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Attention is known to play a key role in perception, including action
selection, object recognition and memory. Despite findings reveal-
ing competitive interactions among cell populations, attention
remains difficult to explain. The central purpose of this paper is
to link up a large number of findings in a single computational
approach. Our simulation results suggest that attention can be well
explained on a network level involving many areas of the brain. We
argue that attention is an emergent phenomenon that arises from
reentry and competitive interactions. We hypothesize that guided
visual search requires the usage of an object-specific template in
prefrontal cortex to sensitize V4 and IT cells whose preferred
stimuli match the target template. This induces a feature-specific
bias and provides guidance for eye movements. Prior to an eye
movement, a spatially organized reentry from occulomotor centers,
specifically the movement cells of the frontal eye field, occurs and
modulates the gain of V4 and IT cells. The processes involved are
elucidated by quantitatively comparing the time course of simulated
neural activity with experimental data. Using visual search tasks as
an example, we provide clear and empirically testable predictions
for the participation of IT, V4 and the frontal eye field in attention.
Finally, we explain a possible physiological mechanism that can
lead to non-flat search slopes as the result of a slow, parallel
discrimination process.
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Introduction

Experiments investigating object detection and attention in-

dicate that sets of cells encoding object features compete with

one another in parallel. Chelazzi et al. (1993, 1998) assume that

such a competition can be resolved by a feature-specific bias

from working memory. Similarly, the feature-similarity frame-

work (Treue and Martı́nez Trujillo, 1999) suggests that feed-

back implements a parallel feature-based gain control. Other

work has revealed that a spatial bias can also resolve competi-

tion among cells (Luck et al., 1997; Reynolds et al., 1999).

Computational models have shown that interactions within

a network can lead to attentive effects (Mumford, 1992; Tononi

et al., 1992; Hamker, 1999; Kirkland and Gerstein, 1999; Corchs

and Deco, 2002; Knoblauch and Palm, 2002). Specifically, we

have recently shown that a global feature-specific bias can guide

spatial selection by feedback within the ventral pathway

(Hamker, 2004b). According to our model, a target template in

prefrontal areas enhances the gain of cells in IT and V4 and

facilitates processing of the features that are to be detected. The

origin of a spatially selective bias, however, is rather unclear.

Among others, the lateral intraparietal area (Bisley andGoldberg,

2003), the superior colliculus (Ignashchenkova et al., 2004) and

the frontal eye field (FEF) (Bichot and Schall, 1999a) have been

suggested to implement spatial attention. Inspired by the latter

findings, we designed a computational model in which spatial

attention emerges by reentry from the FEF, and showed that the

temporal course of IT cell activity fits with some data of Chelazzi

et al.’s (1993, 1998) experiment (Hamker, 2001, 2002, 2003).

Further evidence in favor of the FEF has been given by Moore

and Armstrong (2003), who have shown that the gain of V4 cells

can be modified by a brief stimulation of FEF neurons. Assuming

the FEF is indeed directly involved in spatial attention, the FEF

could implement a gain modulation in V4 in two ways. Move-

ment and visuomovement cells exhibit target selection and

both could be the source of a reentry signal. A visual selection

model and a movement preparation model have been proposed.

The visual selection model predicts that target selection in

the visuomovement cells provides the focus of attention

(Thompson et al., 1997; Murthy et al., 2001; Sato and Schall,

2003). Alternatively, the movement plan model predicts that the

activity of movement cells provides a spatial reentry signal

(Hamker, 2003). At present there is no conclusive data in favor

of one over the other.

In order to shed more light on the function and predictions

of the movement plan model, the present paper focuses on

a comparison of the movement plan model with a range of

experimental data. We demonstrate that the reentry signal of

the movement plan model is consistent with other conditions

tested in Chelazzi et al.’s (1998, 2001) visual search experiment

and with data from a conjunctive visual search task (Bichot and

Schall, 1999b). Alternative models are shown to be less consist-

ent with the data of Chelazzi et al. (1998). We further show that

the model exhibits target selection in the visuomovement cells

similar to FEF data in an eye movement task (Sato et al., 2001),

although the reentry signal originates from movement cells. In

order to obtain a model with predictive power we (i) put much

emphasis on the selection of areas involved in the visual search

task; and (ii) constrain our model to match the typical temporal

course of activity of cells in all implemented areas.

Our simulations result in novel and specific predictions, one

of the most relevant being that the latency of the spatial reentry

depends on the degree of the target--distractor discrimination.

This finding has strong implications on the emergence of search

slopes in visual search experiments.

Materials and Methods

Memory-guided Search Task
We simulate the memory-guided search task used by Chelazzi et al.

(1998). If the sample reappears in the search array, the condition is

called ‘Target Present’ (Fig. 1). The result is a ‘saccade to the good

stimulus’ if we observe a cell that is strongly driven by the cue. Let us
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now assume that we observe the same cell but present a cue stimulus

that does not drive the cell very well. In this case the outcome is

denoted ‘saccade to the poor stimulus’, since the chosen stimulus is

a poor stimulus for the observed cell. If the good and the poor stimulus

are within the search array and we present the poor stimulus as the cue,

we observe distractor suppression. In the ‘Target Absent’ condition the

cue stimulus is different from the stimuli in the choice array. In this case

the saccade has to be withheld.

Outline of the Model Proposed
We identified and constructed a network of relevant brain areas that are

sufficient to perform the visual search task in Chelazzi’s experiment

(Fig. 2). Our model consists of ascending populations called ‘stimulus

cells’ that can be primed by feedback connections, and descending

populations of ‘target cells’ that project dominant patterns back into the

source areas. In brief, the proposed dynamics of perception are as

follows. Massive feedback projections within the ventral pathway

implement a gain control in order to transfer target information

represented in ‘higher’ areas to intermediate areas (V4). These

intermediate areas drive the FEF and lead to target discrimination in

visually responsive cells. By way of reentry into extrastriate visual areas

from FEF movement cells, neurons in V4 and IT that have their receptive

fields at the location of an intended eye movement increase their

sensitivity and gain an additional advantage in competition.

We now describe the central gain control mechanism which

determines the interaction of different areas, followed by an explanation

of the different model areas. A mathematical description of the model

can be found in Appendix I.

Mechanisms of Interaction between Brain Areas
The selectivity of each cell is defined by its location i 2 N in the

population and its activity ri reflects the conspicuity of its preferred

stimulus. Each cell is simulated by an ordinary differential equation

(equation 1), that governs its average firing rate over time. Thus, using

the model we are able to observe the temporal change of activity

induced by a reentry signal.

Consistent with recent findings (Hupé et al., 2001), we model the

influence of reentry as a gain control mechanism on the feedforward

signal. In abstract terms, the reentry signal represents the expectation r̂

to which the input (observation) r[ is compared. If the observation is

similar to the expectation, we increase the conspicuity. This population-

based inference can be achieved by a pointwise multiplication I
Y
i }r

[
i � r̂i

(Fig. 3), which relates to a neural interpretation of Bayesian inference

theory (Koechlin et al., 1999). Our theoretical definition of gain control

has a direct functional relevance: if the reentry signal acted not on the

Figure 1. Simulation of the experiment of Chelazzi et al. (1998). We use the same temporal order of events as in the real experiment. The simulated objects (banana, apple,
pepper) are represented by a noisy population input in a one-dimensional feature space, here illustrated by a snapshot at the bottom of the figure. We do not use images as input.
RFs without an object just have noise as input. Each object is encoded within a separate RF, illustrated by the dashed circle, of V4 cells in two simulated dimensions (only one is
shown). All V4 cells are within the RF of the IT cell population. First a cue is presented to the model for 300 ms. After a delay of 1500 ms, one, two, three or five stimuli are shown.
The model has to indicate the detection of the target by selecting its location for an intended eye movement. By varying the cue, we can define different search conditions: target
present and target absent.

Figure 2. (a) Outline of the minimal set of interacting brain areas. Our model areas are restricted to elementary but typical processes and do not replicate all features in these
areas. The arrows indicate known anatomical connections between the areas, which are relevant to the model. The area that sends feedforward input into the model is not explicitly
modeled. The labels in the boxes denote the implemented areas. (b) Sketch of the simulated model areas. Each box represents a population of cells. The formation of those
populations is a temporal dynamic process. Bottom-up (driving) connections are indicated by a bright arrow and top-down (modulating) connections are shown as a dark arrow. The
two boxes in V4 and other areas indicate that we simulate two dimensions (e.g. ‘color’ and ‘form’) in parallel. The FEF is pooled across dimensions.
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input, but on the output, a suppressed cell would not increase in activity

even if it had a high gain, and thus state changes of the dynamical system

would be impaired.

Altogether, the change of activity of a cell i is a function of input r
[
i ;

the lateral I4i influence, and the top-down gain control I
Y
i ; as well as an

inhibitory term that depends in part on the activity rV 4
i of a cell i in V4:

s
d

dt
ri

V 4 = ri
[+ Ii

4+ Ii
Y
– ðri V 4+ 0:1ÞI inh

d
ð1Þ

Given an identical input, the timing of reentry determines the change

of activity of a target cell (Fig. 4). The difference of responses prior to

100 ms solely depends on influence from IT. After that, the FEF starts to

weakly modulate the response. A strong modulation from the FEF does

not occur prior to 150 ms.

Our gain control mechanism builds the core of the system in respect

that it defines how areas on a different hierarchical level interact with

each other in a continuous fashion.

Interactions among Model V4 Cells
The model V4 cells are driven by the input to the model and, consistent

with known massive feedback projections in the ventral pathway

(Rockland and van Hoesen, 1994; Rockland et al., 1994), are modulated

by IT. Another source of top-down influence seems to have its origin in

the occulomotor circuit (Moore, 1999; Moore and Fallah, 2001; Tolias

et al., 2001), in particular the FEF (Moore and Armstrong, 2003). We

suggest that FEF movement cells modulate the gain of cells in V4 and IT

(Hamker, 2003). Although retrograde labeling by tracers has revealed

connections from layer 5 in the FEF, which contains movement cells, to

extrastriate visual areas (Schall et al., 1995a), there is no direct evidence

for the assumption that the movement cells are responsible for gain

control.

The V4 used in our model is consistent with a range of experimental

findings (Hamker, 2004a): if the receptive field contains just one

stimulus, then a spatial bias results in a multiplicative gain increase.

This has been observed in MT, MST and V4 (Treue and Maunsell, 1999;

McAdams and Maunsell, 1999). If two stimuli are presented within the

same receptive field, then the model V4 reproduces the data of Reynolds

et al. (1999): a bias towards one stimulus reduces the influence of the

other stimulus within the receptive field. We explain these attention

effects by an input gain increase and additionally by an indirect

inhibition among active populations.

Interactions among Model IT Cells
Consistent with the large receptive fields of IT neurons, our model IT

cell population receives converging input from all V4 populations (Fig.

2). Elevated baseline activity in IT cells (Tanaka et al., 1991; Miller et al.,

1993; Chelazzi et al., 1993, 1998) is likely to originate in the prefrontal

cortex (Tomita et al., 1999). Consistent with this finding, model

prefrontal areas provide feedback into IT (Fig. 2). Since FEF projects

to TEO (Schall et al., 1995a) the input gain in IT is also affected by model

FEF movement cells (Fig. 2). We use the same model for IT as we do for

V4, but our IT cells have stronger lateral inhibition.

Task Control by PF Cells
The prefrontal cortex has been extensively studied in recordings around

the principal and arcuate sulci, i.e. areas 8, 46 and 45 (Miller and Cohen,

2001) and is known to participate in the coordination of tasks (White

and Wise, 1999; Asaad et al., 2000; Hasegawa et al., 2000; Miller and

Cohen, 2001; Tanji and Hoshi, 2001). Areas 8 and 46, which overlap the

frontal eye field, are often reported to code location- and motor-related

signals, while area 45 is involved in categorization and feature detection

(Freedman et al., 2001). Prefrontal cortex might apply a modulation

over other areas in order to alter the mapping from perception to action

(Miller and Cohen, 2001). Extending this concept, we show that

prefrontal modulation can change the internal state of the system.

One aspect of this control function is often referred to as working

memory, while another is the detection of a match between object and

sample in a delayed match-to-category task (Freedman et al., 2002). Our

model prefrontal cortex fulfills these two major functions, encoding

a pattern in PF working memory cells and indicating a match of the

incoming pattern with the memorized pattern in PF match cells. Thus,

IT cells can only drive PF match cells when their pattern matches the

expectation from PF working memory cells (Fig. 2).

Saccade Target Selection by FEF Cells
The FEF has connections to occipital, temporal and parietal areas, the

thalamus, superior colliculus, and prefrontal cortex (Stanton et al., 1988,

1993; Schall et al., 1995a). The FEF can be subdivided into lateral and

medial parts.

The lateral FEF, which generates short and precise saccades (Bahill

et al., 1975), is connected to the dorsal (LIP, MT, MST, V3) and ventral

(TEO, V4, V2) pathways, the ventrolateral prefrontal cortex (Baizer

et al., 1991; Schall, 1995; Schall et al., 1995a; Stanton et al., 1995), and

the superior colliculus (Sommer and Wurtz, 2000). The projections

from V2 and V3 are weak, while the one from V4 is intermediate. Strong

projections from TEO, MT and MST suggest that the FEF uses features

after several stages of processing for target selection (Webster et al.,

1994; Schall et al., 1995a).

Our model is consistent with this anatomy. FEF neurons receive

convergent afferents from features across all dimensions in V4 at the

same retinotopic location. Since anterior IT cortex, the area from which

Chelazzi et al. (1998) recorded, does not project directly to FEF, we do

not model any input to this area from IT.

The neurons in the FEF can be categorized based on both their

responses to visual stimuli and to saccade execution into visual,

visuomovement, fixation and movement cells (Bruce and Goldberg,

1985; Schall et al., 1995b). We consider visuomovement, fixation and

movement cells (Fig. 2), and even model their temporal dynamics:

visuomovement cells in deep layers are active from stimulus onset until

saccade execution. Typically their initial response does not distinguish

between distractor or target, but the activity decays when a distractor is

in the receptive field (Schall et al., 1995b). Movement cells are active

prior to saccades and do not show any response to stimulus onset

(Hanes et al., 1998). Fixation cells decrease their activity before

a saccade and increase their firing rate after the saccade or to terminate

Figure 3. Illustration of how top-down directed expectation in a higher area modulates feedforward processing in a lower area. (a) The expectation r̂ acts on the input r" and
increases the gain as depicted by the arrow through the circle. The y-axis encodes the firing rate of cells and the x-axis the feature space, e.g. orientation, color or location. For
simplicity, the feature space of the involved areas is identical. To give an example, the expectation could originate from a population of cells in IT and modulate the conspicuity in V4.
(b) Population activity without a significant top-down influence. In this case the content is simply processed in a bottom-up manner. (c) Population activity after top-down
expectation multiplicatively increases the gain of the cells and therefore emphasizes a specific pattern (or location). Due to competitive interactions the population response for the
non-supported stimuli decreases, resulting in a dynamic attention effect.
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a planned eye movement (Hanes et al., 1998). Movement-related cells in

the FEF show a fixation-disengagement discharge (Dias and Bruce,

1994), which indicates that fixation cells inhibit movement cells

(Burman and Bruce, 1997).

The decision to execute an eye movement or to withhold gaze is

based on a threshold detection of the PF match cells. If the PF match

cells fire, the target is detected in the search array and the movement

cells are disinhibited by removing the input into the fixation cell (Fig. 2).

Results

Sensory Interactions in IT During Visual Search

We now verify the reentry hypothesis by comparing the firing

rate of our IT stimulus cells with recordings in IT (Fig. 5). All of

our simulations correlated well with the experimental data,

even with regard to the time course of competition.

When an array containing both the good and the poor stimuli

is displayed (Fig. 5a), each cell initially encodes the presence of

its preferred stimulus, but nonetheless the target cell shows an

early advantage. Between 150 and 300 ms the cells encoding the

non-target get suppressed almost to baseline activity, whereas

the cells encoding the target show a small dip but then increase

to the same level of the initial activation or even exceed it.

When only the good stimulus is presented, the physiological

data show no difference in activity between the target and

non-target conditions before the execution of an eye movement

(Fig. 5b). Our simulations show a slight attention effect in favor

of the target, since spatial and feature feedback cannot be

completely shut off. However, as the activity of a model cell

increases, feedback becomes less efficient and thus the atten-

tion effect is smaller than in conditions when stimuli compete.

The presentation of a poor stimulus alone leads to a suppression,

since in contrast to the experiment, our chosen poor stimulus

does not drive the cell encoding the good stimulus.

A crucial condition is the target-absent condition (Fig. 5c). If

the good and the poor stimuli are presented, the responses

decrease after the initial burst.We explain this observation based

on a weak winner-take-all competition. In the target-absent

condition the good and the poor stimuli receive no top-down

bias; they suppress each other and self-excitation is not strong

enough for one population to dominate the other. Since pre-

frontal areas do not indicate the presence of the target, none

Figure 4. The temporal dynamics of gain control.We observe the influence of reentry onto the firing rate of a V4 cell in two different conditions (depending onwhether the target is the
good or poor stimulus), given the input is identical. A V4 cell receives a reentry signal frommovement cells and IT. Both reentry signals enhance the gain and add up in their effect. Due to
the different top-down signal in PF working memory in either condition, the reentry signal from IT differs for the two conditions. This difference leads to a different gain and thus to
a different activity in V4. After 150ms the reentry signals from themovement cell start to differ. Thus, the gain of the cell in the saccade to the good stimulus case is much higher than in
the saccade to the poor stimulus condition. Due to competitive interactions among the V4 cells, the activity in the saccade to the poor stimulus case gets suppressed as well.
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receives a significant reentry, and the firing rate of IT cells

decreases to a limit above baseline activity.

Figure 5d shows that the response to the good stimulus in

the non-target condition is approximately halfway between the

responses to the good stimulus and the poor stimulus in the

target-present condition.

If we compare the stimulus alone with the two-stimulus array

condition (Fig. 5e), we see that in both cases the good stimulus

has almost the same activity around the time of the eye

movement, although the activity in the good stimulus alone

condition is initially stronger.

Our simulation replicates the temporal course of activity in

the different conditions of the experiment from Chelazzi et al.

(1998). This constraint allows us to make reliable predictions.

Thus, we now explain the possible influence of the other

simulated areas on the activity in IT.

Contribution of Other Areas to Visual Search

The good fit with the data in IT is only of value if we can

demonstrate that the temporal course of activity in other model

areas is consistent with experimental findings. Here, we restrict

ourselves to the condition with a target and one distractor in

the display (Fig. 6). The presentation of the cue elicits a re-

sponse in IT cells, which is stored by working memory cells.

Consistent with studies using a delayed match-to-sample task

(Miller et al., 1996), elevated firing rates are visible during the

delay. In addition, the temporal course of activity of the PF

match cell is very similar to what has been observed in the

prefrontal cortex during a delayed match-to-category task

(Freedman et al., 2002).

The receptive field of the V4 cell shown in Figure 6 does not

encompass the location of the cue. Ourmodel predicts a baseline

increase during the cue presentation only for those V4 cells that

receive direct feature-selective feedback from the IT. For other

cells it predicts a slight suppression due to unspecific long-range

inhibition. Consistent with this prediction, Chelazzi et al. (2001)

report that 4.9% of V4 cells exhibit a significant baseline increase,

while 67.9% are inhibited during cue presentation.

In order to guide eye movements, the information about the

presence of the target encoded in IT has to be converted into the

information about the target’s location. We have shown that

feedback from IT to V4 cells, which have smaller receptive fields,

can provide information both about the features of the target and

its location (Hamker, 2003). Thus, the model predicts an early

target effect inV4. Consistentwith this prediction, Chelazzi et al.

(2001) found a slight early target effect in V4 cells, which is

strongerwhen two stimuli are locatedwithin the same receptive

field. Although this early attention effect is only small, it is

remarkable since V4 is the second stage of feedback after TEO.

In the projection from V4 to FEF the neural firing pattern in

V4 is averaged over dimensions and the feature specifity gets

lost. Thus, the initial feature-specific enhancement in IT is

Figure 5. Activity of model IT neurons aligned to the onset of the search array. The
activity of the cell with the optimal response to the good stimulus is shown. The time
of an eye movement is indicated by a bar on the time axis. Activity after the eye
movement cannot be reliably compared to real data, since we do not model an actual
foveation. (a--e) Physiological data (left) and simulation data (right). The physiological
data is reprinted from ‘Responses of neurons in inferior temporal cortex during
memory-guided visual search’ by Chelazzi L, Duncan, J, Miller EK, Desimone R (1998),
J Neurophysiol 80:2918--2940. Copyright 1998 by the American Physiological Society.
Reprinted with permission.
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transferred via V4 and FEF into a location specific advantage of

some locations over others. The threshold detection in the PF

match cells causes the FEF fixation cell to decrease in activity in

order to plan an eye movement. Initially, FEF movement cells are

able to gain activity regardless of whether they encode a target

or non-target in their movement fields. This is supported by

experimental data (Bichot et al., 2001b).

The time the model needs to select a target for an eye

movement is variable. We notice that the latency of the eye

movements increases with the set size (Fig. 7a). We observe

Figure 6. Overview of the simulated areas aligned on cue. The good stimulus of the observed cell is the ‘banana’. The cue defines if the good or the poor stimulus is the target.
Thus, the differences after cue presentation occur only due to the definition of which stimulus is the target. If the good stimulus is presented as the cue, the saccade goes to the
banana, as indicated by the high movement activity. If the poor stimulus is the cue, the saccade is directed to the apple and, thus, movement activity at the location of the banana is
low. The figures show the activity of the best matching cell for the good stimulus in a two-stimulus array over time. We observe attention in the system solely on the basis of
interacting areas. Different attentional effects add up and their origin lies in feeback gain control as well as competition.
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a slope of 12 ms per item compared to 26 ms measured by

Chelazzi et al. (1998). However, such a steep slope results from

the fast response in the one-stimulus case. Consistent with the

empirical data of Chelazzi et al. (1998), an eye movement is

delayed for ~40 ms when two stimuli are presented. Apparently,

the processing of a target stimulus slows down when its

selection occurs during a competition with distractors.

Consistent with FEF data (Hanes and Schall, 1996; Schall,

2002), the variability in search time can have two reasons in our

model: variability in the growth rate of the movement activity,

and variability in the onset of the movement cell activity. The

observed set-size effect originates primarily in the variability of

the growth rate of the movement cell activity. We find that it

decreases with latency: the time for the behavioral response is

highly correlated with the time span from target detection to

action selection (Fig. 7b). The growth rate of the movement

activity in turn depends on the target discrimination in the

input as well as the overall strength of the input. The two-

stimulus condition shows a better target discrimination as well

as a stronger input (Fig. 8).

In our model, the onset of the movement cell activity depends

directly on the detection of the target’s presence in PF match

cells (target detection), as a result of the constraint to withhold

an eye movement to a distractor. Thus, target detection also

influences the set-size effect. In the present simulations, how-

ever, target detection begins at a fairly constant time, ~120 ms

after target presentation. Miller et al. (1996) measured an

average match response of ~110--120 ms in prefrontal cortex as

well, while presenting just one object at a time. The reason why

we find a constant target presence detection lies in the simple

stimuli and the low-level feature spaceweuse [the scenes used in

the experiment of Chelazzi et al. (1998) were also relatively

simple]. Consistent with our model, difficult scenes can result in

a delay, or even failure, in detecting the presence of the target.

Alternative Models

We have demonstrated that a movement plan model fits with

the temporal course of activity in IT and V4 using the paradigm

of Chelazzi et al. (1998, 2001). Usher and Niebur (1996) have

shown target selection in IT with only a feature-specific bias.

Alternatively, it was suggested that visuomovement cells in the

FEF could select the target (Thompson et al., 1997; Sato and

Schall, 2003). We simulated these alternative models as well, to

shed more light on their limitations (Fig. 9). Since all models

contain a bias, either feature-specific alone or an additional

location-specific bias, we observe the trivial result that the

responses to the good and the poor stimuli differ. The objec-

tives of rating the simulation data are as follows. First, in the

target-present condition the IT cells show a transient response

to the good stimulus and increase in firing prior to the eye

movement. Second, in the target-absent condition none of the

behaviorally irrelevant stimuli gets selected. From the experi-

ment of Chelazzi et al. (1998) we cannot rule out that attention

is not directed to non-target stimuli. However, since none of the

stimuli receives a bias given by the instruction and the monkey

has to hold fixation, we demand that noise in the neural

responses alone should not result in the selection of a behav-

iorally irrelevant stimulus in response of the presentation of two

stimuli. The parameters of all models are optimized separately

to meet the objectives as well as possible for each model.

We simulated the model following the classical interpretation

with a feature-specific bias from prefrontal cortex using a strong

feedback from IT to V4 (Fig. 9a) and an intermediate feedback

from IT to V4 (Fig. 9b). The strong feedback condition fulfills

our first objective and shows an increase of activity prior to the

eye movement, but it clearly fails to achieve the second one. The

reduction of the weight of feedback from IT to V4 decreased

the sensitivity to noise (second objective), but a reasonable bias

from prefrontal cortex to IT does not sufficiently activate the

response to the target prior to the eye movement. In general,

any form of recurrent excitation is sensitive to noise. Thus,

a strong excitatory loop within IT would select a behaviorally

irrelevant stimulus as well.

Another alternative model for explaining the observation is

a spatial reentry signal from the FEF visuomovement cells (Fig.

9c). In this model all locations receive a transient spatial bias due

Figure 7. Latency of eye movements depending on the set size. (a) Linear fit of the measured latencies. If two or more stimuli appear, the model predicts a delay in eye movement
selection although the search is parallel. (b) Linear fit between the time for saccade selection and time for location discrimination. The time for location discrimination is the time
from the target presence detection in the PF match cells to the time of saccade selection. Since the time for ‘target-present’ detection in PF match cells is almost constant, the
different latencies occur during target discrimination and selection in FEF cells and not in the bottom-up wave into PF match cells. Thus, the interactions in the FEF are responsible for
the delay in eye movement selection.
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to stimulus onset, but since the visuomovement cells exhibit

target discrimination (Fig. 8a), their activity can be sent back to

V4 and IT to spatially select a stimulus. However, a reentry from

the visuomovement cells shows difficulties meeting the objec-

tives as well. We had to choose a weak gain for the spatial

reentry signal, since otherwise noise results in the selection of

a non-target. Even the strongest possible gain, which already

slightly selects a non-target, did not allow for meeting the first

objective.

We added to the model in Figure 9b a reentry signal from the

movement cells to show that this model now meets both

objectives (Fig. 9d).

We conclude that the target-present condition is difficult to

explain entirely through the activation of a feature-specific top-

down bias from prefrontal areas. A strong self-enhancement is

sensitive to noise and thus predicts a winner in the non-target

condition as well. A weak self-enhancement needs an additional

strong (driving) bias. Visuomovement cells do not provide

a good bias, since they are not decoupled from the early sensory

processing and, thus, their bias is also sensitive to noise. A spatial

reentry from movement cells is decoupled from direct sensory

processing, since it requires the decision to plan an eye

movement and so is not sensitive to noise.

We are careful to definitively rule out the alternative models,

since the data from Chelazzi et al. (1998) do not allow

a quantitative analysis. However, we exposed obvious inherent

limitations of the alternative models in explaining the findings.

According to our simulations, a spatial bias from the movement

cells fits the objectives best.

An alternative, feature-specific explanation could be a weak

early prefrontal bias and a strong late prefrontal bias. However,

the monkey in Chelazzi et al.’s experiment knows the target

object and its search plan is set, so it is unclear why a difference

in strength between early and late prefrontal bias should occur.

This does not mean that we can definitively exclude a feature-

specific explanation. Nevertheless, as explained later, our

hypothesis results in new testable predictions.

Saccade Target Selection and Saccade Latency

Our model was optimized to fit IT data in the visual search task

of Chelazzi et al. (1998) using general information about the

time course of activity in the FEF (Bruce and Goldberg, 1985;

Schall, 1995; Bichot and Schall, 1999a). We have already

discussed its fit with the V4 data obtained by Chelazzi et al.

(2001). To further demonstrate that our model FEF can account

for the data from a variety of experiments, we compare the same

model with identical parameters to the behavioral data of

a conjunction visual search experiment from Bichot and Schall

(1999b) as well as FEF data from Sato et al. (2001).

Bichot and Schall (1999b) found that correct saccades are

faster than incorrect ones. In our simulation (Appendix II) we

varied the search efficiency of the task by a random selection

of the feedback strength from PF working memory to IT. We

observe a performance of 96% for correct target selection in

trials with set size 4 and of 94% in trials with set size 6. Consistent

with Bichot and Schall (1999b), the average time for correct

saccades (291 ms) is significantly shorter than for incorrect

saccades (360ms) in the set size 4 condition (t-test, P < 0.001) as
well as in the set size 6 condition (t-test, P < 0.001), with 298 ms

for correct saccades and 472 ms for incorrect saccades. As we

shall see next, the model predicts this increase on the basis that

a poor discrimination leads to longer competition in the FEF.

A recent report investigated the effect of input discrimination

on visual selection in the visuomovement cells of the FEF (Sato

et al., 2001). Increasing the similarity of the distractors to the

target increased reaction time and increased the time needed to

discriminate the target by FEF visually responsive neurons. We

have shown that increasing the target--distractor similarity

increases the time to select the target and increases the number

of errors (Hamker, 2004b). The target--distractor similarity and

other factors, such as the availability of a target template,

determine search efficiency by varying the target discrimination

in the input of the FEF. We now shed more light of how target

discrimination affects the time for target selection. We sorted

the responses in the conjunction visual search simulation

according to the reaction time and separated the trials into

three equal groups (fast, medium, slow). By comparing the fast

and slow groups, we see— similar to Sato et al. (2001)— a clear

latency-increase in target discrimination with slower response

time (Fig. 10). Thus, our model FEF transfers the target

discrimination into the latency of a reentry signal.

Figure 11 shows the activity of the visuomovement cells in

the fastest and slowest conditions. The initial activity clearly

Figure 8. Target discrimination in the frontal eye field depending on the set size,
which has been also observed in experimental data (Bichot et al., 2001a). (a) FEF
visuomovement cells. (b) FEF movement cells. The initial activity of the cells within the
five-stimulus array is lower. As a result they need more time to reach the threshold for
eye movements in the FEF movement cells. However, this delay is partly compensated
by lower overall inhibition when the distractor is suppressed.
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reflects the top-down advantage from the ‘what’ pathway (i.e.

the number of dimensions that the item shares with the target).

The target extends the discrimination with increasing time,

consistent with the experimental data (Bichot and Schall,

1999a; Bichot et al., 2001a; Sato et al. 2001). In the fastest trial

target discrimination occurs very early (50 ms), whereas in the

slowest trial the discrimination of the target occurs at 290 ms.

Predictions

A Poor Target Discrimination in FEF Visual Cells Results in

Higher Activation of Non-target FEF Movement Cells

Our model FEF visuomovement cells show the effect of search

efficiency on the visual selection in the FEF (Sato et al., 2001):

low efficiency is characterized by poor (late) target discrimina-

tion in the visual cells. We now predict how search efficiency

affects the movement cells, which were not investigated by Sato

et al. (2001). In the case of a low efficiency, where a poor (late)

target discrimination in the visual cells was observed, the model

movement cells need more time to resolve the competition

(Fig. 12). Our model predicts that in this case the distractor

location can achieve a high activation relative to the condition

with a good (fast) target discrimination.

A Late Target Effect in V4 and IT Is Launched by Spatial

Reentry

Chelazzi et al. (1998) defined an early time window from 70 to

170 ms after stimulus onset and a late time window from 100 ms

before the saccade until its execution. The responses of IT and

V4 cells show an enhanced activity for the target in the early

window, whereas a significant target selection was observed in

the late time window (Chelazzi et al., 1998, 2001). It was

suggested that the observed responses can be explained by

a feature-specific bias from prefrontal areas (Chelazzi et al.,

1998). Usher and Niebur (1996) have shown that competition

among model IT cells is sufficient for the target selection

observed by Chelazzi et al. (1993). However, their model is

limited to the case of one target and one distractor, and did not

Figure 9. Comparison of alternative models for target selection in IT in the target presence and target absence condition using a model with only a feature-specific bias (a, b),
a visual selection model with feedback from FEF visuomovement cells (c) and a movement plan model with feedback from FEF movement cells (d). In all cases the response to the
distractor (Target5 Poor Stim.) is suppressed. The parameters of each model are fitted to meet two objectives. First, if the target is the good stimulus, a transient response after
stimulus onset followed by an increase of activity prior to the eye movement is required. The slope of the increase is indicated by a dashed line. Second, in the no-target condition,
none of the stimuli should be selected by noise in the system. The model with only a feature-specific bias using a strong self-enhancement (a) meets the first objective, since the
response to the target shows an increase prior to the eye movement, but it fails to meet the second one, since stimulus ‘1’ is selected. The model with only a feature-specific bias
using an intermediate self-enhancement (b) does not meet the first objective. The visual selection model (c) also fails to meet the first objective, although the spatial bias is already
quite strong such that noise effects result in a slight target selection of stimulus ‘2’. The movement plan model (d) meets both objectives.
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explain the target-absent case. Our simulations of target-present

and target-absent cases have shown that the target selection

in the late phase is consistent with a reentry from the fronto-

parietal network. A model without spatial reentry has difficulties

in reconciling both the target-present and target-absent data.

Movement Cells of the Frontal Eye Field Are the Origin of

Spatial Reentry

In the search for the saliency map, proposed by the classical

hypothesis of spatial attention, a task-relevant increase has been

reported in several fronto-parietal areas that process space,

such as LIP (Bisley and Goldberg, 2003) and FEF (Bichot and

Schall, 1999a). However, the major question is not which areas

reflect attention but which areas are likely candidates for

a spatially organized feedback signal — the source of spatial

attention in the ventral pathway. Some recent experiments

reported presaccadic activity in V4 (Moore, 1999; Tolias et al.,

2001) which is likely to originate from the FEF (Moore and

Armstrong, 2003). Since visual, visuomovement and movement

cells exhibit target discrimination, spatial attention could be

explained by a visual selection model or a movement plan

model. Thompson and Schall (2000) observed a discrimination

in the visuomovement cells and proposed a direct feedback of

these cells into V4. We observe this discrimination in our model

as well (Fig. 11). However, we suggest a movement plan model.

Movement neurons have a late response and no phasic burst in

response to stimulus onset. They show only little enhancement

for distractors in visual search (Bichot et al., 2001b) and correct

rejections in masking experiments (Thompson and Schall,

2000). Thus, movement cells are decoupled from direct visual

processing. Our model suggests feedforward excitation and

global inhibition from the visuomotor cells as a possible mech-

anism. Such a mechanism ensures that a broad activation

pattern within the visuomovement cells is not transferred to

movement cells. A strong and early feedback for target and

distractors, as predicted if the phasic visual or visuomovement

cells are the origin of reentry, introduces a selective bias in V4

and IT, which is sensitive to noise. We could only reconcile the

experimental data with the simulation by assuming a feedback

from the movement cells. The timing of a strong discrimination

for our FEF movement cells, beginning 150 ms after array onset

and 110 ms before eye movement, fits very well with the late

target effect in the experimental data. This result is also

consistent with information theory. If we define the reentry

signal towards the target (true expected location) as the signal

of interest and overall firing rate (false expected location) as

noise, we would get a much higher signal/noise ratio in the

movement cells than in the visuomovement cells.

Given this definition of spatial attention, our model predicts

that target discrimination in the visuomovement cells can

indicate spatial attention (Figs 8a, 11). However, in our model,

target discrimination in the visuomovement cells guides spatial

selection but does not provide the causal connection to spatial

attention in V4.

Target Discrimination Translates into Latency of a Spatial

Reentry Signal in Visual Search

We observed that a low target discrimination results in a slow

and error-prone reentry process. As a result of a correct reentry,

Figure 10. Fast and slow correct trials of visual search with varying discrimination of
the target in V4 and IT (depending on the target template strength). An increase in
saccade initiation time in FEF movement cells shows a correlation with the target
disrimination time in FEF visuomovement cells (Wilcoxon rank sum test; significance
level 0.0001). The line connects the medians of each group and shows a slope of 1.3.
Thus, the model predicts that a better target discrimination in FEF visuomovement cells
leads to faster eye movements. For the target discrimination, refer to Appendix III.

Figure 11. Discrimination of the target among five distractors in efficient and less
efficient parallel search. The plots show the activity of the FEF visuomovement cells
during the fastest trial (a) and the slowest trial (b) over time. The first dashed line
indicates the discrimination in FEF visuomovement cells (Appendix III) and the second
one the eye movement initiation in the FEF movement cells. In less efficient trials the
target discrimination occurs late in time. The figure also indicates that the target
discrimination in the input of the FEF is essential for a fast eye-movement selection.
The initial differences after 50 ms correlate with the target--distractor similarity and
depend on the randomized strength of the target template.
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our simple model already predicts set-size effects in parallel

searching (Fig. 7).

What factors might determine the input into the FEF (V4

activity) in such a way that it needs more time to select the

target? Duncan and Humphreys (1992) have shown that vary-

ing the target--distractor and distractor--distractor similarity

changes the efficiency of the task and produces different search

slopes. The underlying reason could be that the different simi-

larities determine the discrimination of the target in the ventral

stream but do not produce any delay as such. An increasing set

size might also reduce the discrimination through competitive

interactions in V4. Since the ventral stream feeds the fronto-

parietal network, the initial discrimination in action planning

centers must also be poorer. Our simulations show that this

poorer discrimination causes a slower spatial selection (Fig. 10).

We observed selection times in the movement cells ranging

from 220 to 400 ms after stimulus onset. Longer selection

processes have not been observed, since noise in the system

enforces either a correct or wrong selection. Depending on the

efficiency of the search task our parallel mechanism can show

a difference of 180 ms in selection time. Thus, we predict no

faster selection times of covert attention than ~120 ms, which is

the discrimination time of movement cells in the fastest trial

(Fig. 12a). Under the assumption that the number of items in

the display affects the target--distractor discrimination, we

predict that shallow but non-flat search slopes are based on

a parallel mechanism. The prediction of a parallel search is of

course difficult to test, since it would require showing the

absence of any repetitive serial selection. However, we can give

theoretical evidence that a slow reentry signal from movement

cells can explain non-flat search slopes as result of a parallel

process.

Discussion

We aimed to demonstrate the suitability of our reentry hypo-

thesis by comparing simulations with experimental data. Each

modeled area exhibits a temporal course of activity that has

been observed by similar physiological experiments performed

by various investigators. Our approach is an attempt to tie

together the existing understanding into a unified whole, so that

we can better understand the interactions between different

areas and design appropriate future experiments. We have

demonstrated that the model can account for recent findings

(Sato et al., 2001; Bichot et al., 2001a; Chelazzi et al., 2001) for

which the model was not adjusted. Moreover, the simulations

resulted in several experimentally testable predictions. We

now discuss possible impacts of our study on theories of visual

perception.

Reentry and Competitive Mechanisms Evoke Attention

Attention is generally assumed to be computed within some

brain areas in order to control processing in the brain. For

example, Posner and Dehaene (1994) suggested that there were

anterior and posterior attention systems. Such a localized view

of attention is even more explicit in models in which attention

originates within a saliency map (Treisman and Gelade, 1980;

Wolfe, 1994; Itti and Koch, 2000). Other models have empha-

sized the controlling function of attention such as selective

tuning (Tsotsos et al., 1995), the shifter-circuit (Olshausen

et al., 1993) or a gain field (Salinas and Abbott, 1997). We admit

that such models can be useful to describe aspects of attention,

but they offer only a very abstract explanation of this phenom-

enon. Electrophysiology has started to investigate the neural

mechanisms of attention. For example, within the biased

competition framework attention has been suggested to be an

emergent property of neural mechanisms (Desimone and

Duncan, 1995). In particular, effects within the receptive field

of cells have been revealed. In addition, the feature-similarity

framework (Treue and Martı́nez Trujillo, 1999) suggests that

mechanisms of feedback implement a global gain control.

Some recent computational models have emphasized the role

of interactions within a network for explaining vision (Tononi

et al., 1992; Mumford, 1992; Hamker, 1999; Kirkland and

Gerstein, 1999; Hamker, 2000; Corchs and Deco, 2002). How-

ever, we are still missing an approach that allows us to describe

how different areas contribute to object detection, attention

and eye movement control. Tasks such as Chalazzi’s visual

search experiment can only be fully explained by an account

that shows how different areas operate on the same event

(Duncan et al., 1997). The present approach is particularly

relevant, since each area is clearly defined and its cell dynamics

Figure 12. Activity of the FEF movement cells in efficient and less efficient parallel
search over time. The figures show the fastest trial (a) and the slowest trial (b). The
first dashed line indicates the discrimination in FEF visuomovement cells and the
second one the eye movement initiation in the FEF movement cells. The non-target
movement cell activity reaches higher values in non-efficient trials. Typically the items
at these positions have one feature in common with the target.
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have been observed in various experiments. We even account

for the subdivision of cells in the FEF. This constraint consid-

erably improves the validity of the claim that attention can be

explained by already known areas, which compute specific

variables, but not attention itself. We suggest that attention

should not be regarded as a resource given by some control

module. Attention is the result of mechanisms that act on the

processed variables, such as gain control, by reentry and

competitive interactions. We propose that future research

focuses on identifying the areas that modulate vision. Movement

cells of the FEF could provide an ideal signal for spatial selection.

Other relevant areas controlling vision are the planning stages of

the task at hand, which set task instructions and compute

variables of interest. The mechanism described allows vision to

be under cognitive control to resolve interference and to

connect high-level task descriptions or actions with low-level

scene descriptions.

The Mechanism of Spatial Reentry Influences the
Search Slope

In most visual search tasks the reaction time of subjects

increases with the number of items. Two opposing theories

have been suggested. The serial search hypothesis assumes that

non-flat search slopes are necessarily the result of a scanning

process that visits one item after another (Treisman and Gelade,

1980; Treisman and Sato, 1990; Wolfe, 1994; Itti and Koch,

2000). This assumption sometimes results in selection times

of 30--50 ms per item. Parallel search has explained set-size

effects in terms of a slow competitive mechanism (Duncan and

Humphreys, 1989; Palmer, 1995; Deco et al., 2002).

Hybrid models have also been formulated (Bundesen, 1990,

1999; Chelazzi, 1999). They typically differentiate between

a parallel capacity limited ‘one-view search’ and an additional

slow spatial shift of attention. However, they do not specify the

underlying neural mechanisms so that it is unclear on what kind

of processes search is based. Since observation of human

reaction times does not allow one or other explanation to be

ruled out, experiments using a variety of methods have recently

been conducted to ascertain the type of process (Corbetta

et al., 1995; Woodman and Luck, 1999; Donner et al., 2000; Hopf

et al., 2000; Leonards et al., 2000). Although some experiments

tried to identify areas involved in a serial selection, the overall

results are still inconclusive.

Our suggested spatial reentry mechanism predicts the in-

volvement of a slow parallel as well as a serial component in

visual search. Based on our simulation results we suggest that

the brain does not have a fast scanning mechanism, only a slow

one. We explain shallow but non-flat search slopes by a poorer

and slower discrimination process for reentry. Steep search

slopes, however, are likely be based on sequential reentry

components. Interestingly, both modes are grounded in the

same process. The strength of our approach lies in its testable

predictions, which is an inherent result of the assumption that

FEF movement cells provide a spatially selective reentry signal.

Thus, we offer a clear description of the underlying process that

can lead to set-size effects. The timing of the spatial reentry

signal depends on the target discrimination and is therefore

a variable parallel process. A poor discrimination, however, can

lead to a wrong reentry. Since a distractor will be identified as

such by the enhanced gain of cells encoding the distractor,

a disengagement and following engagement of the spatial

reentry component introduces the serial mechanism.

Benefits and Limitations of the Model

At the model’s core a reentry signal acts multiplicatively on the

input of a cell, and thus gain control is described by means of

a comparison of the feedforward with the reentry signal. The

exact implementation in the brain is controversial; however, on

an abstract level, multiplicative interactions are consistent with

observations (Eskandar et al., 1992; McAdams and Maunsell,

1999; Hupé et al., 2001). Althoughwe achieve a good fit with the

temporal course of activity in several areas, and we have shown

earlier that such a gain control also fits with recent experiments

observing attention effects in V4 (Hamker, 2004a), at present it

would be too early to claim that this describes an universal

mechanism to implement a cognitive control of vision.

We have excluded the effects of stimulus-driven saliency.

Consistent with our model, these effects might emerge from

interactions in the network as well (Nothdurft et al., 1999;

Kapadia et al., 2000; Li, 2002; Hochstein and Ahissar, 2002).

Salient featureswould then be enhanced similar to feature-based,

top-down effects.

We compared our model with data in which the monkey

responded by making an eye movement towards the target.

Chelazzi et al. (1998) report similar findings in a task where the

monkey responded by pressing a lever. Our model would also

produce qualitatively similar results if we assume that in this

task the monkey is planning an eye movement, but movement

cells do not reach threshold activity. At present, no experiment

has studied FEF movement cell activity in covert attention tasks.

We do not claim that the FEF movement cells are the only

source of spatial reentry. Within a distributed system, other

areas are likely to have established similar mechanisms. The

model is based on current anatomical and electrophysiological

knowledge. Other areas, if necessary, can be included based on

our gain control mechanism without changing the basic func-

tionality described. Our simulations cannot prove that the

movement cells or the FEF in general necessarily are responsible

for the reentry signal. However, feedback from the visuomove-

ment cells or no feedback at all resulted in a poor fit with the

temporal course of activity in IT. Thus, based on our computa-

tional evidence, we suggest that the typical temporal course of

activity of the FEF movement cells (Figs 8b, 12) is a necessary

signal to discriminate the target from the background. Provided

that anatomical studies show evidence for feedback connec-

tions, this prediction could be used to preselect cells in other

brain areas in order to investigate if they are a source of reentry.

LIP, for example, has only a few movement-type cells.

A strength of this model is its testability based on the

predictions. In future work this model will be tested with other

experimental paradigms. We have already managed to scale-up

the model to cope with natural scenes (Hamker and Worcester,

2002). From the theoretical point of view our simulations reveal

that an action/perception network can operate in a coordinated

fashion by means of reentry. The decision in one area affects the

outcome of the competition in another area, so that finally all

areas operate on the same problem, an aspect of binding in the

brain.
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Appendix I: Computational Aspects of the Model

We now give a formal description of the model. We first explain the

input stimuli as well as the mechanisms of pooling and gain control.

Then the equations of each area are given. Each connection in themodel

has an independent additive noise term that leads to variations in the

transmission from one cell to another.

Stimuli
Input stimuli Id,i,x are encoded as a population of cells i determined by

a Gaussian distribution at each dimension d and each location x. For

realistic experimental conditions, we delayed the input for 30 ms to

account for the time a stimulus needs to reach V2. Since V1 cells

typically fire very strongly in the beginning and then decrease in firing

rate, we include a short-term synaptic depression Sd,i,x (similar to

Chance et al., 1998, 1999) of the input.

sS
d

dt
sd ;i ;x = Id ;i ;x – sd ;i ;x ; Sd ;i ;x = ð1 –d � sd ;i ;x Þ

dD = 0:45
sS = 0:08ms

ð2Þ

The input into V4 is then computed as Sd,i,x � Id,i,x . This mechanism

evokes a strong early response, which is useful to transfer the stimulus

information within a bottom-up wave into higher areas and then allow

top-down control to take over.

Gain Control
We describe the modulation of the firing rate rIId ;k;x ðt Þ of a population

with a set of neurons k 2 N(T) in an arbitrary area II. Each cell receives

input IIId ;k;x ðt Þ from cells rId ;i ;x9ðt Þ at a lower hierarchy level at the

positions x9 within its receptive field x9 2 RF (x). Each of these

populations usually encodes a different variable V (d,x9;t).

The signal r Id ;i ;x9 is sent through a linear filter F (Fig. 13). For

simplicity, we do not take topographically extended patterns or an

increasing complexity of features into account. Thus, the preferred

stimulus uIi of a cell i in area I samples the same feature space as the

preferred stimulus uIIi in area II. The filter F ðr Id ;i ;x9Þ=r Id ;i ;x9 � gkðkuIIk –uIikÞ
defines the feature space in area II with the preferred attribute uIIk by

a set of radial basis functions gk.

The filtered incoming pattern is continuously compared with the

expectation, such as spatial location or specific stimulus features. The

gain is enhanced if the expectation r̂
c
d ;i ;x9 from the origin c matches

the feedforward signal F ðr Id ;i ;x9Þ: Treue and Martı́nez Trujillo (1999)

found evidence for an additive combination of feature-based and spatial

attention. Similarly, we assume that feature-specific feedback r̂ F
d ;i ;x ðt Þ

and location-specific feedback r̂ L
d ;i;x ðt Þ independently increase the gain

of the bottom-up signal and add up.

We use a non-linear pooling function f to define the influence of the

filtered afferents F ðr Id ;i ;x9Þ on the cell k. To describe the process of

filtering, input gain control and pooling, we define a convergent

mapping function R (see Mallot et al., 1990, for a general approach of

neural mapping) of the activity at the populations of locations x9 within

RF(x) onto the input I IId ;k;x ðt Þ of a target population r IId ;k;x ðt Þ at the

location x in area II (Fig. 13):

R : Area Ix91Area IIx

I
II

d ;k;x = w
[ � f ðF ðr I

d ;i ;x 9ÞÞ +
X

c2fL;F g
r ðA – r

II

d ;k;x Þ � f ðF ðr
I

d ;i ;x9Þ � r̂
c
d ;i ;x9Þ

rðaÞ = maxða; 0Þ ð3Þ

Gain control implements a multiplicative influence of feedback onto the

feedforward stream. This is based on empirical data that shows that

feedback connections can rapidly facilitate responses to stimuli, but do

not drive cells without bottom-up activation (Hupé et al., 2001). When

feedforward and feedback inputs are simultaneously active, feedback

inputs could provide late polysynaptic excitatory post-synaptic po-

tentials that influence the gain by the offset of slow inhibitory post-

synaptic potentials, which provides an amplifying mechanism (Shao and

Burkhalter, 1999).

Chelazzi et al. (1998) reported no attention effect on a single stimulus

within a receptive field. A simple multiplicative gain increase would

predict an even stronger effect. Reynolds et al. (2000) found that the

effect of spatial attention can be best described as a contrast gain model.

Attention increases the effective strength of a stimulus but notwith high-

contrast stimuli. Chelazzi et al. (1998) also usedhigh-contrast stimuli.We

do not aim to explain the possible underlying mechanisms of this effect

here, but rather account for thefindingbydecreasing theefficiencyof the

feedback signal when the cell activity is higher according to rðA – r IId ;k;x Þ
in equation (3). If the firing rate of a cell is r IId ;k;x =A = 0:42; the effect of

the feedback signal diminishes. In other words, the relative effect of the

expectation increases with smaller inputs into the layer. This is also in

accordance with findings in anesthetized monkeys where feedback into

V1, V2 and V3 was more efficient for low-salience stimuli (Hupé et al.,

2001). The mechanism implemented is similar to the saturation term

introduced by Grossberg (1973), which was also used by Reynolds et al.

(1999) to simulate the effect of spatial attention. However, we use this

saturation only in the feedback pathway.

Pooling Across Afferents
According to a previous study (Hamker, 2004a) we simulate a conver-

gent projection from areas with smaller receptive field sizes to areas

with larger receptive field sizes (Fig. 13) with a max-pooling function:

f ðF ðr Id ;i ;x9ÞÞ =maxðF ðr Id ;i ;x9ÞÞ: Using essentially the proposed area V4

alone, we compared the predictions of sum- and max-pooling. We found

that both pooling functions can account for data from investigations into

the competition between a pair of stimuli within a V4 receptive field

(Reynolds et al., 1999). However, if we present an additional probe

stimulus with the pair, sum-pooling predicts a bottom-up bias, whereas

the competition using max-pooling is robust against the additional

stimulus. Thus, max-pooling ensures that activities from different

locations x9 of the receptive field do not add up on individual neurons

k, but are simultaneously represented within the population. Thus, two

equal objects do not result in a double activity, but two different objects

are represented by different peaks within the population. A similar

mechanism has been reported to improve the robustness of object

recognition in hierarchical models (Riesenhuber and Poggio, 1999).

Model V4
At each of six possible locations x 2f1. . .6g and each feature dimension

d we simulate a neural population rV 4:

Figure 13. Sketch of the V4 and IT model to explain how afferents determine the
output of a cell. Each cell in a higher area II rIIk;x (e.g. in ITs) receives a weighted input
from each cell in a lower area I rIi;x9 (e.g. from V4) at different locations x9 within its
receptive field. Feedback connections r̂ i;x9 increase the input gain. For example, ITs
receives feedback from PF working memory and FEF movement cells (Fig. 2). After the
gain control stage, a spatial pooling function f is applied. Inhibition among target cells is
modeled by an inhibitory pooling among all cells in the population. The final response is
then determined by a differential equation, which describes the change through time of
a model cell’s activity.
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s
d

dt
r
V 4

d ;i ;x = I
[

d ;i ;x
+ I4

d ;i ;x
+ I Y

d ;i ;x
– ðr V 4

d ;i ;x
+ 0:1ÞI inh

d ;x
–Br

V 4

d ;i ;x ;
B = 0:08
s = 0:01 s

ð4Þ

The input is a result of bottom-up input I [ (equation 5) modulated by

lateral I4 (equation 6) and top-down gain control IY (equation 7).

BrV 4
d ;i ;x is a baseline inhibition term that keeps noise balanced. Id,i,x is

defined by the task (Fig. 1). The lateral weights wij are computed from

a Gaussian with wii = 0.3 and r2 = 1. The feedback type input originates

in ITt and FEFm (Fig. 2).

I
[

d ;i ;x = w
[
Id ;i ;x � Sd ;i ;x ; w

[ = 0:9 ð5Þ

I
4

d ;i ;x = I
[

d ;i ;x � rðA – r
V 4

d ;i ;x Þ
X

j

wij r
V 4

d ;j ;x ð6Þ

I
Y

d ;i ;x = I
[

d ;i ;x � rðA – r
V 4

d ;i ;x Þw
ITt;V4

r
ITt

d ;i

+ I [
d ;i ;x � rðA – r

V 4

d ;i ;x Þw
FEFm;V4

r
FEFm

x
;

w
ITt;V4 = 20

w
FEFm;V4 = 10

ð7Þ

Each population experiences short- and long-range inhibition (equation

8). We assume that long-range inhibition (Desimone and Schein, 1987)

is mediated by a pool of inhibitory neurons zV 4
d ;x ðt Þ which collect the

activity of each population.

I
inh

d ;x = winh

P
i

r
V 4

d ;i ;x
+wRF

inh
z

V 4

d
;

winh = 1:3
w

RF

inh
= 0:5

ð8Þ

sRF
inh

d

dt
z

V 4

d
=
X

x

max
i
½r V 4

d ;i ;x � – z
V 4

d
; sRF

inh
= 0:2 s ð9Þ

Model IT
In ourmodelwedonot increase the complexity of features fromV4 to IT.

Thus, our model IT populations represent the same feature space as our

model V4 populations. The receptive field size, however, increases in our

model, so that all populations in V4 converge onto one population in IT.

s
d

dt
r
ITs

d ;i = f ðI [
d ;i ;x Þ + f ðI

4

d ;i ;x Þ + f ðI
Y

d ;i ;x Þ – ðr
ITs

d ;i
+ 0:1ÞI inh

d
–Br

ITs

d ;i

f = max
x

; B = 1:8 ð10Þ

The overall input depends on the V4 cells that drive the population and

on the feedback signals that enhance the sensitivity of IT cells (Fig. 2).

The lateral weights wij are computed as in V4.

I
[

d ;i ;x = w
[
r
V 4

d ;i ;x ; w
[ = 0:9 ð11Þ

I
4

d ;i ;x = I
[

d ;i ;x � rðA – r
ITs

d ;iÞ
X

j

wij r
ITs

d ;j ð12Þ

I
Y

d ;i ;x = I
[

d ;i ;x � rðA – r
ITs

d ;iÞw
PFwm;ITs

r
PFwm

d ;i

+ I [
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ITs

d ;iÞw
FEFm;ITs

r
FEFm

x

w
PFwm;ITs = 10

w
FEFm;ITs = 10

ð13Þ

The inhibitory components are similar to V4 except that we only

implemented one IT population.

I
inh

d
= winh

P
i

r
ITs

d ;i
+wRF

inh
z

ITs

d

winh = 0:14
w

RF

inh
= 1:5
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ITs
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X
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ITs

d ;i
– z

ITs

d
sRF
inh

= 0:1 s ð15Þ

IT target (ITt) cells gets only input from IT stimulus (ITs) cells (Fig. 2).

These cells ensure by strong competition that only a few active cells

feed back into V4. The lateral weights wij are computed as in V4.

s
d

dt
r
ITt

d ;i = I
[

d ;i
+ I4

d ;i
– ðr ITt
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–Br

ITt
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– 0:2Þ; withrðaÞ = maxða; 0Þ; w
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ITt

d ;j ð18Þ

I
inh

d
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X
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r
ITt

d ;i ; winh = 0:6 ð19Þ

Model PF
The underlying circuits, which are responsible for memory and the

detection of a match, can involve many regions including subcortical

areas. For simplicity, we assume a recurrent local circuit for working

memory which is driven by ITs cells. The lateral weights wij are

computed from a Gaussian withwii = 0.3 and r2 = 0.6. Match cells (PFm)

compare in parallel the current pattern in ITs cells with those in

working memory (PFwm) (Fig. 2).

s
d

dt
r
PFwm

d ;i = I
[

d ;i
+
X

j

wij r
PFwm

d ;j
– ðr PFwm

d ;i
+ 0:25 + I storeÞI inh

d
ð20Þ

I
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d
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X
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d ;i ; winh = 0:4 ð21Þ

I
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d ;i = rð0:35 – max
i
ðr PFwm

d ;i ÞÞrðr ITs

d ;i
–CÞ; rðaÞ = maxða; 0Þ ð22Þ

The variable I
store defines whether a pattern that fulfills r ITsd ;i –C > 0 with

C = 0.1 should be memorized. It is externally set according to the task

instruction. If a pattern is memorized, the term rð0:35 –maxi ðr PFwmd ;i ÞÞ
ensures that no other stimulus in IT can penetrate the memory.

To determine whether a pattern in the visual scene is similar to the

pattern in memory we multiply the activity of the working memory cells

with the one of IT cells. Activity increases in the match cells only if

populations in ITs and working memory match. Cells with such

characteristics have been observed (Freedman et al., 2002). The lateral

weights wij are computed as in PF working memory.

s
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– ðr PFm

d ;i
+wf inhÞI inhd
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I
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i

r
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Model FEF
We simulate frontal eye field visuomovement neurons which receive

convergent afferents from V4 at the same retinotopic location (Fig. 2).

Different dimensions d add up.

s
d

dt
r
FEFv

x
= I

[

x
– r

FEFv

x
I
inh

–Br
FEFv

x
; B = 0:3 ð26Þ
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V4s P
d

max
i
ðrV4s
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w
V4 = 0:5

w
FEFm = 0:2

ð27Þ

I
inh = winh max

x
ðr FEFv

x
Þ; winh = 0:5 ð28Þ

The firing rate of these cells could be interpreted as representing the

saliency or behavioral relevance of a location. Increased activity in FEF

movement cells occurs when FEF fixation cells disinhibit the population

(Fig. 2). Such disinhibition of the fixation cells occurs when the PF

match cells signify a match with the target (since the monkeys in the

experiment were trained only to make an eye movement towards the

target and hold fixation in the target-absent condition). In the cue

presentation phase, PF match cells have no influence over the FEF

fixation cells. In addition to a feedforward excitation, the effect of the

visuomovement cells on movement cells is a slight surround inhibition.

A strong self-excitory component I4x allows the movement cells to

ramp-up. Since there is evidence that saccades are produced when

movement-related activity in the FEF reaches a particular level (Hanes

and Schall, 1996), we apply a fixed threshold to FEF movement cells and

add 30 ms to the time it exceeds the threshold to initiate a saccade.
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Specification of Parameters
The temporal dynamics, including the effect of inhibitory pools within

each, area has been worked out over several years, starting from an early

simple model (Hamker, 1999). Once the dynamics, including the gain

control mechanism, have been set up, the parameters of the model were

specified from local to global.Our choiceof parameterswas guidedby the

typical course of activity measured in cell recordings. V4 was fit with

experimental data from an attention experiment (Hamker, 2004a). The

fine tuning to fit the experimental data of Chelazzi et al. (1998)was done

by iteratively adjusting the weights between the areas, keeping the

parameters within the areas fixed. The final values used are examples

forwhich themodel exhibits dynamics that closely resemble those of the

recordings ofChelazzi et al. (1998). Thequalitativebehavior of themodel

is stable over a reasonable range of the parameters. Although the model

contains several parameters to simulate the firing rates, the degrees of

freedom are strongly limited by the constraint of matching the typical

course of activity and by ananomical constraints. Such systems models

differ largely from mathematical models (e.g. Bundesen, 1999) in which

parameters aremuch less constrained by electrophysiology and anatomy.

Appendix II: Conjunctive Search Task

Two conjunction visual search experiments have been simulated:

a target with three distractors and target with five distractors. We

construct a target item in two dimensions, i.e. ‘color’ and ‘shape’. The

color-similar distractor activates the same neural population as the

target in the first dimension and the shape-similar distractor activates

the same population as the target the second dimension. The four-item

display contains a target, a dissimilar, a shape-similar and a color-similar

distractor. The six-item display is extended with an additional shape-

similar and color-similar distractor. The target ‘color’ and ‘shape’ are

stored in memory before the search begins without showing a cue.

To investigate interesting dependencies between correct and error

trials, as well as easy and difficult trials, we varied the search efficiency of

the task by varying the top-down weight from the PF working memory

to IT. Among other sources that determine search efficiency, this

simulates the availability of a target template. The simulations are

repeated 80 times for each set size. Unlike the simulation of the

experiment of Chelazzi et al. (1998), a saccade is always executed even

if the match with the target template is poor.

Appendix III: Target Discrimination Analysis

To determine the time at which neural activity in FEF visuomovement

cells discriminates the target from distractors, we defined a discrimina-

tion threshold. For sufficient discrimination of the target the difference

between its activity and the activity of a cell encoding a distractor

location has to exceed the discrimination threshold for 15 ms. This is

much simpler than the method used by Sato et al. (2001) for their

recordings, but sufficient for a reliable measurement, since our model

cells are less noisy than real cells. For all simulations we used the same

model parameters.
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