down expectation with a good
model seems to be a necessary consequence to reduce the influence of clutter [100].
We propose a solution in which attention filters out irrelevant information within
a hierarchy of processing stages. If hierarchical models fail because of the occurrence
of interference within a convergent projection, attention could provide a solution if it
successfully reduces the interference. For example, if we apply a feedforward ap-
proach and compare the image with the target template in parallel, we would almost
always receive a match, since the to be searched features are somewhere, distributed
in the scene. Our population-based inference operates as a dynamic filter. It allows a
successful confirmation or rejection of an object being the target, even with a very
simple template. In addition to the spatial component, feature-based attention has
been shown to enhance the robustness against clutter within the vicinity of the target
object (Fig. 9). In our model attention is not necessarily a prerequisite for object rec-
ognition, but it is equivalent to resolving ambiguities over time.

Thus, in our model attention goes much beyond a mere selection of a region or
location in the image. Attention allows to transfer the goal of the task flexibly into
the process of vision in order to emphasize the relevant aspects within a scene. Atten-
tion reduces interference in a hierarchical architecture to facilitate object recognition.
And attention enables a distributed, concurrent processing.

Our approach is strongly biologically motivated, but we have to ask for possible
limitations that could hinder the transfer of knowledge into computer vision. Cur-
rent simulations have shown that even very simple information about an object
can be used in a parallel multi-cue approach to detect and focus an object. Although
our approach seems to be largely invariant against background changes (please note
that we initially present the object to the model on a black background and then let
the model search for the object within a natural scene), it would be misleading to
compare the performance of the model on this specific object detection and localiza-
tion task with optimized solutions in computer vision (e.g. [101]). We do not claim
that the present version is a better approach for object detection in natural scenes
than existing computer vision solutions. Our emphasis is on giving insight into the
function of attention to pave the way for a transfer of approaches routed in compu-
tational neuroscience into computer vision [102].
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First of all, vision in this model is based on very simple features. This limits per-
formance in two respects: (i) the representation on which object detection is made
does hardly allow for real object recognition tasks and (ii) the guidance of vision
can only be based on simple color and orientation cues. However, it is possible to
extend our approach by learning feedback and feedforward transformations into
feature spaces of different complexity considering image statistics. This would gener-
ate a detailed representation of an object and facilitate the guidance of vision by
using more complex templates.

Second, the model generates a very simple template from the object which com-
prises just a single population in each channel. This can lead to very similar target
templates of objects even when they appear quite different to us. For example, the
man (Fig. 10K) and the girl (Fig. 10N) show identical target templates in three chan-
nels and strongly overlapping expectations in the other two channels. Given this very
similar template it is surprising that the tiny difference in the template resulted not in
the selection of identical target regions. However, this factor clearly limits the models
detection performance. The memorization of more than one target feature per chan-
nel could potentially improve performance. However, a stronger improvement is to
be expected if the target template would not encode simple features but a local
arrangement of features, e.g., the spatial relationship of orientations activated by
the lighter (Fig. 9).

Third, the computation of the model is expensive on serial computers since vi-
sion is defined as an iterative process. Nevertheless, integrated into a large-scale
framework and connected to a camera, the model has been demonstrated to oper-
ate in real environments [103]. For real-time computer vision tasks, however, the
model would require dedicated hardware that makes use of the inherent parallel
architecture.

Fourth, the model does not account for invariant recognition. If the model would
have to search for a vertical object that is lying on the table, it would reject it since
the orientation does not match the template. Invariant object recognition is still an
open issue and we do not aim to provide a solution here. At present, we would have
to compute more invariant representations or apply a view-based approach. Both
approaches are consistent with our approach. By modifying target templates dynam-
ically in the vision process invariant recognition can potentially be facilitated by
searching for appropriate templates in time.

Fifth, we integrate the conspicuity across channels to determine the saliency at
each location. Although we already consider the reliability of each observation, we
give all channels equal weight. However, for a given task one channel can carry more
information than others. Thus, it would be more adequate to define the integration
across channels as a general problem of cue integration or sensor fusion for which
several solutions have been proposed [29,104,105].

Although we can identify limitations of the present implementation, none of those
seems to be a limitation inherent to our approach. We are confident that our novel,
integrative approach of attention in visual scene perception offers much room for
improvements so it can be further developed to provide solutions for present and fu-
ture computer vision problems.
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Appendix A. Model equations

A.1. Feature maps

To construct the color channels R, G, B, Y, the color values r, g, and b from the
image are normalized by I = (r + g + b)/3 in order to decouple hue from intensity.
As opposed to Itti et al. [21], we do not apply an additional constraint to the normal-
ization, which sets all values in the color opponent channels RG and BY to zero at
locations with I smaller than 1/10 of its maximum over the entire image. There are
two reasons not to do this. First, in this stage of processing, we are interested in the
color values and not how easily they are perceived. Second, we do not use the nor-
malization to enhance low contrast values if no high contrast value is in the map, and
therefore we do not have to erase low contrast values to prevent their increase.

For each pixel in the pyramid we generate the color channels R = r�(g + b)/2 for
red, G = g�(r + b)/2 for green, B = b�(r + g)/2 for blue, and Y = (r + g)/2 � |r�g|/
2 � b for yellow (negative values are set to zero). The brain represents colors within
an opponency system RG = R � G and BY = B � Y. The values can be negative and
positive, but for an easy visualization we shift and rescale the values to 0–255.

A.2. Contrast maps

Contrast maps represent the conspicuity of each feature. For each pixel of the res-
olution r we create intensity contrast maps Iðc; sÞ by subtracting the map with the
coarse scale s from the one with center scale c.

Iðc; sÞ ¼ jIðcÞ � IðsÞj
c 2 f2; 3g;
d 2 f3; 4g.

ð10Þ

Similarly, we create the color double opponent values by

RGðc; sÞ ¼ jRGðcÞ � RGðsÞj;
BYðc; sÞ ¼ jBY ðcÞ � BY ðsÞj.

ð11Þ

Since the contrast in the color channels is small for natural images we stretch the
scale by a non-linear function s:
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dRGðc; sÞ ¼ sðRGðc; sÞÞ;dBYðc; sÞ ¼ sðBYðc; sÞÞ.
ð12Þ

with

sðxÞ ¼
kC � x if kC � x 6 255

255 if kC � x > 255

�
and kC ¼ 3. ð13Þ

This specific scaling function s can equal very high contrast values up to 255, but
since the hue is not very high we typically do not run into this situation.

We average the maps obtained by a different course scale s = r + d to receive one
contrast value per channel and center scale:

IðcÞ ¼ 1

#s
�
s
Iðc; sÞ;

RGðcÞ ¼ 1

#s
�
s

dRGðc; sÞ;

BYðcÞ ¼ 1

#s
�
s
dBYðc; sÞ. ð14Þ

Itti et al. [21] suggested a normalization to enhance salient locations before combin-
ing maps from different scales. However, we did not find a negative effect on the sig-
nal-to-noise ratio by averaging across s, since maps with the same center scale but
different surround scales just represent the influence of a different surround size.

Orientation contrast maps are computed for each orientation h using the center
surround operation with a fine scale c and a course scale s = r + d. However, if
the center orientation is different from the surround, the use of absolute values, sug-
gested by Itti et al. [21], would result in a high contrast at the center location in the
map with the same orientation as the surround. This interferes with the construction
of the population code, since the orientation at the center location is not in the im-
age. To get rid of this effect we only use the values with a higher center than surround
input.

Oðc; s; hÞ ¼
Oðc; hÞ � Oðs; hÞ if Oðc; hÞ > Oðs; hÞ;
0 else.

�
ð15Þ

We observed that this contrast measurement has a favorable effect on the signal-to-
noise ratio, since it is less sensitive to highly textured image parts such as bushes and
trees, which are indeed perceived as not very salient.

A.3. Feature conspicuity maps

The feature conspicuity maps combine the feature information V, like orientation
h or intensity I, with its gain P, obtained from the conspicuity such as O or I, into a
population code. The feature information is encoded by the location of the cell i in
feature space and the conspicuity value ðP 2 fO;I;RG;BYgÞ determines the firing
rate ri:
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ri ¼ P � gðui � VÞ; ð16Þ
Specifically we use a Gaussian tuning curve with the selectivity parameter rg:

gðui � VÞ ¼ exp �kui � Vk2

r2
g

 !
. ð17Þ

To apply the same range of selectivity parameters r2
g 2 f0.05 . . . 0.2g for all channels

we normalize the feature values V of each channel between 0 and 1 and get Ĩ, fRG,fBY , ~h, and ~r. The initial conspicuity value should typically lie within the range of
0 and 1. Thus, we also normalize contrast values to ~I, gRG, gBY, and ~O. We finally
obtain the populations for each channel with scale c at each location x:

rI ;iðc; xÞ ¼ ~Iðc; xÞ � gðui � Iðc; xÞÞ;
rRG;iðc; xÞ ¼ gRGðc;xÞ � gðui � RGðc; xÞÞ;
rBY ;iðc; xÞ ¼ gBYðc; xÞ � gðui � BY ðc; xÞÞ.

ð18Þ

The orientation information is transferred into two channels, one for scale or spatial
frequency r and one for orientation h. The orientation channel reads:

rh;iðc; h; xÞ ¼ ~Oðc; h; xÞ � gðui � hÞ. ð19Þ
Since it is not feasible to represent orientations in different maps within a population
code, we combine the maps across orientations:

rh;iðc; xÞ ¼ max
h

rh;iðc; h;xÞð Þ. ð20Þ

In order to further reduce the information we ignore the different center scales using
a convergent mapping (Eq. 2):

rh;iðxÞ ¼ max
c;x02RF ðxÞ

rh;iðc; xÞ;

rI ;iðxÞ ¼ max
c;x02RF ðxÞ

rI;iðc; xÞ;

rRG;iðxÞ ¼ max
c;x02RF ðxÞ

rRG;iðc; xÞ;

rBY ;iðxÞ ¼ max
c;x02RF ðxÞ

rBY ;iðc; xÞ.

ð21Þ

The 5th conspicuity map is gained from the spatial resolution of the steerable filters.
Thus, the orientation information is also transferred into features encoding spatial
frequency r:

rr;iðc; h; xÞ ¼ Oðc; h; xÞ � gðui � rÞ. ð22Þ
As for orientation, we combine the maps across spatial frequencies:

rr;iðh; xÞ ¼ max
c

rr;iðc; h; xÞð Þ ð23Þ

and repeat the same process across the orientation:

rr;iðxÞ ¼ max
h

rr;iðh; xÞð Þ. ð24Þ
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A.4. Level I

For each channel d 2 {h, I,RG,BY,r} we use a one-dimensional space R to en-
code the features with i 2 N units at each location x. Level I units receive input from
five channels (d): rh, i,x for orientation, rI, i,x for intensity, rRG, i,x for red–green
opponency, rBY, i,x for blue–yellow opponency and rr, i,x for spatial frequency. A fea-
ture-specific expectation of level I units originates in level II and a location-specific
expectation in the movement map.

DrId;i;x ¼ G� H ; sI ¼ 0.012 s; ð25Þ

G ¼ w � rd;i;x þ w � rd;i;x �
X
j

wd
ijr

I
d;j;x þ

X
x0

wd
x;x0r

I
d;i;x0

 !

þ C A�max
i

ðrId;i;xÞ
� �

� wLrd;i;x � rmx þ wF max
xII

ðrd;i;x � rIId;i;xIIÞ
� �

; ð26Þ

H ¼ rId;i;x � I inhd ;i;x þ If inh
d;x for orientation;

H ¼ rId;i;x � I inhd ;x þ If inh
d;x for other channels;

I inhd;i;x ¼ winh

X
j

rId;j;x þ wRF
inh max

x2xII
zRFd;xII þ wmap

inh zmap
d;i ;

I inhd;x ¼ winh

X
j

rId;j;x þ wRF
inh max

x2xII
zRFd;xII þ wmap

inh zmap
d ;

If inh
d;x ¼ wf inh

X
j

rId;j;x;

ð27Þ

where z is an inhibitory unit which receives its input from all cells in the map. The
lateral weights support similar features with high conspicuity at the same location.
They are computed by a Gaussian

wij ¼ 0.2 � exp �ði� jÞ2

0.1

 !
. ð28Þ

For orientation, the lateral weights are circular to account for the similarity proper-
ties of orientations.

wij ¼ 0.2 � exp minðði� jÞ2; ðI � ji� jjÞ2Þ
0.04

 !
. ð29Þ

Identical features at neighboring locations support each other as well.

wx;x0 ¼ 0.1 � exp �ðx� x0Þ2

0.005

 !
. ð30Þ

The lateral interactions of orientations in space follows not a simple similarity rule,
since a dissimilar arrangement can lead to a perception of a pop-out [106].
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wx;x0 ¼

0.126 �exp�
�
b
d

�2
�2
�
b
d

�7
� d2

p=2 if ð0<d610Þand b< p
2.69

� �
or

�
b< p

1.1
� �

and jh1j< p
5.9

� �
and

�
jh2j< p

5.9
� ���

�0.8 � 1�exp�0.4 b
dð Þ

1.5� �
expðjDhjp=4Þ

1.5� d2
p=4 if 0<d610ð Þand bP p

1.1
� �

and

jDhj< p
3

� �
and jh1jP p

11.999
� �

.

0 else.

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
ð31Þ

The parameters d, h1, h2, Dh, and b are determined as follows. The distance between
two interacting populations is d = |x � x0|. The angles between the encoded orienta-
tions and the line from x to x0 are denoted as h1 and h2, b as
b ¼ 2jh1j þ 2 sinðjh1 þ h2jÞ and Dh as Dh = h � h0.

Parameters used for the above equations are: w = 0.7; wL = 50;
wF ¼ 15; winh ¼ 1

#i ; wf inh ¼ 1
#i ; w

RF
inh ¼ 72

#x
; wmap

inh ¼ 3.2
#x
.

A.5. Level II

The conspicuity at level I is transferred by a convergent transformation into a rep-
resentation with larger receptive fields in level II. The size at level II does not adapt
to the image size. We use a 3 · 3 map with overlapping receptive fields.

DrIId;i;x ¼ G� H ; sII ¼ 0.012 s; ð32Þ

G ¼ max
i;x02RF ðxÞ

ðF ðw � rId;i;x0 ÞÞ ð33Þ

þ max
i;x02RF ðxÞ

ðF ðw � rId;i;x0 ÞÞ �
X
j

wd
ijr

II
d;j;x þ

X
x00

wd
x;x00r

II
d;i;x00

 !

þ C A�max
i

ðrIId;i;xÞ
� �

ð34Þ

� wL max
i;x02RF ðxÞ

ðF ðrId;i;x0 Þ � rmx0 Þ þ wF max
i;x02RF ðxÞ

ðF ðrId;i;x0 Þ � rTd;iÞ
� �

;

H ¼ rId;i;x � I inhd;x þ If inh
d;x ;

I inhd;x ¼ winh

X
j

yd;j;xðtÞ þ wmap
inh zmap

d ðtÞ;

If inh
d ðtÞ ¼ wmap

f inhz
map
d .

ð35Þ

wij ¼ 0.35 � expðminðði�jÞ2;ðI�ji�jjÞ2Þ
0.05 Þ for orientation wij ¼ 0.35 � expðði�jÞ2

0.05 Þ for other

populations winh ¼ 6
#i ; w

map
inh ¼ 3

#x
; wmap

f inh ¼ 5 � wmap
inh ; w ¼ 1.6;wF ¼ 8; wL ¼ 40.
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A.6. Perceptual map

The perceptual map receives afferents from levels I and II at the same retinotopic
location irrespective of the feature information and thus, encodes the conspicuity of
locations or often referred to as saliency. Inhibition of return suppresses the saliency
at locations that have been visited recently. We define an additional influence from
the working memory to further bias those locations that match the target template in
all channels. The feedback from the movement map reinforces the selection process.

Drvx ¼ G� H ; sv ¼ 0.012 s; ð36Þ

G ¼
X
d

wI max
i

rId ;i;x þ wII max
i;x02RF ðxÞ

rIId;i;x0

� �
þ wT

Y
d

max
i;x02RF ðxÞ

rTd;i � rId;i;x0

þ
X
x0

wx;x0rx0 þ wmrmx � wIORrIOR
x ; ð37Þ

H ¼ rxðwinh max
x

rx þ wmap
inh zmap þ BÞ; ð38Þ

wx;x0 ¼ 0.1 � expððx�x0Þ2
0.004 Þ; B ¼ 0.3; wI ¼ 0.2; wII ¼ 0.04; wIOR ¼ 1; winh ¼ 2; wmap

inh ¼ 3
#x
;

wm = 0.4; wT = 50.

A.7. Eye movement map

The movement map reads out the saliency and transfers it into an expectation for
level I and level II maps. It also indicates an eye movement if the expectation is suf-
ficiently high. The expectation is inhibited by fixation cells. In our example, the task
allows an eye movement only towards a target not towards another object. We con-
sider this by tracking the match units.

Drmx ¼ G� H ; sm ¼ 0.015 s;

G ¼ wvrvx � wv
inh

X
x

rvx þ
X
x0

wx;x0rmx0 � wfrf ;

H ¼ rmx w
map
inh

X
x

rx;

ð39Þ

wx;x0 ¼ 0.1 � expððx�x0Þ2
0.004 Þ; wv ¼ 0.3; wf ¼ 0.7; wmap

inh ¼ 0.075; wv
inh ¼ 0.4

#x
.

If the expectation exceeds the threshold Cm
0 at the time t0, we calculate the center

of gravity to indicate the location of an eye movement. Thus, in cases with a split of
attention the overt shift differs from the covert shift.

xc ¼
P

xr
m
x ðt0Þ � xP
xr

m
x ðt0Þ

. ð40Þ

A.8. Fixation unit

Some tasks demand an eye movement only when a target is in the scene, but not
when the scene contains only distractors. Thus, we define a fixation unit, that is un-
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der control of a very simple cognitive process (rc). The fixation unit also resets the
movement units: after the expectation in the movement map exceeds the threshold
Cm

0 and thus an eye movement is initiated at the time t0, the fixation unit gets acti-
vated for a brief period TSAC.

Drf ¼ G� H ; sf ¼ 0.012 s;

G ¼ wmIm þ wcrc;

H ¼ rf ;

Im ¼ 1 if rmðt0Þ > Cm
0 & t < t0 þ T SAC;

0 else.

( ð41Þ

TSAC = 50 ms; Cm
0 ¼ 0.8; wm = 4; wc = 0.6.

A.9. Inhibtion of return (IOR)

The IOR map serves as a buffer to memorize recently visited locations. Recently
visited locations are overt and covert shifts of spatial attention. We regard each loca-
tion x as inspected, dependent on the selection of an eye movement at time t0 and
location xc or when the attended item at location xm does not sufficiently match
the target template. The latter case is calculated in the control units and expressed
by the variable Ic. In this case the IOR cells are charged at the location of the highest
expectation in the movement map for a period of time TIOR. The IOR buffer slowly
decays with a low weight winh.

DrIOR
x ¼ G� H ; sIOR ¼ 0.01 s;

G ¼ ð1� rIOR
x ÞðISCx þ wmImx � I cÞ;

H ¼ winhrIOR
x

ISCx ¼ expð� ðx�xcÞ2
0.01 Þ if t < t0 þ T IOR;

0 else;

(

Imx ¼ exp �ðx� xmÞ2

0.01

 !
rmxm ¼ max

x
ðrmx Þ;

ð42Þ

wm = 1; winh = 0.02; Cm
0 ¼ 0.8; TIOR = 50 ms; Cm

c ¼ 0.4.

A.10. Target template

We model a simple recurrent local circuit for working memory (T) to encode the
expected features of level II units, i.e., the target template. The memorization of a
pattern is achieved through recurrent excitation. Whether a pattern should be mem-
orized depends on the task. The variable Istore (t) 2 {0,1} determines when a pattern
should be memorized. It is set externally according to the task instruction. If a pat-
tern is memorized (rTd;j is high), the term CðrCmem � wcue max

j
rTd;jÞ ensures that no

other stimulus in level II can penetrate the memory. In the conjunction search exper-
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iments we defined the target template externally with ITargetd , instead of showing a cue.
rmem indicates by an activity of one that a pattern is in memory.

DrTd;i ¼ G� H ; sT ¼ 0.012 s;

G ¼ CðCmem �max
j

rTd;jÞmax
x

CðrIId;i;x � CÞ þ ITargetd;i þ
X
j

wijrTd;j;

H ¼ rTd;i � winh

X
j

rTd;j þ ð0.7� 0.6 � Sd � I storeÞzd .
ð43Þ

For controlling the memorization and deletion we define the following variables:

rmem
d ðtÞ: ¼

1 if max
i

ðrTd;iÞ > Cmem;

0 else;

(
Sd ¼ 1 if maxðrTd;iÞ > 0.1;

Sd ¼ 0 if Imem ¼ 0 & rmem
d ¼ 0.

ð44Þ

The lateral ij are computed from a Gaussian with wij ¼ 0.45 � expðminðði�jÞ2;ðI�ji�jjÞ2Þ
0.005 Þ

for orientation wij ¼ 0.45 � expðði�jÞ2
0.005Þ for other dimensions winh = 0.25;C = 0.05;

Cmem = 0.35.

A.11. Match detection

To determine whether a pattern in the visual scene is similar to the target template
we define match units which compare the encoded conspicuity in level II with the
expectation in memory. The values in the match population indicate the degree of
match. This is implemented by multiplying the template rTd;i with the conspicuity
at level II rIId;i;x.

Drmd
d;i ¼ G� H ; smd ¼ 0.012 s;

G ¼ w � rTd ;i max
x

ðrIId;i;xÞ þ
X
j

wijrmd
d;j ;

H ¼ rmd
d;i � winh

X
j

rmd
d;j þ wf inh

X
j

rmd
d;j ;

ð45Þ

wij ¼ 0.45 � expðminðði�jÞ2;ðI�ji�jjÞ2Þ
0.005 Þ or orientation,wij ¼ 0.45 � expðði�jÞ2

0.005Þ for other
dimensions, w = 3.0; winh = 0.6; wfinh = 0.6.

A.12. Control unit

To meet different task demands we implemented a set of rules that control the
memory and internal actions, like fixation. They define when and under what condi-
tions a saccade has to be executed. In the example given below, the unit gets activat-
ed if there is a high expectation in the movement map ðmaxðrmx Þ > Cm

c Þ and no match
occurs ðmax

i
ðrmd

i;d Þ < COFF
d 8dÞ. This rule is applied after t>T0 to allow the presenta-

tion of previous images without affecting the rule. IFix (t) is set to 1 by the task def-
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inition if by no means an eye movement should occur. The planning of an eye move-
ment is always allowed if Imem(t) = 1, to ensure that a loss of the match is not gen-
erating an inhibition of return.

Drc ¼G� H ; sc ¼ 0.012 s;

G ¼Ic þ wFixIFix;

H ¼rc;

IDmoveðtÞ ¼ 1 if Ino�itemðt0 þ DtÞ � Ino�itemðt0Þ ¼ 1 & t < t0 þ T IOR;

0 else

(
ð46Þ

Ino�itemðtÞ ¼
0 if Imem;

1 if maxðrmx Þ > Cm
c & max

i
ðrmd

i;d Þ < COFF
d 8d with rmem

d ¼ 1;

0 else

8><>:
ð47Þ

I c ¼ maxðIDmove; Ino�itemÞ; ð48Þ
Cm

c ¼ 0.4; wFix = 10.2; TIOR = 50 ms.
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[50] P.R. Roelfsema, V.A. Lammé, H. Spekreijse, H. Bosch, Figure-ground segregation in a recurrent
network architecture, J. Cogn. Neurosci. 14 (2002) 525–537.

[51] B.J. Scholl, Objects and attention: the state of the art, Cognition 80 (2991) 1–46.
[52] G.W. Humphreys, H. Müller, Search via recursive rejection (SERR): a connectionist model of visual

search, Cognit. Psychol. 25 (1993) 43–110.
[53] S. Grossberg, E. Mingolla, W.D. Ross, A neural theory of attentive visual search: interactions of

boundary, surface, spatial and object representations, Psychol. Rev. 101 (1994) 470–489.
[54] M. Behrmann, R.S. Zemel, M.C. Mozer, Object-based attention and occlusion: evidence from

normal participants and a computational model, J. Exp. Psychol.: Hum. Percept. Perform. 24 (1998)
1011–1036.

[55] S. Grossberg, R. Raizada, Contrast-sensitive perceptual grouping and object-based attention in the
laminar circuits of primary visual cortex, Vision Res. 40 (2000) 1413–1432.

[56] Y. Sun, R. Fisher, Object-based visual attention for computer vision, Artif. Intell. 146 (2003)
77–123.

[57] C.J. McAdams, J.H. Maunsell, Effects of attention on orientation-tuning functions of single neurons
in macaque cortical area V4, J. Neurosci. 19 (1999) 431–441.

[58] H. Nakahara, S. Wu, S. Amari, Attention modulation of neural tuning through peak and base rate,
Neural Comput. 13 (2001) 2031–2048.

[59] F.H. Hamker, Predictions of a model of spatial attention using sum- and max-pooling functions,
Neurocomputing C 56 (2004) 329–343.

[60] R. Desimone, J. Duncan, Neural mechanisms of selective attention, Annu. Rev. Neurosci. 18 (1995)
193–222.

[61] E. Niebur, C. Koch, A model for the neuronal implementation of selective visual attention based on
temporal correlation among neurons, J. Comput. Neurosci. 1 (1994) 141–158.

[62] M. Usher, E. Niebur, Modeling the temporal dynamics of IT neurons in visual search: a mechanism
for top-down selective attention, J. Cogn. Neurosci. 8 (1996) 311–327.

[63] J.H. Reynolds, L. Chelazzi, R. Desimone, Competetive mechanism subserve attention in macaque
areas V2 and V4, J. Neurosci. 19 (1999) 1736–1753.

104 F.H. Hamker / Computer Vision and Image Understanding 100 (2005) 64–106



[64] F.H. Hamker, The reentry hypothesis: the putative interaction of the frontal eye field, ventrolateral
prefrontal cortex, and areas V4, IT for attention and eye movement, Cereb. Cortex 15 (2005) 431–447.

[65] F.H. Hamker, J. Worcester, Object detection in natural scenes by feedback, in: Bülthoff H.H. (Ed.),
Biologically Motivated Computer Vision, Lecture Notes in Computer Science, Springer Verlag,
Berlin, Heidelberg, New York, 2002, pp. 398–407.

[66] A.P. Georgopoulos, R.E. Kettner, A.B. Schwartz, Primate motor cortex and free arm movements to
visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal
population, J. Neurosci. 8 (1988) 2928–2937.

[67] T.D. Sanger, Probability density estimation for the interpretation of neural population codes, J.
Neurophysiol. 76 (1996) 2790–2793.

[68] A. Pouget, P. Dayan, R. Zemel, Information processing with population codes, Nat. Rev. Neurosci.
1 (2000) 125–132.

[69] E. Kobatake, K. Tanaka, Neuronal selectivities to complex object features in the ventral visual
pathway of the macaque cerebral cortex, J. Neurophysiol. 71 (1994) 856–867.

[70] J. Duncan, G.W. Humphreys, Beyond the search surface: visual search and attentional engagement,
J. Exp. Psychol.: Hum. Percept. Perform. 18 (1992) 578–588.

[71] D. Parkhurst, K. Law, E. Niebur, Modeling the role of salience in the allocation of overt visual
attention, Vision Res. 42 (2002) 107–123.

[72] P.J. Burt, E.H. Adelson, The Laplacian pyramid as a compact image code, IEEE Trans. Commun. 3
(1983) 532–540.

[73] H. Greenspan, S. Belongie, P. Perona, R. Goodman, S. Rakshit, C. Anderson, Overcomplete
steerable pyramid filters and rotation invariance, in: Proc. IEEE Conf. on Computer Vision and
Pattern Recognition, 1994, pp. 222–228.

[74] D. Kersten, A. Yuille, Bayesian models of object perception, Curr. Opin. Neurobiol. 13 (2003) 150–
158.

[75] E. Koechlin, J.L. Anton, Y. Burnod, Bayesian inference in populations of cortical neurons: a model
of motion integration and segmentation in area MT, Biol. Cybern. 80 (1999) 25–44.

[76] T. Moore, K.M. Armstrong, Selective gating of visual signals by microstimulation of frontal cortex,
Nature 421 (2003) 370–373.

[77] J.H. Reynolds, T. Pasternak, R. Desimone, Attention increases sensitivity of V4 neurons, Neuron 26
(2000) 703–714.

[78] G. Rizzolatti, L. Riggio, I. Dascola, C. Umiltá, Reorienting attention across the horizontal and
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