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Abstract. Vision is a crucial sensor. It provides a very rich collection of informa-
tion about our environment. However, not everything in a visual scene is relevant
for the task at hand. Feature-based attention has been suggested for guiding vi-
sion towards the objects of interest in a visual search situation. Computational
models of visual attention have implemented different concepts of feature-based
attention. We will discuss these approaches and present a solution which is based
on population-based inference. We illustrate the proposed mechanism with sim-
ulations using real world-scenes.

1 Introduction

Visual Search and other experimental approaches have demonstrated that attention
plays a crucial role in human perception. Understanding attention and human vision
in general could be beneficial to computer vision, especially in vision tasks that are
not limited to specific and constrained environments. Previous models of attention have
suggested different underlying computational mechanisms of how feature cues (e.g.,
color) affect visual processing. In most models attention is solely defined by determin-
ing the locus of a unique spatial focus [24,13,28,1,19,10]. Feature-based attention is
left to only guide the selection process by weighting the input into the saliency map
[16,18]. For example, the search for the blue lighter is typically implemented by en-
hancing the input into the saliency map for cells encoding the target color (Fig. 1A).
The selective tuning model implements feature-based attention by enhancing the value
of the interpretive nodes which in turn biases the winner-take-all (WTA) competition
for projection into the next layer [26]. A cascade of top-down directed WTA processes
prune away all irrelevant connections within successively smaller receptive fields. As a
result, features such as the color blue allow to segment a target object in the scene (Fig.
1B). Technically the top-down biasing nodes form an independent top-down path, but
present implementations of the selective tuning model do not distinguish between fea-
ture and spatial attention in the sense that feature-based attention induces competition
only through the spatially selective WTA.

Treue and Martı́nez Trujillo [25] have proposed a Feature-Similarity Theory of at-
tention. Their single cell recordings in area MT revealed that directing attention to one
stimulus enhances the response of a second stimulus presented elsewhere in the visual
field, but only if the features of both stimuli match (e.g. upward motion). They proposed
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that attending towards a feature could provide a global, spatially non-selective feedback
signal. The same effect has been found in a similar experiment using fMRI [22]. In an
earlier experiment that presumably revealed feature-based attention as well, the knowl-
edge of a target feature increased the activity of V4 cells [17].

Inspired by these findings, computational approaches have been used to investi-
gate the mechanisms of feature-based attention [14,12,27,4,21,3]. We have developed
a model to investigate the putative feedforward and feedback interactions between area
V4, TE and the frontal eye field [6,8]. In this model attention emerges by interactions
in the vision process. To find an object in a crowded scene our model predicts a feature-
specific component that highlights all cells encoding target features in parallel and a
spatially directed, serial component that is linked to the planning of an eye movement.
This prediction of our model has been recently confirmed in neural cell recordings [2].
However, only little has been done to demonstrate that the proposed mechanisms even
hold for large networks, e.g. for natural scene processing.

Thus, we have further developed our aprochach and extended it to a large scale
network for natural scene processing [7,9] (Fig. 1C). We now explain the population-
based inference framework and its relation to feature-based attention. Then, the model
is introduced and specifically its feature-based attention effects are illustrated.

2 Population-Based Inference

Population coding has been frequently used as a theoretical basis for describing com-
putation in the brain. Much emphasis has been given to investigate how a population
encodes a stimulus. Our population-based inference approach provides a framework to
continuously update the conspicuity of an internal variable using prior knowledge in
form of generated expectations. The population is represented by a set of cells. The
selectivity of each cell is defined by its location i ∈ {1..20} in the population and its
activity ri reflects the conspicuity of its preferred stimulus. Each cell is simulated by
an ordinary differential equation, that governs its average firing rate over time. Thus,
the model allows to describe the temporal change of activity induced by top-down in-
ference. In abstract terms, the top-down signal represents the expectation r̂ to which
the input (observation) r↑ is compared. If the observation is similar to the expectation
the conspicuity is increased. This increase is implemented as a gain control mechanism
on the feedforward signal. The population-based inference approach has been proven
to be a suitable computational framework for simulating spatial [5] and feature-based
attention effects [6]. As far as feature-based attention is concerned a cell’s response
over time rd,i,x(t) at location x, selective dimension d and preferred feature i can be
computed by a differential equation (with a time constant τ ):

τ
d

dt
rV4
d,i,x = I↑d,i,x + IN

d,i,x + IA
d,i,x − I inh

d,x (1)

The activity of a V4 cell is primarily driven by its bottom-up input I↑. Inhibition I inh
d,x

introduces competition among cells and normalizes the cell’s response by a shunting
term. IN

d,i,x describes the lateral influence of other cells in the population. Feature-

based attention is a result of the bottom-up signal I↑d,i,x modulated by the feedback
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Fig. 1. Three models of attention for real world scenes and their implementation of feature-based
attention. The goal directed search for the blue lighter requires some knowledge of the target
object, called a template, to be represented. Most models assume that just simple, ”preattentive”
features (e.g. color, orientation) are part of such a template. A) In the classical approach of visual
attention, feature-based attention only modifies the input of the saliency map. For example, all
weights into the saliency map of cells encoding blue are globally increased, such that the lighter
has a higher chance being selected. A neural correlate of feature-based attention would therefore
only be visible in a pronounced activation in the saliency map. A winner-takes-all process then
determines the location of the highest activity, which in turn can be used to compute a focus of at-
tention such that the area around the blue lighter is processed preferably . B) The selective tuning
model uses top-down directed feature cues to guide competition in the what pathway. Present im-
plementations of this model, however, do not distinguish feature-based and spatial attention, since
a cascade of winner-take-all processes immediately generates an attentional beam that segments
the lighter from its background and generates an inhibitory surround. C) A model of distributed
processing with spatial and feature feedback. Here, attention emerges by the interactions in the
network. A template, which can contain any object information, is send downwards, enhances the
sensitivity of specific populations encoding the features of interest and lateral interactions nor-
malize the activity. As a result, the model shows feature-based attention. For example, the search
template of the lighter selectively enhances cells encoding blue in parallel prior to any spatial
selection, as indicated by the brighter parts of the image. Other parts are relatively suppressed
as illustrated by the darkened areas in the scene. This modulated activity in V4 guides areas re-
sponsible for eye movements, which in turn send a spatially selective signal back to enhance
populations encoding stimuli at a specific location - spatial attention emerges.
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signal from TE rTE
d,j,x′ with wIT,V4

i,j,x,x′ as the strength of the feedback connection:

IA
d,i,x = I↑d,i,xσ(α − rV4

d,i,x) · max
j,x′

(wTE,V4
i,j · rTE

d,j,x′) (2)

σ(α−yV4
d,k,x) implements a saturation of the gain for salient stimuli [7]. Consistent with

the Feature-Similarity Theory, the enhancement of the gain depends on the similarity
between the input and the feedback signal.

3 Large Scale Approach for Modeling Attention

In this model, neural populations are defined in a space spanned by the feature selec-
tivity i and spatial selectivity x of the cells. The variable d refers to different channels
computed from the image such as orientation (O), intensity (I) or red-green (RG),
blue-yellow (BY ), or spatial resolution (σ). The conspicuity of each encoded feature
is altered by the target template. A target encoded in prefrontal cortex defines the ex-
pected features r̂PFC

d,i (Fig. 2). We infer the conspicuity of each feature in TE denoted as
rTE
d,i,x by comparing the expected features r̂PFC

d,i with the observation, i.e. the bottom-up

input rTE↑
d,i,x. If the observation is similar to the expectation we increase the conspicuity.

Such a mechanism enhances in parallel the conspicuity of all features in TE which are
similar to the target template. The same procedure is performed in V4 to compute the
conspicuity rV4

d,i,x where the expected features are the ones encoded in TE.
In order to detect an object in space the conspicuities rV4

d,i,x and rTE
d,i,x are combined

across all channels d and encoded in the frontal eye field visuomovement cells. The
projection from the visuomovement cells to the movement cells generates an expecta-
tion in space r̂FEFm

x . Thus, a location with high conspicuity in different channels d tends
to have a high expectation in space r̂FEFm

x . Analogous to the inference in feature space
the expected location r̂FEFm

x is iteratively compared with the observation r↑d,i,x in x and
the conspicuity of a feature with a similarity between expectation and observation is
enhanced. The conspicuity is normalized across each map by competitive interactions.
Such interative mechanisms finally lead to a preferred encoding of the features and
space of interest.

We now briefly explain the simulated areas in the model. A detailed description can
be found in [9].

Early visual processing: Feature maps for Red-Green opponency (RG), Blue-Yellow
opponency (BY ), Intensity (I), Orientation (O), and Spatial Resolution (σ) are com-
puted. The initital conspicuity is determined by center-surround operations [10]. Center-
surround operations calculate the difference of feature values in maps with a fine scale
and a coarse scale and thus, the obtained conspicuity value is a measure of stimulus-
driven saliency. The feature information and the conspicuity are used to determine a
population code, so that at each location the features and their related conspicuities are
encoded.

V4: V4 has d channels which receive input from the feature conspicuity maps: rθ,i,x

for orientation, rI,i,x for intensity, rRG,i,x for red-green opponency, rBY,i,x for blue-
yellow opponency and rσ,i,x for spatial frequency (Fig. 2). The expectation of features
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Fig. 2. Model for object detection in natural scenes. From the image, the features of 5 channels
(RG, BY , I , O, σ) are obtained. For each feature we also compute its conspicuity as determined
by the spatial arrangement of the stimuli in the scene and represent both aspects within a popu-
lation code, so that at each location a feature and its related conspicuity is encoded. This initial,
stimulus-driven conspicuity is now dynamically updated within a hierarchy of levels. From V4 to
TE a pooling across space is performed to obtain a representation of features with a coarse coding
of location. The target template encodes features of the target object by a population of sustained
activated cells. It represents the expected features r̂PFC

d,i which are used to compute the (posterior)
conspicuity in TE. Similarly, TE represents the expectation for V4. As a result, the conspicuity
of all features of interest is enhanced regardless of their location in the scene. In order to iden-
tify candidate objects by their saliency the activity across all 5 channels is integrated in the FEF
perceptual map. The saliency is then used to compute the target location of an eye movement in
the FEF decision map. The activity in this map r̂FEFm

x is fed back, which in turn enhances the
conspicuity of all features in V4 and TE at the activated areas in the FEF decision map. Thus,
objects at expected locations are preferably represented. By comparing the conspicious features
in TE with the target template in the match detection units it is possible to continuously track
if the object of interest is encoded in TE. Visited locations are being tagged by an inhibition of
return. This allows the model to make repeated fixations while searching for an object.
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in V4 originates in TE r̂V4F

d,i,x′ = rTE
d,i,x and the expected location in the FEF decision

map r̂V 4L

x′ = rFEFm
x′ . Please note that even TE has a coarse dependency on location.

TE: The features with their respective conspicuity and location in V4 project to TE,
but only within the same dimension d, so that the conspicuity of features at several
locations in V4 converges onto one location in TE. A map containing 9 populations
with overlapping receptive fields is simulated. The complexity of features from V4
to TE is not increased. The expected features in TE originate in the target template
rTEF

d,i,x = w · rPFC
d,i and the expected location in the FEF decision map r̂TEL

x = w · rFEFm
x .

FEF perceptual map: The FEF perceptual map indicates salient locations by inte-
grating the conspicuity of V4 and TE across all channels. Its cells show a response
which fits into the category of FEF visuomovement cells (FEFv). In addition to the
conspicuity in V4 and TE the match of the target template with the features encoded
in V4 is considered by computing the product

∏

d

max
i

rPFC
d,i · rV4

d,i,x. This implements

a bias to locations with a high joint probability of encoding all searched features in a
certain area.

FEF decision map: The projection of the perceptual map to the decision map trans-
forms the salient locations into a few candidate locations, which dynamically compete
for determining the target location of an eye movement. This is achieved by subtracting
the average saliency from the saliency at each location wFEFvrFEFv

x − wFEFv
inh

∑

x
rFEFv
x .

Thus, the cells in the decision map show none or only little response to the onset of
a stimulus, such that their response fits into the category of the FEF movement cells
(FEFm). Their activity provides the expected location for V4 and TE units.

4 Results

An object is presented to the model for 100 ms and the model memorizes some of its
features as a target template. We do not give the model any hints which feature to mem-
orize. The model’s task is to make an eye movement towards the target (Fig. 3A,B).
When presenting the search scene, TE cells that match the target template quickly in-
crease their activity to guide perception on the level of V4 cells. Thus, the features of
the object of interest are enhanced prior to any spatial focus of attention. This feature-
based attention effect allows for a goal-directed planning of a saccade in the FEF. The
planning of an eye movement provides a spatially organized reentry signal, which en-
hances the gain of all cells around the target location of the intended eye movement. As
a result of these inference operations, the high-level goal description in PFC is bound
to an object in the visual world. Further simulation results are discussed in [9].

We now take a close view on the feature-based attention effects of the model. In this
respect we compare two conditions: attend towards the visual properties of the lighter
(Fig. 3A) and attend towards the cigarettes (Fig. 3B). Fig. 3C shows the difference activ-
ity of both conditions in V4 prior to any spatial selection as determined by a low FEFm
activity (max rFEFm

x (t) < 0.05). Our analysis clearly shows that feature-based atten-
tion selectively modulates the activity according to the task at hand. Thus, the model
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Fig. 3. Illustration of feature-based attention. A) Target object 1 and its detection in the visual
scene. B) Target object 2 and its detection in the visual scene. C) Difference activity in V4 in
three channels over time. For a comparison with cell recordings a latency of about 60 ms has to
be added to the time axis. Only the difference of the maximal activity at each location is shown
irrespective of the feature selectivity. Gray areas indicate equal (maximal) activity, light areas
more activity in the first condition and dark areas more activity in the second condition. We can
observe that parts of the scene are relatively enhanced or reduced according to the target template.

predicts feature-based attention effects independent of focused attention. Although the
effect is global in space it can guide gaze towards the object of interest since it depends
on the content encoded at each location.
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Fig. 4. Illustration of feature-based attention effects on the single cell level. The activity is shown
in two conditions with time relative to search array onset (0 ms): attend towards the lighter (blue)
and attend towards the cigarettes (red). The red shaded area between the curves appears when the
activity in the second condition is higher. A) Selected cells in the orientation (O), intensity (I) and
blue-yellow (BY) channel with the receptive field center located on the lighter. A) Selected cells
in the orientation (O), intensity (I) and blue-yellow (BY) channel with the receptive field center
located on the cigarette box.

To illustrate the effects of feature-based attention on the cell level we show their time
course of activity. Fig. 4A shows the activity of cells with their receptive field centered
on the lighter. A difference in activity between the attend lighter and attend cigarettes
condition reflects the relative effect of feature-based attention. In the orientation channel
(O) cell 01 shows an enhancement in the attend cigarettes condition whereas cell 08 an
enhancement in the attend lighter condition. Thus, even cells with their receptive field
on the lighter can be enhanced in the attend cigarettes condition. The target template
for orientation in the attend lighter condition was close to horizontal and thus increased
the activity of cell 08, whereas target template for orientation in the attend cigarettes
condition was vertical and thus enhanced the sensitivity of cell 01 and adjacent cells.
The blue color of the lighter primarily increased the activity of cells around cell 14 of
the BY channel in the attend lighter condition. The white color of the cigarette box
increased cell 18 of the intensity channel in the attend cigarettes condition. We observe
also differences in the timing of the feature-based attention effect, which are based on
recurrent interactions between V4 and TE as well as TE and PFC.

5 Discussion

We have introduced different models of attention and their implementation of feature-
based attention. The classical approach, which defines attention solely by a selection of
a location in the saliency map, predicts that target templates only guide the competition
for spatial attention. Such guidance of spatial attention does also occur in the Selective
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Tuning model as well as in our approach. These models use feature cues to enhance
the activity of feature-sensitive cells. However, our approach seems to be closer to a
neural correlate of feature-based attention, since we consider the temporal dynamics
prior to any spatial selection. We predict that goal directed visual search first selectively
modulates feature-sensitive cells prior to any spatial selection.

This prediction is consistent with cell recordings in visual search [2] and recent
findings in which the learning of degraded natural scenes resulted in a selective en-
hancement of V4 cells [20]. According to this study V4 plays a crucial role in resolv-
ing an indeterminate level of visual processing by a coordinated interaction between
bottom-up and top-down streams.

Our model further predicts that saliency is encoded as part of the variable itself
through the dual coding property of a population code. Saliency is not encoded in a
single map. Thus, attentional effects can be found throughout the visual system. The
observation of an attentional modulation does therefore not allow to conclude that a
stimulus has been selected by a spatially directed focus. For example, V4 also provides
a spatially organized map encoding saliency (Fig. 3C), which is consistent with recent
findings [15]. However, V4 cells are selective for location and specific features. Con-
sistent with recordings in the FEF [23], the FEF visuomovement cells in our model are
more related to the classical idea of a saliency map [11], since they solely encode lo-
cation by integrating the activity across all channels and features. We assume that this
information needs an additional, decisional stage of processing before it is feed back
such that the saliency information is transformed into a dynamic, competitive represen-
tation of a few candidate regions.
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