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Abstract. We present an approach to modeling attention which originates in com-
putational neuroscience. We aim at elaborating the underlying mechanisms of at-
tention by fitting the model with data from electrophysiology. Our strategy is to
either confirm, reject, modify or extend the model to accumulate knowledge in a
single model across various experiments. Here, we demonstrate the present state
of the art and show that the model allows for a goal-directed search for an object
in natural scenes.

1 Introduction

Visual Search and other experimental approaches have demonstrated that attention plays
a crucial role in human perception. Understanding attention and human vision in general
could be beneficial to computer vision, especially in vision tasks that are not limited to
specific and constrained environments. We discuss recent findings and hypotheses in
the neurosciences that have been modeled by approaches from computational neuro-
science. Neuroscience gives an insight into the brain which allows to further constrain
algorithms of attention. In computational neuroscience the topics of interest are usually
focused on a specific mechanism and networks often comprise only a relatively low
number of cells and artificial inputs are used. Thus, scaleability becomes an important
issue. A transfer of knowledge from computational neuroscience to computer vision
requires at least the solution of three constraints: i) Does the number of cells influence
the convergence of the algorithm? ii) Can the preconditions of the proposed solution
be embedded into the systems level? iii) Can the model be demonstrated to operate on
natural scenes?

In this contribution we derive a computational principle that allows to model large
scale systems and vision in natural scenes. We demonstrate an approach for object
detection in natural scenes. We suggest that goal directed attention and object detection
are necessarily coupled, since an efficient deployment of attention benefits from an at
least partial match of the encoded objects with the target.

L. Paletta et al. (Eds.): WAPCV 2004, LNCS 3368, pp. 118–132, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Modeling Attention: From Computational Neuroscience to Computer Vision 119

2 Spatial Attention

2.1 Gain Control

Single cell recordings have revealed that the neural response is enhanced in a multiplica-
tive fashion when attention is directed to a single stimulus location [23], [15]. The neural
correlate of such a multiplicative effect is still under discussion. It has been suggested
that the gain of a neuronal response to excitatory drive is decreased by increasing the
level of both, excitatory and inhibitory, background firing rates in a balanced manner [1].
On a more abstract level a feedback signal could increase the gain of the feedforward
pathway in a multiplicative fashion [18], [9], [22]. We investigated such a gain control
mechanism by simulating a V4 layer which receives input from a V2 population. We
consider feedforward, lateral excitory and inhibitory input and spatial bias.

Given a neural population in V4 and a feedforward input I↑ we have proposed that
a cell’s response over time r(t) can be computed by a differential equation:

τ
d

dt
rk(t) = I↑

k + IN
k + IA

k − Iinh
k (1)

Inhibition Iinh
k introduces competition among cells and normalizes the cell’s response

by a shunting term. IN
k describes the lateral influence of other cells in the population.

Spatial attention is proposed to emerge from the modulation of the feedforward signal
by feedback Ax prior to spatial pooling:

IA
k = f(wi,xaA

i,x); aA
i,x = I↑

i,x · Ax f = max
i,x

(2)

We presented a stimulus to a population of 11 orientation selective cells for 150 ms and
computed the average activity of each cell with and without a spatial bias. Consistent
with the findings, we observed that the response on the population level is close to a
multiplicative increase of the gain (Fig. 1). If we consider neural cells as feature detectors
indicating the probability that the encoded feature is present in the scene, the function
of gain control is increasing the probability of a feature being detected.

Fig. 1. Gain control. (A) Population responses to a single horizontal bar 100 ms after stimulus
onset with and without a spatial bias. Each cell encodes a different orientation. (B) The firing rate
of each cell in the non-attended case is plotted against the attended case (see [15]). The model
shows approximately a multiplicative gain increase (CorrCoeff=0.99) of 13% (slope=1.13)
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2.2 Contrast Dependence

A simple multiplicative gain control model (response gain model) predicts that the ef-
fect of attention increases with stimulus contrast. However, this is not a very useful
strategy, since a high contrast stimulus is already salient. If we assume at least some
parallel processing, a too high gain to an already salient stimulus could suppress other
potentially relevant responses. Indeed the brain uses a strategy in which the magnitude
of the attentional modulation decreases with increasing contrast [21], [13]. Attention
results rather in a shift of the contrast response function (contrast gain model). This was
experimentally tested by presenting a single luminance-modulated grating within the
receptive field of a V4 cell. The monkey was then instructed to either attend towards the
stimulus location or towards a location far outside of the receptive field. An increase of
the stimulus contrast resulted in an increase of the neural response and in a decrease of
the difference between both conditions (Fig. 2A).

Fig. 2. Contrast dependent effect of attention. (A) Averaged single cell responses over time, with
increasing contrast. The data was provided by J. Reynolds [21]. (B) Simulation results of our
model. The initial burst at high contrast levels occurs due do the delayed inhibitory response Iinh.
Similar to the data, the timing of the attention effect shifts with increasing contrast from early to
late

In the model of Reynolds and Desimone [19] spatial attention affects the weight
of feedforward excitation and feedforward inhibition. As the activation of the input
increases the inhibition increases as well and the cell’s response will saturate at a level
where excitation and inhibition are balanced. However, a re-implementation of this model
shows that the model replicates their finding on the level of the mean response over the
whole presentation time, but it does not account very well for the observed temporal
course of activity and the timing of the attention effect [22]. The model of Spratling and
Johnson [22] accounts better for the temporal course of activity, but different as indicated
by the data, the decrease in the magnitude of the attentional modulation occurs only at
high contrast. A potential problem of this model is, that it explains the decrease of the
attentional modulation by a saturation effect, which occurs only at high activity.
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We postulate that the efficiency of the feedback signal decreases with increasing
strength of the cell. Thus, the feedback signal Ax (eq. 2) which determines the gain
factor 1+Ax is combined with an efficiency term using the activity of the output cell k.

Ak,x = σ(α − rk) · Ax (3)

with σ(a) = max(a, 0). We applied the extended model to simulate the effect of contrast
dependence. Increasing contrast was simulated by increasing the stimulus strength. The
model accounts quite well for the findings, even in the temporal course of activity (Fig.
2B). The magnitude of the attention effect is not explained by the saturation of the cell.
Thus, the contrast dependency of attention is consistent with an effective modulation of
the input gain by the activity of the cell. An answer towards the underlying exact neural
correlate, however, requires more research.

To further demonstrate that the model is consistent with the contrast gain model, the
magnitude of attention on the time averaged response with varying stimulus strength is
shown (Fig. 3). We computed the mean response beginning from stimulus onset (Fig.
3A) and the mean over the first initial response (Fig. 3B) to show the timing of attention.
For high contrast stimuli attention is most prominent in the late response and almost
diminishes in the early response. Please note, the spatial feedback signal itself is constant.

Fig. 3. Simulation of the attention effect on the mean response by varying the strength of the input
stimulus. The dotted line shows the absolute difference between the attended and non-attended
condition, and the dashed line the difference in percent. Consistent with the contrast gain model
[21], the primary effect of attention occurs with low input activty. (A) Time average over the whole
neural response after stimulus onset. (B) Time average over the initial burst

2.3 Biased Competition

It has been observed that neuronal populations compete with each other when more
than a single stimulus are presented within a receptive field. Such competition can be
biased by top-down signals [4]. As a result, the irrelevant stimulus is suppressed as if
only the attended one had been presented. Numerous experiments have supported this
framework.
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Reynolds, Chelazzi and Desimone observed competitive interactions by placing two
stimuli (reference and probe) within the receptive field of a V4 neuron [20]. They found
that when spatial attention was directed away from the receptive field, the response to
both stimuli was a weighted average of the responses to the stimuli presented in isolation.
If the reference elicits a high firing rate and the probe a low firing rate, then the response to
both is in between. Attending to the location of one of the stimuli biases the competition
towards the attended stimulus.

We modeled this experiment by presenting now two stimuli to our neural population.
In the attended case the gain of the input from one location is increased. The simulation
results of our population approach fit with the experimental data (Fig. 4). A slope of
0.5 indicates that reference and probe are equally well represented by the population.
The small positive y-intercept signifies a slight overall increase in activity when pre-
senting a second stimulus along with the first. Attending to the probe increases the slope
(not shown), indicating the greater influence of the attended probe over the population.
Attending to the reference reduces the slope, signifying the greater influence of the at-
tended reference stimulus. Attention in general enhances the overall response within
the population, which is observed by the greater upward shift of the sensory interaction
index as compared to the attend away condition.

Fig. 4. Comparison of the simulation results with the experimental data (modified from [20]) to
investigate the influence of attention on the sensory interaction. For each cell, its selectivity index
is plotted over its sensory interaction. A selectivity value of 0 indicates identical responses to
reference and probe in isolation, a positive value a preference towards the probe and a negative a
preference towards the reference. An interaction index of 0 signifies that the cell is unaffected by
adding a probe. Positive values indicate that the cell’s response to the reference is increased by
adding a probe and negative values signify a suppression by the probe
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Along with the experimental data, Reynolds, Chelazzi and Desimone [20] demon-
strated that a feedforward shunting model [5] can account for their findings. In their
model competition among cells occurs due to feedforward inhibition from V2 cells onto
V4 cells. In our approach competition occurs after pooling. It is based on lateral short
range excitory and long range inhibitory connections within the population, which is in
accordance with findings in V4. Other models [6] [3] [22] have referred to the findings
of Reynolds, Chelazzi and Desimone [20] as well, but no quantitative comparison with
the experimental data (Fig. 4) has been given.

3 Feature-Based Attention

3.1 Feature-Similarity

With reference to feature-based attention Treue and Martı́nez Trujillo [24] have pro-
posed the Feature-Similarity Theory of attention. Their single cell recordings in area
MT revealed that directing attention to a feature influences the encoding of a stimulus
even when the second stimulus is presented outside of the receptive field. They proposed
that attending towards a feature could provide a global feedback signal which affects
other locations than the attended one as well. Feedback can be a very useful mechanism
for a feature-based selection, as already demonstrated in early computational models of
attention [25].

Fig. 5. Temporal course of activity in the match and non-match condition of V4 cells and simulated
cells. The scene is presented at -800 ms. Cells representing the potential target object show an
enhanced activity. If the fixation point color switches to another color at 0 ms, the activity follows
the definition of the target. Neurons previously representing potential targets change into distractors
and vice versa. The left figure shows the original data provided by B. Motter (the published data
[17] does not show the activity after stimulus onset)

In an earlier experiment that presumably revealed feature-based attention effects the
knowledge of a target feature increased the activity of V4 cells [17]. The task required
to report the orientation of an item that matches the color of the fixation point. Since
the display during the stimulus presentation period contains several possible targets, the
monkey had to wait until the display contained only one target. Even during this stimulus
presentation period, V4 neurons showed an enhanced activity if the presented colour or
luminance items matched the target (Fig. 5 left). This dynamic effect is thought to occur
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in parallel across the visual field, segmenting the scene into possible candidates and
background.

We simulated this experiment by presenting input to six x ∈ {1 . . . 6}V4 populations
containing 11 cells i in each dimension d ∈ {color, orientation} (eq. 4).

τ
d

dt
rV 4
d,i,x = I↑

d,i,x + IN
d,i,x + IA

d,i,x − Iinh
d,x (4)

We also model one IT population, whose receptive field covers all V4 receptive fields
(Fig. 6). Let us assume the model is supposed to look for red items. This is implemented
by generating a population of active prefrontal cells (PF) representing a red target tem-
plate. At t = −900ms we activate the target template in PF and present the inputs at
t = −800ms. The input activity travels up from V4 to IT. Once the activity from V4
enters IT, competition gets biased by feedback from prefrontal cells. They in turn project
back to V4 and enhance the gain of the V4 input. Thus, the term IA

d,i,x is a result of the

bottom-up signal I↑
d,i,x modulated by the feedback signal rIT

d,j with wITt,V4
i,j as the strength

of the feedback connection:

IA
d,i,x = f

(
I↑
d,i,xσ(α − rV4

d,i,x) · max
j

(wITt,V4
i,j · rIT

d,j)
)

(5)

Feedback in the ”object pathway” operates feature specific and largely location unspe-
cific. By changing the target template at t = 150ms the model now switches into a state
where again all items of the target color in V4 are represented by a higher firing rate than
those with a non-matching color (Fig. 5 right). Consistent with the Feature-Similarity
Theory, the enhancement of the gain depends on the similarity of the input population
with the feedback population.

The computationally challenging task of this experiment is to enable the model to
switch its internal representation. Our gain control mechanism supports rapid switches,
because feedback acts on the excitatory input of a cell and not on its output activity. Due
to the switch in the PF activity, the population in IT encoding red looses its feedback
signal whereas the one for green receives support. As a result, the prioritized encoding
in IT changes, and the whole system switches to a state where populations encoding the
new target feature are represented by a higher activity.

4 Attention on the Systems Level

A top-down feature-specific signal has also been revealed in IT cells during visual search
[2]. In this experiment an object was presented to a monkey, which after a brief delay,
had to be detected in a visual search scene. The monkey was trained to indicate the
detection by shifting its gaze from the fixation point towards the target. Chelazzi found
that the initial activation of IT neurons is largely stimulus driven and cells encoding
target and non-target become activated. Since different populations compete for repre-
sentation, typically the cells encoding the non-target get suppressed. A computational
approach by Usher and Niebur [26] has shown that a parallel competition based on lat-
eral interactions and a top-down bias is sufficient to qualitatively replicate some of those
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Fig. 6. Illustration of the pathway for ”object recognition”. At each V4 receptive field we model
an arbitrary color space. We only show one target and one distractor. Due to the gain control by
feedback the population encoding the target color gets enhanced and the one for the distractor is
suppressed. The network settles in a state where all items of the target color in V4 are represented
by a higher firing rate than those with a non-matching color. The second situation is ”looking for
green items”, indicated by the dashed activity curves

findings. However, we have argued that the planning of an eye movement towards the
target should produce a spatial reentry signal directed to the target location [8]. This
prediction recently received further evidence by a study in which a microstimulation in
the frontal eye field resulted in a modulation of the gain in V4 cells [16].

We have modeled the visual search experiment on the systems level by a model
consisting of areas V4, IT, FEF and PFC (Fig. 7A,B). Thus, spatial and feature-based
attention are now brought together in a single model. V4 cells receive a top-down signal
from IT and the FEF, which both add up:

IA
d,i,x = f

(
I↑
d,i,x · σ() · max

j
wITt,V4

i,j · rIT
d,j

)
+ f

(
I↑
d,i,x · σ()wFEFm,V4rFEFm

x

)
(6)

with σ() = σ(α−yV 4
d,k,x) and wFEFm,V4 defines the weight of the feedback from the FEF.

For implementation details please refer to [8].
Our simulation result matches even the temporal course of activity of the experimental

data (Fig. 7C). The model predicts that the firing rate of V4 and IT cells show an early
feature-based effect and a late spatial selectivity (after 120 ms). In the ’Target Absent’
condition where the cue stimulus is different from the stimuli in the choice array no
spatial reentry signal emerges since in this case a saccade has to be withheld. The
model does not contain any control units or specific maps that implement attention. The
proposed gain control and competition allows higher areas to influence processing in
lower areas. As a result, suppressive and facilitatory effects occur, commonly referred
to as ”attention”. Thus, attention can emerge on the network level and does not have to
be explicitly implemented.
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Fig. 7. (A) Sketch of the simulated areas. Each box represents a population of cells. The activa-
tion of those populations is a temporal dynamical process. Bottom-up (driving) connections are
indicated by a bright arrow and top-down (modulating) connections are shown as a dark arrow.
(B) Simulation of the experiment. The objects are represented by a noisy population input. RF’s
without an object just have noise as input. Each object is encoded within a separate RF, illustrated
by the dashed circle, of V4 cells. All V4 cells are within the RF of the IT cell population. (C)
Activity within the model areas aligned to the onset of the search array in the different conditions

5 Large Scale Approach for Modeling Attention

Our earlier simulations have shown that competition among feature representations could
be a useful mechanism to filter out irrelevant stimuli for object recognition. A spatial
focus of attention can reduce the influence of features outside the focus, whereas a
competition among features could have the potential to select objects without the need
of a segmentation on the image level. We now demonstrate how attention emerges in
the process of detecting an object in a natural scene [7]. In extension to a mere biased
competition we show that top-down signals can be modeled as an expectation, which
alters the gain of the feedforward signal.

5.1 Overview

The idea is that all mechanisms act directly on the processed variables and modify their
conspicuity. Each feature set is modeled as a continuous space with i ∈ N cells at
location x = (x1, x2) by assigning each cell a conspicuity rd,i,x. From the feature maps
we determine contrast maps according to a measure of stimulus-driven saliency (Fig.
8). Feature and contrast maps are then combined into feature conspicuity maps which
encode the feature and its initial conspicuity by means of a population code.

The conspicuity of each feature is altered by the target template. A target object is
defined by the expected features r̂F

d,i. We infer the conspicuity of each feature rd,i,x by

comparing the expected features r̂F
d,i with the bottom-up signal r↑

d,i,x. If the bottom-
up signal is similar to the expectation we increase the conspicuity. Such a mechanism
enhances in parallel the conspicuity of all features at level II which are similar to the
target template. We perform the same procedure on level I where the expected features
are those from level II. In order to detect an object in space we combine the conspicuity
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across all d channels in the perceptual map and generate an expectation in space r̂L
x

in the movement map. The higher the individual conspicuity rd,i,x across d at one
location relative to all other locations the higher is the expectation in space r̂L

x at this
location. Thus, a location with high conspicuity in different channels d tends to have a
high expectation in space r̂L

x . Analogous to the inference in feature space we iteratively
compare the expected location r̂L

x with the bottom-up signal r↑
d,i,x in x and enhance the

conspicuity of all features with a similarity of expectation and bottom-up signal. The
conspicuity is normalized across each map by competitive interactions. Such interative
mechanisms finally lead to a preferred encoding of the features and space of interest.
Thus, attention emerges by the dynamics of vision.

Preprocessing: We compute feature maps for Red-Green opponency (RG), Blue-Yellow
opponency (BY ), Intensity (I), Orientation (O), and Spatial Resolution (σ). We deter-
mine the initital conspicuity by center-surround operations [11] from the feature maps
which gives us the contrast maps. The feature-conspicuity maps combine the feature and
conspicuity into a population code, so that at each location we encode each feature and
its related conspicuity.

Level I: Level I has d channels which receive input from the feature conspicuity maps:
rθ,i,x for orientation, rI,i,x for intensity, rRG,i,x for red-green opponency, rBY,i,x for
blue-yellow opponency and rσ,i,x for spatial frequency (Fig. 8). The expectation of
features at level I originates in level II r̂IF

d,i,x′ = rII
d,i,x and the expected location in the

movement map r̂IL
x′ = rm

x′ . Please note that even level II has a coarse dependency on
location.

Level II: The features with their respective conspicuity and location in layer I project
to layer II, but only within the same dimension d, so that the conspicuity of features
at several locations in level I converges onto one location in level II. We simulate a
map containing 9 populations with overlapping receptive fields. We do not increase the
complexity of features from level I to level II. The expected features at level II originate
in the target template rIIF

d,i,x = w · rT
d,i and the expected location in the movement map

r̂IIL
x = w · rm

x

Perceptual Map: The perceptual map (v) indicates salient locations by integrating the
conspicuity of level I and II across all channels. In addition to the the conspicuity in level
I and II we consider the match of the target template with the features encoded in level
I by the product

∏
d max

i,x′∈RF (x)
rT
d,i · rI

d,i,x′ . This implements a bias to locations with a

high joint probability of encoding all searched features in a certain area.

Movement Map: The projection of the perceptual map onto the movement map (m)
transforms the salient locations into a few candidate locations which provide the expected
location for level I and level II units. We achieve this by subtracting the average saliency
from the saliency at each location wvrv

x − wv
inh

∑
x rv

x. Simultaneously, the movement
units indicate the target location of an eye movement.
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Fig. 8. Model of attentive vision. From the image we obtain 5 feature maps. For each feature
at each location x we compute its conspicuity in the contrast maps and then combine feature
and conspicuity into feature-conspicuity maps. This initial, stimulus-driven conspicuity is now
dynamically updated within a hierarchy of levels. From level I to level II we pool across space
to achive a representation of features with a coarse coding of location. The target template r̂F

d,i

holds the to be searched pattern regardless of its location and enhances the gain of level II cells
which match the pattern of the template. r̂F

d,i,x sends the information about relevant features
further downwards to level I cells to localize objects with the relevant features. In oder to identify
candidate objects the perceptual map integrates across all 5 channels to determine the saliency.
The saliency is then used to compute the expected locations of an object r̂L

x in the movement
map, which in turn enhances the conspicuity of all features at level I and II at these locations.
Match detection cells fire, if the encoded features in level II match with the target template. This
information can be used to control the fixation unit
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5.2 Results

We now demonstrate the performance of our approach on an object detection task (Fig.
9). We present an object to the model for 100 ms and let it memorize some of its features
as a target template. We do not give the model any hints which feature to memorize.As in
the experiment done by Chelazzi, the model’s task is to make an eye movement towards
the target. When presenting the search scene, level II cells that match the target template
quickly increase their activity to guide level I cells. In the blue-yellow channel at level I
the target template is initially not dominant but the modulation by the expectation from
level II overwrites the initial conspicuity. Thus, the features of the object of interest are
enhanced prior to any spatial focus of attention which allows to guide the planning of the
saccade in the perceptual and movement map sufficiently well. Saliency is not encoded
in a single map. Given that level I cells have a spatially localized receptive field and
show an enhanced response to relevant stimuli, they could be interpreted to encode a
saliency map as well, which is consistent with recent findings [14].A feature independent
saliency map is achieved by the integration across all channels. The process of planning
an eye movement provides a spatially organized reentry signal, which enhances the gain
of all cells at the target location of the intended eye movement. Thus, spatial attention
could be interpreted as a shortcut of the actual planned eye movement. Under natural
viewing conditions spatial attention and eye movement selection are automatically co-
ordinated such that prior to the eye movement the amount of reentry is maximized at the
endpoint and minimized elsewhere. This would facilitate planning processes to evaluate
the consequences of the planned action.

6 Discussion

We have modeled several attention experiments to derive the basic mechanisms of visual
processing and attention. Initially we have focused on the gain control mechanism and
demonstrated that an input gain model allows for a quantitative match with existing
data. If we further assume that the gain factor decreases with the activity of the cell, the
model is consistent with a contrast gain model. We then extended the model to simulate
more complex tasks and to model the behavioral response as well. Again, we have been
able to achieve a good match with the data. So far the model provides a comprehensive
account of attention, specifically on the population averaged neural firing rate. Certainly
attention is still more complicated than covered by the present model. However, the
good fit with many existing data makes us believe the model contains at least several
relevant local mechanisms that determine attention in the brain. Almost 20 years after
the influential computational model of Koch and Ullman [12] was published, single cell
recordings and computational modeling have now discovered a more fine graded model
in which attention is explained on the systems level rather than by a selection within a
single area.

In regard of this emerging new view on attention we investigated if the derived
principles of the distributed nature of attention can be demonstrated to provide something
useful beyond fitting experimental data. Thus, we tested an extension of the model on
a goal-directed object detection task in natural scenes. We are confident that this joint
approach gives the model a high potential for future computer vision tasks. The present
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Fig. 9. Visual search in natural scenes. The asprin bottle in the upper left corner was presented
to the model before the scene appeared, and in each dimension the most conspicious feature
was memorized in order to generate a target template. Then the model searched for the target.
A) Indication of the first eye movement, which directly selects the target. B) Conspicuity values
of level II and level I cells in all channels over time. At each level the maximum response for
each feature is shown, regardless of the receptive field of the cell. The strength of conspicuity is
indicated by brightness. The target template is indicated by the bars at the top of each figure. The
conspicuity of each feature occurs first in level I and then travels upwards to level II. Level II,
however, first follows the target template, which then travels downwards to level I. This top-down
inference is clearly visible in the blue-yellow channel (most right), where initially other features
than the target feature are conspicious. The effect of the spatially localized reentry signal is best
visible in the Intensity channel (second right). Prior to the eye movement several cells gain in
activity, independent to their similarity of the encoded feature to the target template
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demonstration of an object detection in natural scenes is very valuable from the viewpoint
of attention, since it demonstrates that the derived principles even hold for the postulated
three constraints: i) large number of cells ii) systems level and iii) natural scenes.

From the viewpoint of computer vision, we are aware that such an object detec-
tion task can be solved by classical methods. The advantage of our approach, however,
lies in the integration of recognition and attention into a common framework. Attention
improves object recognition, specifically in cluttered scenes, but only if attention can
be properly guided to the object of interest. Feature-specific feedback within the ob-
ject recognition pathway, gain control and competitive interactions directly enhance the
features of interest and guide spatial attention to the object of interest. Partial attention
improves further analysis which in turn helps to direct attention. We propose that the
direction of attention and recognition must be an iterative process to be effective. In the
present version we only used simple cues. Thus, future work has to focus on the learning
of effective feedforward and feedback filters for shape recognition and object grouping.
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