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Abstract. Current models of object recognition generally assume a
bottom-up process within a hierarchy of stages. As an alternative, we
present a top-down modulation of the processed stimulus information to
allow a goal-directed detection of objects within natural scenes. Our pro-
cedure has its origin in current findings of research in attention which
suggest that feedback enhances cells in a feature-specific manner. We
show that feedback allows discrimination of a target object by allocation
of attentional resources.

1 Introduction

The majority of biologically motivated object recognition models process the
visual image in a feedforward manner. Specific filters are designed or learned
to allow recognition of a subset of objects. In order to facilitate recognition, an
attentional module was proposed to pre-select parts of the image for further
analysis. This is typically done by applying a spotlight or window of attention
that suppresses input from outside the window. Such an approach results in two
major disadvantages: i) A spotlight selects a region but not object features. Even
when the whole image is reduced to a region of interest, object recognition algo-
rithms still have to cope with clutter, different backgrounds and with overlapping
from other objects, which modify the filter responses. ii) Object recognition fol-
lows attentional selection. If a task requires the detection of a specific item such
an approach calls for serially scanning the scene and sending the content of each
selected location to a recognition module until the target is found. The use of
simple target cues, like color, can reduce the search space, but the serial scan is
unavoidable.
We suggest a top-down approach for a goal-directed search. Instead of specialized
learned or designed features, we use a general set of features that filter the image
and construct a population of active cells for each scene. The information about
a target is sent top-down and guides the bottom-up processing in a parallel
fashion. This top-down modulation is implemented such that the features of the
object of interest are emphasized through a dynamic competetive/cooperative
process. Related ideas have been suggested in the past [1] [2] [3] [4] but not
further implemented for a model of vision in natural scenes.



We have been working out this concept with a computational neuroscience ap-
proach. The starting point was to understand the role of goal-directed visual
attention [5] [6] [7]. Experimental findings support the concept of prioritized
processing by a biased competition [8]. For example, an elevated baseline activ-
ity was observed in IT cells after a cue was presented [9]. This effect could be a
priming in order to prepare the visual system for detecting the target in a scene.
Further evidence for a feature-selective feedback signal is found in V4 [10] and
in the motion system [11].
Although some scenes allow the detection of categories during very brief presen-
tations even in the near absence of spatial attention [12], ambiguities in IT cell
populations encoding features within the same receptive field limits recognition
in natural images [13]. We use feedback to clean up the population activity in
higher stages from all unimportant stimuli so that a full recognition can take
place. In the following we describe how feedback modulates the feedforward pro-
cess, which allows for a goal-directed detection of an object in a natural scene.

2 Model

We combine stimulus-driven saliency, which is primarily a bottom-up process,
with goal-directed attention, which is under top-down control (Fig. 1). The fact
that features that are unique in their environment ’pop-out’ is to a first degree
achieved by computing center-surround differences. In this regard, our saliency
module mostly follows the approach of Itti, Koch and Niebur [14]. However,
their purely salience-driven approach continues in combining the center-surround
maps into conspicuity maps and then into a final saliency map. We suggest
combining the feature value with its corresponding saliency into a population
code which feeds V4 cells (Fig. 2). This approach allows us to create a parallel
encoding of different variables and achieve the dynamic enhancement of rele-
vant variables by feedback connections. The hierarchy of the model is motivated
through a computational neuroscience study of attention [7]. Features of the tar-
get template are sent downwards in parallel and enhance features in the scene
that match the template. Feedback from the premotor map enhances all fea-
tures at a specific location. Such an approach unifies recognition and attention
as interdependent aspects of one network.

2.1 Low level stimulus-driven salience

We largely follow the implementation of Itti et al. [14] to obtain feature and
contrast maps from a color image (Fig. 2). We currently use color, intensity
and orientation as basic features. Our approach differs from Itti et al. [14] in
how saliency influences processing. Itti et al. suggest to compute saliency in
the ’where’ system, select the most salient part of the image and then prefer-
ably process this part in the ’what’ pathway. We compute feature conspicuity
maps within the ’what’ pathway that directly modulate the features according
to their saliency in parallel without any spatial focus. Thus, salient features do
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Fig. 1. Model for top-down guided detection of objects. First, information about the
content and its low level stimulus-driven salience is extracted. This information is sent
further upwards to V4 and to IT cells which are broadly tuned to location. The target
template is encoded in PFmem. PFm cells indicate by comparison of PFmem with IT
whether the target is actively encoded in IT. Feedback from PFmem to IT increases the
strength of all features in IT matching the template. Feedback from IT to V4 sends the
information about the target downwards to cells with a higher spatial tuning. FEFv
combines the feature information across all dimensions and indicates salient or relevant
locations in the scene. A winner-take-all process in FEFm (premotor) cells selects the
strongest location. Even during this competition a reentry signal from this map to V4
and IT enhances all features at locations of activity in FEFm. The IOR map memorizes
recently visited locations and inhibits the FEFv cells.

not have to be routed to higher areas by spatial attention. However, after 100ms
spatial attention starts to implement a gain enhancement in order to prioritize
processing at a certain location.

Feature maps: Starting from the color image, we extract orientation O(σ, θ) with
varying resolution σ and orientation θ, intensity I, red-green RG = R −G and
blue-yellow BY = B − Y information [14].

Contrast maps: Contrast maps determine the conspicuity of each feature and
implement the known influence of lateral excitation and surround inhibition
by center-surround operations ’ª’. We construct orientation contrast O(c, s, θ),
intensity contrast I(c) as well as red-green RG(c) and blue-yellow BY(c) double
opponency [14].

Feature conspicuity maps: For each variable or feature, we combine the feature
information into an attribute V and its corresponding contrast value into a gain
factor P of a population code. This dual coding principle is a very important
characteristic. A feature is represented by the location of cell activity, and the
conspicuity of this feature is represented by the strength of activity. At each
location x1, x2 we construct a space, whose axes are defined by the represented
features and by one additional conspicuity axis (Fig. 2). The population is then
defined by a set of neurons i ∈ N sampling the feature space, with each neuron
tuned around its preferred value ui. For each neuron yi we obtain an activity
value:

yi = P · g(ui −V) (1)
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Fig. 2. Construction of a population indicating a feature and its stimulus-driven
salience at each location in the image. Starting from a color image we construct broadly
tuned color channels Red, Green, Blue and Yellow, as well as an Intensity channel. Each
of these is represented by a Gaussian pyramid with the scale σ. The color channels are
transferred into on opponency system RG and BY . By applying Gabor wavelets on the
intensity image I with the scale σ and orientation θ we achieve for each orientation a
pyramid that represents the match of the image with the filter. We use center-surround
or contrast operations ª for each of those feature maps to determine the location of
conspicuous features. Both the feature maps and the contrast maps are then com-
bined into feature conspicuty maps, which indicate the feature and its corresponding
conspicuity value at each location x1, x2.

Specifically we use a Gaussian tuning curve with the selectivity parameter σg:

g(ui −V) = exp
(
−‖ui −V‖2

σ2
g

)
(2)

To apply the same range of selectivity parameters σ2
g ∈ {0.05 . . . 0.2} for all

channels we normalize the feature values V ∈ {I, RG,BY, θ, σ} of each channel
between zero and one. The cell activity within the population should typically
lie within the range of zero and one. Thus, we also normalize the contrast values
to Ĩ, R̃G, B̃Y, Õ. We finally receive the populations for each channel with scale
c at each location x:

yI
i (c,x) = Ĩ(c,x) · g(ui − I(c,x))

yRG
i (c,x) = R̃G(c,x) · g(ui −RG(c,x))

yBY
i (c,x) = B̃Y(c,x) · g(ui −BY (c,x))

yθ
i (c,x) = max

θ

(
Õ(c, θ,x) · g(ui − θ)

)

yσ
i (c,x) = max

θ

(
Õ(c, θ,x) · g(ui − σ)

)
(3)



We now have #c maps, where #c is the number of center scales, with a popula-
tion at each point x for a different center scale c. To combine these maps across
space into one map with the lowest resolution (highest c) we use a maximum
operation (maxc,x′∈RF (x)).

2.2 Goal-directed control

In order to compute the interdependence of object recognition and attention we
need a continuous dynamic approach. Specifically, we use a population code sim-
ulated by differential equations. Each map in the model represents a functional
area of the brain [7]. It contains at each location x a population of i cells encod-
ing feature values (eq. 4), with the exception of the maps in the frontal eye field
and IOR which only encode space (i = 1). In addition V4 and IT have separate
maps for different dimensions d (RG, BY , etc.). The population of cells is driven
by its input y↑d,i,x. Feedback implements an input gain control to enhance the
representation of certain features and biases the competition [8] among active
populations. Feature specific feedback (IL) operates within the ventral pathway
and enhances cell populations whose input matches the feedback signal. Spatial
reentry (IG) arrives from the frontal eye field and boosts features at a certain
location, generally the target of the next saccade. If inh induces competition
among cells and Iinh causes a normalization and saturation. Both terms have a
strong short range and weak long range inhibitory effect.

τ
d

dt
yd,i,x = y↑d,i,x + IL + IG − yd,i,x · Iinh

d,x − If inh
d,x (4)

The following maps use implementations of the general equation quoted above
(eq. 4).

V4: Each V4 layer receives input from a different dimension (d) in the feature
conspicuity maps: yθ

i,x for orientation, yI
i,x for intensity, yRG

i,x for red-green op-
ponency, yBY

i,x for blue-yellow opponency and yσ
i,x for spatial frequency. V4 cells

receive feature specific feedback from IT cells (IL = IL(yIT )) and spatial reentry
from the frontal eye field (IG = IG(yFEFm)).

IT: The populations from different locations in V4 project to IT, but only
within the same dimension. We simulate a map containing 9 populations with
overlapping receptive fields. We do not increase the complexity of features from
V4 to IT. Thus, our model IT populations represent the same feature space
as our model V4 populations. The receptive field size, however, increases in
our model, so that several populations in V4 converge onto one population in
IT: y↑i,d,x = w↑ max

x′∈RF (x)
yV4

i,d,x′ . IT receives feature specific feedback from the

prefrontal memory (IL = IL(yPFmem)) and location specific feedback from the
frontal eye field (IG = IG(yFFEm)).
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Fig. 3. Results of a free viewing task. (A) Natural scene. (B) Scanpath. It starts on
the toothpaste, visits the hairbrush, the shaving cream, two salient edges and then the
soap. (C) Activity of FEFv cells prior to the next scan. By definition they represent
locations which are actively processed in the V4 and IT map and thus represent possible
target locations. An IOR map inhibits FEFv cells at locations that were recently visited
(causing the black circles).

FEFv: The perceptual map (FEFv) neurons receive convergent afferents from
V4 and IT y↑ax = wV4

∑
d

max
i

yV4
d,i,x + wIT

∑
d

max
i,x′∈RF (x)

yIT
d,i,x′ . The information

from the target template additionally enhances the locations that result in a
match between target and encoded feature y↑bx = wPFmem

∏
d

max
i

yPFmem
d,i · yV4

d,i,x

at all locations simultaneously. This allows the biasing of specific locations by the
joint probability that the searched features are encoded at a certain location.
The firing rate of FEFv cells represent the saliency of locations, whereas the
saliency of each feature is encoded in the ventral pathway.

FEFm: The effect of the perceptual map on the premotor cells (FEFm) is a slight
surround inhibition: y↑x = wFEFvyFEFv

x − wFEFv
inh

∑
x

yFEFv
x . Thus, by increasing

their activity slowly over time premotor cells compete for the selection of the
strongest location.

IOR: There is currently no clear indication where cells that ensure an inhibition
of return are located. We regard each location x as inspected, dependent on the
selection of an eye movement at yFEFm

x (te) > ΓFEF
o or when a match in the PFm

cells is lost. In this case the IOR cells are charged at the location of the strongest
FEFm cell for a period of time T IOR. This causes a suppression of the recently
attended location in the FEFv map. IOR cells get slowly discharged by decay
with a low weight winh.

τ
d

dt
yIOR
x = (1− yIOR

x )(wFEFmIFEFm
x − winhyIOR

x )

IFEFm
x =

{
exp(− (x−xm)2

0.01 ) if t < te + T IOR

0 else
; yFEFm

xm
= max

x
(yFEFm

x ) (5)



3 Results

We first show how the model operates in a free viewing task, which is only driven
by the stimulus saliency (Fig. 3). The overall scanning behaviour is similar to
feedforward approaches (e.g. [14]). The major difference it that the saliency is ac-
tively constructed within the network as compared to a static saliency map (Fig.
3C). We could now generate prototypes of various objects and place them into
the space spanned by the IT cells. By comparing the prototypes with IT activity
during the scans we could then determine the selected object. However, this is
not a very interesting strategy. Recognition fully relies on the stimulus-driven
selection. According to our interpretation of findings in brain research, primates
are able to perform a goal-directed search. The idea is that the brain might ac-
quire knowledge about objects by learning templates. To mimic this strategy we
present the model objects from which it generates very simple templates (Fig.
4).
If such an object is relevant for a certain task, the templates are loaded into
the PFmem cells and IT cells get modulated by feature-specific feedback. When
presenting the search scene, initially IT cells reflect salient features, but over
time those features that match the target template get further enhanced (Fig.
5). Thus, the features of the object of interest are enhanced prior to any spatial
focus of attention. The frontal eye field visual cells encode salient locations.
Around 85-90ms all areas that contain objects are processed in parallel. Spatial
attention then enhances all features at the selected location, in searching for the
asprin bottle at around 110ms and for the hairbrush 130ms after scene onset.
As a result the initial top-down guided information is extended towards all the
features of the target object. For example, the very red color of the asprin bottle
or the dark areas of the hairbrush are detected by spatial attention because those
features were not part of the target template. This aspect is known as prioritized
processing. In the beginning only the most salient and relevant features receive
a high processing whereas later all features of a certain object are processed.

Red Green

PFmem

RG BY Intensity Orientation

Vertical Vertical

Spat. Freq.

Blue Yellow Dark Light Low High

PFmem PFmemPFmemPFmem

PFmemPFmemPFmemPFmemPFmem

Fig. 4. We presented the asprin bottle and the hairbrush to the model and in each
dimension the most salient feature was memorized in order to generate a target tem-
plate. For the asprin bottle the stopper is most salient so that in the RG-dimension
the memorized color is only slightly shifted to red. Altogether, we only use crude infor-
mation about the object and do not generate a copy. Note, that the objects are placed
on a black background whereas they appear in the image on a white background.
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Fig. 5. The temporal process of a goal-directed object detection task in a natural scene.
(A) Asprin bottle as target. (B) Hairbrush as target. The frontal eye field visual cells
indicate preferred processing, which is not identical with a spatial focus of attention. At
first they reflect salient locations whereas later they discriminate target from distractor
locations. The activity of IT cell populations with a receptive field covering the target
initially show activity that is inferred by the search template. Later activity also reflects
other features of the object that were not searched for.



4 Discussion

We have presented a new approach to goal-directed vision based on feedback
within the ’what’-pathway and spatial reentry from the ’where’-pathway. The
complex problem of scene understanding is here transformed into the generation
of an appropriate target template. Once a template is generated, we show that a
system can detect an object by an efficient parallel search as compared to pure
saliency-driven models which rely on a sequential search strategy by rapidly
selecting parts of the scene and analyzing these conspicuous locations in detail.
Our model only uses a sequential strategy if the parallel is not efficient to guide
the frontal eye field cells toward the correct location. Stimulus-driven saliency
is suggested to prioritize the processing in a parallel fashion as compared to an
early selection. Regarding the finding that categories can be detected even in
the near absence of spatial attention [12], it is important to notice that in our
model spatial attention is not a prerequisite of object detection. If the target
sufficiently discriminates from the background, the match with the template in
PFm can be used for report before any spatial reentry occurs. The simulation
results also provide an explanation for Sheinbergs and Logothetis’ [13] finding of
early activation of IT cells if the target is foveated by the next fixation. Classical
models of scene analysis would predict that the process of identifying objects
begins after each fixation. In our model the match with the target template
increases the firing rate of cells in the ’what’-pathway indicating the detection of
the object. Such enhanced activity is picked-up by maps in the ’where’-pathway
which locate the object for action preparation. Reentrant activity then enhances
all features of the object in order to allow a more detailed analysis. Thus, object
identification begins before the eyes actually fixate on the object.
Current simulations have shown that even very simple information about an
object can be used in a parallel multi-cue approach to detect and focus an object.
Future work should of course extend the model with more shape selective filters
to perform object recognition tasks. We think that such an approach provides a
serious alternative to present feedforward models of object recognition.
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Appendix: Model equations

Feature specific topological feedback from the origin ν:

IL
d,i,x(yν) = max

x′∈RF (x)
w↓Lyi,d,x′ · yν

i,d (6)

Location specific topographic feedback from the origin ν:

IG
d,i,x(yν) = y↑d,i,x · max

x′∈RF (x)
w↓Gyi,d,x′ · yν

x′ (7)

Inhibition for normalization and saturation:

Iinh
d,x = winh

∑

j

yd,j,x(t) + wmap
inh zmap

d (8)

Inhibition for competition among cells:

If inh
d,x = wmap

f inhzmap
d (t) (9)

using

τmap
inh

d

dt
zmap
d =

∑
x

max
j

(yj,d,x)− zmap (10)


