
Contributed article

Life-long learning Cell StructuresÐcontinuously learning without
catastrophic interference

Fred H. Hamker

California Institute of Technology, Division of Biology 139-74, Pasadena, CA 91125, USA

Received 18 October 1999; accepted 5 January 2001

Abstract

As an extension of on-line learning, life-long learning challenges a system which is exposed to patterns from a changing environment

during its entire lifespan. An autonomous system should not only integrate new knowledge on-line into its memory, but also preserve the

knowledge learned by previous interactions. Thus, life-long learning implies the fundamental Stability±Plasticity Dilemma, which addresses

the problem of learning new patterns without forgetting old prototype patterns. We propose an extension to the known Cell Structures,

growing Radial Basis Function-like networks, that enables them to learn their number of nodes needed to solve a current task and to

dynamically adapt the learning rate of each node separately. As shown in several simulations, the resulting Life-long Learning Cell

Structures posses the major characteristics needed to cope with the Stability±Plasticity Dilemma. q 2001 Elsevier Science Ltd. All rights

reserved.

Keywords: Life-long learning; Continuously learning; Incremental learning; Stability±Plasticity Dilemma; Catastrophic interference; Radial Basis Function;

Cell Structures

1. Introduction

If we intend to bridge the gap between the learning abilities

of humans and machines, at least on an abstract level of

description, then we need to consider which circumstances

allow a sequential acquisition of knowledge. In humans, two

different systems, the hippocampus and the neocortex, seem to

interact to achieve this capability (McClelland, McNaughton,

& O'Reilly, 1995). Remarkably, the hippocampus retains its

ability to generate neurons throughout life (Eriksson, Per®-

lieva, Bjork-Eriksson, Alborn, Nordborg, Peterson et al.,

1998), especially in a stimulating environment, indicating a

possibility for network growth. Functionally, attention and

resonance seem to be of fundamental importance (Grossberg

& Merrill, 1996). The idea is to select a subset of neurons by an

attentional mechanism, ideally those which match the pattern

best. Without destroying other prototype patterns, only the

weights of these neurons are adapted. No convincing network

exists yet that overcomes the catastrophic interference in

sequential learning tasks and shows a good approximation as

well. Although this contribution addresses learning predomi-

nantly from a technical point of view, similar mechanisms

might exist in biological organisms. Speci®cally, we suggest

that the stability/plasticity can be modulated by adaptive learn-

ing and insertion rates based on the observation of wrong

responses.

1.1. The problem: learning in a non-stationary environment

A shortcoming from the biological, as well as the techni-

cal, point of view originates from the arti®cial separation of

a lifespan into a learning and recognition phase. While this

approach is possible for systems that operate in a ®xed

environment, it fails if the environment changes. To circum-

vent costly retraining, recent research in on-line learning

focuses on adaptive learning rates to follow a non-stationary

input distribution. Incremental learning addresses the ability

of repeatedly training a network with new data, without

destroying the old prototype patterns. Life-long learning,

also termed continuous learning, emphasizes learning

through the entire lifespan of a system (as opposed to the

cases, where the term life-long learning is also used to

address task independent learning).

On account of noise and other in¯uences in learning an

open data-set, possible discrete overlaps of decision areas

turn into continuous overlaps and non-separable areas

emerge. Furthermore, decision boundaries may change

over time. In contrast to only adapting to a changing

environment, life-long learning suggests preserving

Neural Networks 14 (2001) 551±573PERGAMON

Neural

Networks

0893-6080/01/$ - see front matter q 2001 Elsevier Science Ltd. All rights reserved.

PII: S0893-6080(01)00018-1

www.elsevier.com/locate/neunet

previously learned knowledge if it does not contradict the

current task. This demand immediately raises the Stability±

Plasticity Dilemma (Grossberg, 1988). We have to face the

problem that learning in arti®cial neural networks inevitably

implies forgetting. Later input patterns tend to wash out

prior knowledge. While a gradual interference is unavoid-

able, the sudden and complete erasure of previously well

learned patternsÐa catastrophic interferenceÐseverely

limits life-long learning. A purely stable network is unable

to absorb new knowledge from its interactions, whereas a

purely plastic network cannot preserve its knowledge. Thus,

the issue of life-long learning addresses both. Is the network

¯exible enough to learn new patterns and can the network

preserve old prototype patterns?

1.2. Previous research

Networks with a global or distributed representation of

knowledge, like a Multi-Layer-Perceptron trained by error

back-propagation (Rumelhart, Hinton, & Williams, 1986)

and Cascade Correlation (Fahlman & Lebiere, 1990) suffer

from the disadvantage that changing only one weight affects

nearly all patterns stored in the network. Several modi®ca-

tions have been proposed, especially in reducing the repre-

sentational overlap (see French, 1999, for an overview), but

most of these altered networks show an overall performance

decrease.

ART networks (e.g. Grossberg, 1976) circumscribe the

dilemma by introducing a similarity criterion (vigilance),

which allows learning only if the pattern suf®ciently

matches the stored prototype. The vigilance parameter is

not necessarily restricted to remain constant over time. If

the vigilance criterion is increased, only patterns suf®ciently

similar to the prototypes will provoke learning. If the criter-

ion is not ful®lled, the pattern is represented by a newly

assigned node, without a harmful interference with any

learning previously accomplished. Although this similarity

criterion works well in unsupervised learning, error-driven

learning can result in a catastrophic allocation of new nodes.

This occurs in overlapping decision regions. The Inter-

ART-Reset in ARTMAP (Carpenter, Grossberg, &

Reynolds, 1991) initiates the allocation of a new node,

because it cannot reliably detect the appropriate prototype.

To combine the advantages of Fuzzy ARTMAP (Carpen-

ter, Grossberg, Markuzon, Reynolds, & Rosen, 1992) and

the Probabilistic Neural Networks (Specht, 1990) for incre-

mental learning, a hybrid network was proposed (Lim &

Harrison, 1997), which achieved signi®cantly better results

than a regular Fuzzy ARTMAP on Gaussian source separa-

tion and on a noisy waveform recognition task. However,

the authors investigated their network only on on-line learn-

ing tasks and not on the hard problems of life-long learning,

such as continuous overlaps.

Another type of a local representation utilized successfully

are Radial Basis Function (RBF) networks (Broomhead &

Lowe, 1988; Moody & Darken, 1988). Nevertheless, those

have a ®xed number of nodes, which has to be determined

by the designer. In a local representation, the best way to tackle

the Stability±Plasticity Dilemma is to allocate new nodes if

the present ones are not suf®cient.

There have been numerous attempts to insert new nodes

in RBF networks during learning (Berthold & Diamond,

1995; Chen, Thomas, & Nixon, 1994; Karayiannis & Mi,

1997; Obradovic, 1996; Platt, 1991; Roy, Govil, & Miranda,

1997; Shadafan & Niranjan, 1994; Whitehead & Choate,

1994; Yingwei, Sundararajan, & Saratchandran, 1998), but

no criteria were de®ned that enable learning throughout the

entire lifespan.

A promising strategy is the usage of a local error based

insertion criterion (Fritzke, 1992, 1994) which became

famous as a general criterion to determine the location

where a RBF network should grow (Karayiannis & Mi,

1997). According to this concept, the nodes in a representa-

tion layer compete for determining the node with the highest

similarity to the pattern. One might recognize this competi-

tion as comparable to the previously mentioned aim of addi-

tional selection. A counter linked with the winner is

increased by the error of the network. On time average,

nodes with high errors serve as a criterion to insert a new

node. Thus, new nodes are inserted in areas of the input

space where it is statistically indicated.

Two almost identical algorithms based on this criterion

have been proposed, the Growing Neural Gas (Fritzke,

1995) and the Dynamic Cell Structures (Bruske & Sommer,

1995). They combine the idea of vector quantization with a

continuous neighborhood adaptation. Both refer to the Grow-

ing Cell Structures (Fritzke, 1992, 1994), whose neighborhood

relation is restricted to a ®xed topology dimension.

Growing Cell Structures (GCS), Growing Neural Gas

(GNG) and Dynamic Cell Structures (DCS) can be equipped

with different learning rules and activation functions, such

as RBF, and have been shown to achieve excellent results in

different tasks (Bruske, Hansen, Riehnie, & Sommer, 1996;

Bruske, Ahrns, & Sommer, 1998; Fritzke, 1994; Heinke &

Hamker, 1998; Hamker, Paetz, ThoÈne, Brause, & Hanisch,

2000). Because of their similarity, GCS, GNG and DCS are

hereafter called Cell Structures.

The original formulation of the algorithm intends an

exclusively unsupervised adaptation of the input weights

(Bruske & Sommer, 1995; Fritzke, 1994, 1995) similar to

Self-Organizing Maps (Kohonen, 1982) and Neural Gas

(Martinetz & Schulten, 1991, 1994), but without a decay

of learning parameters. In contrast to the Self-Organizing

Maps, the Neural Gas learns by a soft-max rule, an exten-

sion to the standard K-means clustering. This rule ranks the

preference vectors according to their distance to the input

pattern. Enriched by a competitive Hebbian on-line learning

rule for the connections between nodes, the Neural Gas is

able to learn perfectly topology preserving mappings

(Martinetz & Schulten, 1994).

The Cell Structures have the main advantage that they

neither need a priori decision about the network size, nor

F.H. Hamker / Neural Networks 14 (2001) 551±573552

about the dimension of the graph, nor do they have to

perform a ranking of the nodes in each adaptation step.

They update their neighborhood relation on-line and utilize

this information in each adaptation step. This cooperative

training performs a similarity regularization, which gener-

ally improves training performance. Especially if the RBFs

are large compared to the distance of the centers, the limited

neighborhood adaptation of the Cell Structures shows a

better generalization (Bruske, 1998). An output layer allows

the separation of the activation in the representation layer

into different classes. In this context, Cell Structures cluster

the input space like RBF networks, but the nodes are orga-

nized within a graph in which the location of the centers and

the connecting edges are updated on-line (Fig. 1).

In extension to the unsupervised learning of the input

weights, an error-modulated learning (Ahrns, Bruske &

Sommer, 1995) and a more sophisticated gradient-based

learning (Bruske et al., 1996) have been suggested. Both

introduce an error dependency for the adaptation of centers

similar to the one utilized in various RBF algorithms

(Karayiannis, 1999).

A utility-based removal (Fritzke, 1997) deletes nodes

which are located in regions of a low input probability

density. This criterion serves to follow a non-stationary

input distribution and, therefore, counteracts the preserva-

tion of old prototype patterns.

So far, the major drawback of Cell Structures used in the

context of life-long learning is their permanent increase in

the number of nodes and in the drift of the centers to capture

the input probability density in the unsupervised adaptation

case and to re¯ect the error probability density in the super-

vised adaptation case (Hamker & Gross, 1997). Thresholds

such as a maximal number of nodes predetermined by the

user as well as an insertion criterion dependent on the over-

all error or on a quantization error are not appropriate,

simply because appropriate ®gures for these criteria cannot

be known in advance. Thus, the Cell Structures are only

capable to follow an input probability density by using the

utility-based removal (high plasticity) or to approximate a

decision boundary by freezing the number of nodes and

allowing only minor changes in the adaptation of the

weights (high stability).

The catch is that these networks suffer even more from a

catastrophic allocation of new nodes (Hamker & Gross,

1997), because they permanently insert new nodes at loca-

tions with high errors. Thus, we propose an extension of the

Cell Structures in order to balance the stability and plasticity

dynamically. The next section gives a brief overview of the

problems of learning in a non-stationary environment and

our suggested solutions.

1.3. A new approach: life-long learning Cell Structures

The previous section indicates that current networks

either fail to meet the demand for stability or do not show

enough plasticity while learning in a non-stationary envir-

onment. We emphasized that a local representation, an

insertion of new nodes and an adaptive learning rate are

key aspects to reduce the interference.

The insertion of new nodes is a useful contribution to the

F.H. Hamker / Neural Networks 14 (2001) 551±573 553

Fig. 1. On the left the layout of the Cell Structures is shown. The nodes in the representation layer adapt their weights according to the input pattern, usually

based on an unsupervised learning rule. The graph is updated on-line. All nodes which share a common edge of a node are called neighbors of this node. The

representation layer, composed of Gaussian activation functions, performs an adjustable, nonlinear transformation of the input pattern. The output layer then

implements a separation into decision regions. In extension to the input and output weights adaptation the algorithm inserts new nodes in regions, which lead to

high errors. Thus, beginning with a broad separation the network tries to ®t even complex class boundaries in the data by inserting new nodes as illustrated on

the right.

plasticity aspect, but burdened with over®tting and cata-

strophic waste of resources. Incremental networks such as

the Cell Structures cannot escape that fact without the abil-

ity to learn whether a further insertion of nodes is useful or

not. Thus, we suggest a strategy that allows insertion only if

a local error counter exceeds a local insertion threshold,

which is permanently adapted to the present situation.

The next key aspect refers to the learning of the weights.

There are many reasons why the learning rate should be

adaptive. If the learning rate is held constant, the learner

can never converge to the global optimum: a learning rate

chosen too high will corrupt previously learned knowledge

and disturb following stages, a learning rate chosen too low

does not allow the learner to follow a changing environ-

ment. Since Cell Structures provide a local processing strat-

egy, a uniform learning rate does not make sense. Each node

should hold its individual adaptive learning rate. We suggest

estimating the appropriate learning rate by two error coun-

ters with different time-constants. This method detects rele-

vant, local changes in the input probability density.

Irrelevant changes, which do not affect the error on the

task, or changes in a different area of the input space do

not lead to more plasticity. Both key aspects, the adaptive

insertion and the adaptive learning parameters, are now

discussed in more detail.

1.3.1. Adaptive insertion

A general problem in learning is the Bias±Variance

Dilemma (Geman, Bienenstock, & Doursat, 1992), where

the bias is a measure of the similarity of the average

mapping function to the desired one and the variance

describes the con®dence of the mapping function concern-

ing different input patterns. The con¯ict lies in minimizing

the bias and avoiding a high variance, often termed as a

good generalization.

Theoretically, RBF networks have general approximation

capabilities (Park & Sandberg, 1993; Poggio & Girosi,

1990), but in practical applications the best solution is

unknown and the optimal number of units in the representa-

tion layer cannot be found. In incremental neural networks,

e.g. the Cell Structures, insertion is used to improve the

mapping until a criterion is reached, e.g. a minimal overall

error, a maximal number of nodes, or a low error on a

validation data set.

In life-long learning tasks, growth is an important feature

to decrease the error of the task and to adapt to changing

environments while preserving old prototype patterns, but

the mentioned criteria are not appropriate. Nevertheless,

insertion must be stopped for two reasons: to prohibit a

permanent increase in the number of nodes in overlapping

decision areas, where the task cannot be solved, and to avoid

over®tting. The learning of the insertion parameter can be

explained by an insertion±evaluation cycle (Hamker, 1999).

After a number of learning steps, the average error counter

of a node is compared to the error at the moment of the last

insertion. If the current error is greater or equal, the insertion

was not successful and a local insertion threshold is

increased. If the threshold reaches the average error, a

further insertion at that location is not allowed. To permit

exploration in the future, the threshold should be decreased

by some criterion as explained in Section 2.2.

1.3.2. Adaptive learning rate

As a common procedure to minimize the bias in on-line

learning, a stochastic gradient descent is used, in which the

learning rate is decreased to zero (Robbins & Monro, 1951).

Thus, the Stability±Plasticity Dilemma is interpreted in

favor of the stability. In a changing environment, this

approach turns into a con¯ict, as an annealed learning rate

does not allow the weights to follow the changes fast

enough. To overcome this problem, different methods of

adapting the scale factor of the learning parameter have

been proposed. Thus, the adjustment of the weight vector

Dw depends on the old weight vector w and the current

pattern x, scaled by an adaptive factor h (t), which was

termed by Amari (1967) as learning of a learning rule.

Dw � h�t� z f �w; x� �1�
Theoretical considerations of ®nding the optimal learning

rate often assume a global scale factor for all weight-adjust-

ments that depends on the past errors (Murata, MuÈller,

Ziehe, & Amari, 1997; Sompolinsky, Barkai, & Seung,

1995; Freeman & Saad, 1997). If the error is large, the

learning rate takes on a large value. If the error decreases

to zero, the learning rate decreases to zero. A different

approach almost independent from the type of neural

network was proposed by Heskes and Kappen (1993).

They derived the actual learning rate from minimizing a

misadjustment, which is low with a small bias and a small

variance. For practical purposes, they estimated the bias and

the variance from the statistics of the weights by time

averages over a period T, which has to be chosen according

to the typical time scale of changes. Still, this measure does

not take into account the differences of the distribution in

the input space. For the Cell Structures, individual adaptive

learning rates for each node are more suitable. To estimate a

good level of the learning rate, we suggest using the ratio

between two local error counters, each with a different time

constant, because this guarantees an asymptotic decrease in

the case of a local stationary distribution, and an increase if

the changing environment leads to new local errors.

1.4. Outline

We have discussed the key issues of learning in a non-

stationary environment and worked out methods to tackle

the Stability±Plasticity Dilemma. The next section gives an

overview of the developed algorithm by means of a

pseudocode, followed by a complete description. By using

arti®cial data, we illustrate the learning process and observe

details, such as temporal snap shots of internal parameters,

which helps to fully understand the learning behavior. The

F.H. Hamker / Neural Networks 14 (2001) 551±573554

evaluation of the Life-long Learning Cell Structures is

achieved by a benchmark on real data with a stationary

distribution and with a non-stationary distribution. The

latter requires the de®nition of new criteria to evaluate the

degree of stability and plasticity.

2. Life-long Learning Cell Structures

2.1. Overview

Learning in a non-stationary environment demands

several extensions to the original algorithm. The main

idea is to use local counters to evaluate the need of a local

weight adaptation and of a local node insertion. The general

course of events is given by the following pseudocode.

Initialization

Do randomly choose the input and output weights of a

network with two nodes in the representation layer and

connect both nodes with an edge. The age of each node is

Y� 1. Since no pattern was presented yet, no errors

occurred and the error counters of each node are

tS � tL � 0. Any insertion should not be restricted in

the beginning (tq � 0). The inherited error is set to

tI � 1, which means that the ®rst insertion initiated by

each of those two nodes is evaluated as an improvement.

Repeat for each pattern:

Adaptation of the representation layer

Do locate the node b, which best matches the input

pattern by applying a distance measure. Find also the

second best node s.

Do determine the quality measure for learning BL for b

and its neighbors c separately, which is de®ned as the

quotient of the short-term error counter tS and long-

term error counter tL.

Do determine the individual input learning rate of b

and of its neighbors c, which depends on each quality

measure for learning BL and on the age Y of each node.

The younger the node and the larger tS over tL, the

higher the learning rate. The cut-off value of learning is

set by an input adaptation threshold qi
L.

Do move the input weights of the node b and its neigh-

bors toward the presented pattern according to the indi-

vidual learning rate.

Adaptation of the output layer

Do calculate the activation of all nodes in the repre-

sentation layer by a RBF.

Do determine the individual output learning rate for all

nodes in the representation layer. It is the same proce-

dure as for the input learning rate, but a different adap-

tation threshold qo
L can be used.

Do adapt the output weights to match the desired

output by applying the delta rule.

Insertion and deletion of nodes in the representation

layer

If the algorithm was presented a suf®cient number of

patterns since the last insertion criterion was applied.

Check insertion

Do ®nd the node q with the highest value of the inser-

tion criterion. The insertion criterion depends on each

quality measure for insertion BI and on the age of each

node. This quality measure is de®ned as the difference

between the long-term error counter tL and the inser-

tion threshold tq, which is increased by an insertion

tolerance. The younger the node and the larger tL as

against tq, the higher the insertion criterion.

If the insertion criterion of q is larger than zero

Insert a new node

Do ®nd the node f among the neighbors of q, which

shows the highest quality measure of insertion and

insert a new node r between q and f. Connect the

new node with q and f by new edges and delete the

edge between q and f. Initialize all counters of r by

an arithmetical average of the respective counters of

q and f.

Evaluate the previous insertion

For q, f and r

If the current long-term error tL exceeds the

inherited error tI lowered by the insertion toler-

ance

The last insertion was not successful

Do increase the insertion threshold tq of the

node.

End If
Error memorization

Do memorize the current long-term error tL in

the inherited errortI.

End For
End If
Check similarity based deletion

Do ®nd the node d with the lowest value of the deletion

criterion. The smaller the distance of the input weights

to the input weights of the neighbors as against the

average distance of the input weights and the smaller

the distance of the output weights to the output weights

of the neighbors, the lower the deletion criterion.

If the deletion criterion of d is smaller than the thresh-

old qdel, which has to be determined by the user

(further criteria can be added here)

Delete the node

Do remove the node d and update the graph.

End If
End If
Update the counters

Do update the long-term error tL and the short-term error

tS for the winner b by calculating a moving average with

particular time constants considering the current output

error.

Do exponentially decrease the age of the winter b with a

particular time constant.

Do exponentially decrease the insertion threshold tq of

F.H. Hamker / Neural Networks 14 (2001) 551±573 555

the winner b depending on the quality measure for learn-

ing BL. A decrease of the insertion thresholdtq only takes

place if the current long-term error tL differs from the

short-term error tS.

Update the edges of the graph

Do increase the age of all edges emanating from b.

Do set the age of the edge between b and s to zero. If no

edge between b and s exists, create a new one.

Do remove all edges older than the threshold tage.

Do remove all nodes without any edge (only for consist-

ency).

End Repeat

2.2. Complete algorithm for supervised classi®cation

As an example, the algorithm is described for the task of

supervised classi®cation. In this learning scheme the network

describes a special case of an incremental RBF network.

2.2.1. Structure

The representation layer of the Life-long Learning Cell

Structures (LLCS) performs a vector quantization and

consists of nodes or prototypes. The neighborhood relation-

ship of the nodes is de®ned by an undirected graph G

(Martinetz & Schulten, 1994). All edges that emanate

from a node i determine its neighbors Ni. The age of each

edge is continuously updated by a Hebbian adaptation rule.

The total amount of nodes is denoted with nN.

Variables of each node

Each node i has a few variables that regulate learning and

the insertion of new nodes in the network (Fig. 2).

wi n-dimensional weight vector in the input space

wout
i m-dimensional weight vector in the output space

s i Width of the Gaussian. Extreme values of s can be

crucial to the performance. Good results are

obtained by estimating the variance in the input

data of each best-matching node or by simply aver-

aging the length of all emanating edges:

s i � 1

uuNiuu

X
j[Ni

uuwi 2 wjuu �2�

tSi Short-term error counter. The estimate of the aver-

age short-term error is updated according to the

time constant TS.

tLi Long-term error counter. Similar to the short-term

error counter, the variable estimates the average

error, but considers a larger time constant TL.

t Ii Inherited error. This variable serves as a memory

for the error at the moment of insertion. It is

updated at each insertion, but only for the affected

nodes. The inherited error of a new node receives

the long-term error tL of those two nodes, between

which the new one is inserted. Both nodes memor-

ize their present long-term error.

tqi Insertion threshold. An insertion is only allowed if

the long-term error exceeds this local threshold. It

is increased if a previous insertion was not success-

ful. An exponential decrease according to the time

constant Tq depends on a relevant change in the

input probability distribution.

Yi Age of the node. It is decreased for the best-match-

ing node according to the time constant TY.

Adaptation of the representation layer

² For all nodes i, calculate the Euclidian distance di of the

input pattern x [Rn to the weight vector wi [Rn and

F.H. Hamker / Neural Networks 14 (2001) 551±573556

Fig. 2. A node of the Life-long Learning Cell Structures. Besides the width of the Gaussian, each node has error and age counters. In contrast to the inherited

error, which remains ®xed until the node is selected for insertion, the error counters are de®ned as moving averages according to their individual time constant.

locate the best-matching unit b and the second best s.

db � min
i[G
�di�; ds � min

i[G;i±b
�di�; di � uux 2 wiuu ;i [G

�3�

² Determine the quality measure for learning BL for the

best-matching node b and its neighbors c [Nb.

BL
�b=c� �

tS�b=c� 1 1

tL�b=c� 1 1
;c [Nb �4�

² Determine the input learning rate hi
�b=c� of the best node b

and its neighbors c from the quality measure for learning

BL, the age Y, the learning rate of the winner hb respec-

tively learning rate of the neighbors hn and a pre-de®ned

input adaptation threshold qi
L.

hi
�b=c� �

0 if ai
�b=c� , 0

h�b=n� if ai
�b=c� . 1 with ai

�b=c� �
BL
�b=c�

1 1 qi
L

1 Y�b=c� 2 1

ai
�b=c�h�b=n� else

8>>>>><>>>>>:
�5�

The learning rate hi allows an adaptation of the weights

either if the nodes are new or if temporal changes of the

error occur. Within this adaptive phase, the network

approximates the input probability density and does not

account for the local distribution of the error (unsuper-

vised rule). To approximate the error probability density,

the learning rate must be extended by a gradient-based or

error-modulated learning rule (Bruske, 1998).

² Increase match for b and its neighbors c [Nb.

Dwb � hi
b�x 2 wb�; Dwc � hi

c�x 2 wc� ;c [Nb �6�

Adaptation of the output layer

² In case of the error-driven example discussed here, deter-

mine the Euclidian distance of the output o [Rm to the

target z [Rm, when the input x is presented.

Etask�x� � uuz 2 ouu �7�

² Calculate the activation of all nodes yi with a Gaussian,

yi � e2uux2wi uu=s
2
i ;i [G �8�

² Determine the local output learning rates ho from the

quality measure BL, the age Y, the output adaptation

rate ho, and the output adaptation threshold qo
L.

ho
i �

0 if ao
i , 0

ho if ao
i . 1 with ao

i � BL
i

1 1 qo
L

1 Yi 2 1 ;i [G

ao
i ho else

8>>>><>>>>:
�9�

² Adapt the weights of the nodes j of the output layer.

Dwji � ho
i �zj 2 oj�yi ;j [{1¼m}; ;i [G �10�

Insertion and deletion of nodes in the representation layer

² After each Tins � l z nN steps: determine the quality

measure for insertion BI considering the insertion toler-

ance qins.

BI
i � tLi 2 tqi�1 1 qins� ;i [G �11�

² Find node q, which shows the maximal value of the

insertion criterion Kins, and search among its neighbors

the node f, which shows the maximal value of the quality

measure for insertion BI. Insert a new node if the inser-

tion criterion is satis®ed.

0 , Kins;q � max
i[G
�Kins;i�; Kins;i � BI

i 2 Yi

;i [G; BI
f � max

c[Nq

�BI
c�;

�12�

This criterion is only error based, which supports the

acquisition of nodes in regions with high errors indepen-

dent of the input probability density.

² If f and q exist: delete the edge between q and f, insert a

new node r, and connect r with q and f. The weights wr,

wout
r as well as the counters tSr, tLr, and tqr are deter-

mined by the arithmetical average of the corresponding

weights and error counters of q and f.

If the long-term error tLi of q, f and r exceeds the inher-

ited error tIi lowered by an insertion tolerance qins:

tLi $ tIi�1 2 qins� ;i [{q; f ; r} �13�

the last insertion was not successful, and the insertion

threshold is adapted.

tqi :� tqi 1 hq�tLi 2 tqi�1 2 qins��
;i [{kutLk $ tIk�1 2 tins�; q; f ; r}

�14�

Assign the inherited error tIi of q, f and r to the present

long-term error.

tIi � tLi ;i [{q; r; f } �15�
If f and q do not exist, no insertion evaluation takes place.

F.H. Hamker / Neural Networks 14 (2001) 551±573 557

² Check the deletion criteria considering a minimal age

qdelY , a suf®cient stabilization qdelBL and the number of

edges. Find the node d, whose criterion K is lower than

the deletion threshold qdel.

qdel . Kdel;d � min
i[G
�Kdel;i� ^ uuNd uu $ 2 ^ Yd , qdelY ^ BL

d , qdelBL

�16�
with

Kdel;i � Dwi

�l
Dwout

i ;i [G �17�

the local similarity of the input weights:

Dwi � 1

uuNiuu

X
j[Ni

uuwi 2 wjuu �18�

the average similarity of the input weights:

�l � 1

nN

XnN

j�1

Dwj �19�

and the local similarity of the output weights:

Dwout
i � 1

uuNiuu

X
j[Ni

uuwout
i 2 wout

j uu �20�

Adaptation of the counters and edges of the nodes in the

representation layer

² Update the long-term error counter tL and the short-term

error counter tS for the winner b.

t�L=S�b :� e21=T�L=S�t�L=S�b 1 1 2 e21=T�L=S�
� �

Etask�x� �21�

² Decrease the age Y of the best-matching node b.

Yb :� e21=TY Yb �22�

² Decrease of the insertion threshold tqb, if the distribution

of the error changes.

tqb :� �1 2 L�ab��e21=Tqtqb �23�
with

ab � 1 1 uBL
b 2 1u

1 1 qi
L

2 1; L�x� �
0 if x , 0

1 if x . 1

x else

8>><>>: �24�

² Adapt the edges as follows:

Increase the age of all edges emanating from b by one.

Set the age of the edge between b and s to zero. If no

edge between b and s exists, create a new one.

Remove all edges older than qage

Remove all nodes without any edge.

2.3. Parameter discussion

We assume the speci®cation of several parameters for the

algorithm. The major parameters that concern the insertion

and deletion, i.e. the size of the network, are the learning

rate hq of the adaptive insertion threshold, and the deletion

threshold qdel. The sensitivity to temporal changes of the

environment is adjusted by the relation of the time constants

for the short-term error and the long-term error TS/TL. We

discuss this by means of a continuously moving class

(Fig. 3). The network follows the non-stationary distribution

and leaves a track. The remained nodes memorize the knowl-

edge to separate between the classes even in those areas that

were not visited any more (Fig. 3 right). The track turns out to

be less marked if only a few nodes are inserted and if the

weights are allowed to adapt strongly. Concerning the latter

case, the time constants TS, TL and TY are decisive. A low TS

compared to TL makes the network more sensitive to changes

of the environment, but less lasting. Furthermore, a low time

constant for the age of a node TY quickly reduces the preference

of new nodes to highly change their weights. This will be

discussed in detail by means of Fig. 4.

Concerning the insertion of nodes, the learning rate hq of

F.H. Hamker / Neural Networks 14 (2001) 551±573558

Fig. 3. Nodes and class decision (right) in a continuously changing environment. One class moves around another class. Patterns are only represented within

the rectangular and the circular area. Simulation parameters: hb � 0.1, hn � 0.01, ho � 0.1, hq � 0.1, TS� 10, TL� TY� Tq � 100, l � 10, qage � 50,

qi
L � 0.001, qo

L �20.05, qins � 0.01, qdel � 0.01, qdelY � 0.01, qdelBL � 0.01.

the adaptive insertion threshold and a tolerance threshold for

insertion qins are most important. The tolerance threshold

for insertion qins de®nes the sensitivity to changes of the

long-term error tL. A low value enhances insertion.

However, for real data a too low threshold is undesirable,

because natural variations of the long-term error may often

result in unintentional insertions of nodes, especially in

overlapping decision areas. To facilitate insertion in

general, we recommend decreasing the learning rate of the

adaptive insertion threshold hq. This results in a slower

adaptation of the insertion threshold tq to the value of the

long-term error tL.

We would like to emphasize that the deletion of a node,

since it has lost all its edges, is a very rare exception. Take

the example of the continuously moving class (Fig. 3). Even

when no pattern in the rectangular area was presented any

more, the nodes were not removed, because only edge coun-

ters emanating from the winner are decreased. Only if a

single node represents an area in which patterns no longer

appear, is it deleted because of the decrease of the edge. If

this should be prevented, consider using an asymmetric rule,

which is based on directed edges (Bruske, 1998). Following

this rule, the connecting edge is only deleted if the age of

both directions falls below a threshold.

Looking back at the previous discussion on the insertion

of nodes, note that an incremental neural network cannot

assess in advance whether a further insertion reveals a subtle

distribution or turns out to be a waste of resources. This is

closely related to the Bias±Variance Dilemma. Bias means

the average deviation between the output of the training

pattern and the expected output. The variance indicates

the sensitivity of the output concerning different patterns.

An insertion increases the number of free parameters and

improves the network performance on the current data, but

might result in a loss of generalization. The proposed strat-

egy to evaluate an insertion locally is a suitable criterion for

simultaneously minimizing both bias (due to the ability of

insertion) and variance (due to evaluation and, if applicable,

the suppression of insertion). In the Life-long Learning Cell

Structures the learning rate of the insertion threshold hq

determines this generalization property. The larger the

learning rate of the insertion threshold hq, the larger the

effect of a wrong insertion and the less insertions are possi-

ble until the insertion threshold reaches the long-term error.

This criterion discovers the decision boundaries between

distinctly separated classes, but avoids a too low bias in

areas with much overlap. Another criterion acts after an

insertion and removes similar nodes. The larger qdel, the

earlier similar nodes will be deleted. Both parameters

together allow the user to adjust the bias. Table 1 illustrates

how to determine the generalization by choosing different

values.

After some time, the parameters became very intuitive,

because they are linked directly to the network's behavior.

Important parameters are the learning rate of the adaptive

insertion threshold hq, the deletion threshold qdel, and the

relation of the time constants of the short-term error, and the

long-term error TS/TL. For most applications, the other para-

meters can be regarded as constants of the algorithm. We

found the parameters for the experiments described in this

article by trial and error. However, we would like to point

out that a broad range of combinations are suitable for good

results, as shown in Section 4. This insensitivity to para-

meter settings is a general feature of the local processing

strategy in the Cell Structures as indicated by a benchmark

(Heinke & Hamker, 1998).

2.4. Learning process

Learning of a node is illustrated by plotting its values for

the quality measures for learning BL and the age Y (Fig. 4).

The amount of learning depends on its location within this

F.H. Hamker / Neural Networks 14 (2001) 551±573 559

Fig. 4. The learning rate h in dependence of the quality measure for learning BL, the age Y and the input/output adaptation threshold qi=o
L . Left: typical states of

the nodes during learning. Please see the text for a discussion of the different cases. Middle: learning of the centers and the in¯uence of the user de®ned input

adaptation threshold qi
L. The younger the node and the higher the quality measure for learning BL, the higher the learning rate hi. A positive value forqi

L

prevents learning for old nodes, if the long-term error TL is equal to the short-term error TS. Right: learning of the output weights and the in¯uence of the user

de®ned output adaptation threshold qo
L. Usually, the value for qo

L is chosen to be negative, which allows the output weights to learn the decision boundary even

when the input distribution is stationary.

diagram. A newly inserted node always starts on the right

side. The initial value of the quality measure for learning BL

depends on the nodes which triggered this insertion, since

their counters were used for the initialization. In case of a

changing environment, the short-term error increases faster

than the long-term error, which leads to a higher value of BL,

as indicated by course a in Fig. 4. After a while the network

learns this new situation and BL decreases, but overlappings

may prevent an immediate balance of the short- and long-

term error. Course b illustrates a situation in which a node is

inserted between overlapped classes. The short- and long-

term error become equal, the quality measure for learning

reaches BL < 1 and learning is reduced with increasing age

(decreasing Y) of the node. The gradient of this cooling

process is exponential and depends on the time constant

TY and on the proportion of the time constants TS, TL. A

stationary input probability density always forces the

nodes to reach the state Y < 0; BL < 1. Course c illustrates

a situation of a new node after the environment has just

changed and the network quickly solves the problem by

learning. In this case, the short-term error can fall below

the long-term error. Course d shows an old node. A chan-

ging environment in¯uences the error and its learning rate is

modi®ed in accordance with this change.

3. Illustration with arti®cial data sets

To illustrate the function of the Life-long Learning Cell

Structures, we observe the behavior of the network on a

non-stationary input-probability (Fig. 5). An arti®cial 2D

data set is utilized to take advantage of its intuitive manip-

ulation, visualization and its resulting insight into the beha-

vior of the system. For the following tests we employ a

paradigm as follows (Hamker & Gross, 1998): from step 1

until 20,000, randomly chosen patterns form four areas (A,

B, D, E) and three classes are presented with equal prob-

ability (environment 1). At step 20,001 the environment

changes and patterns form four areas (A, B, C, E) and two

classes are presented (environment 2). At step 40,001 the

environment changes again, etc.

In the ®rst 20,000 steps, the input contains an awful

F.H. Hamker / Neural Networks 14 (2001) 551±573560

Table 1

Illustration of the quantization depending on the learning rate of the insertion threshold hq and the deletion threshold qdel in an environment which shows three

partly overlapping classes. One ®gure depicts the network and the areas with input data, marked by gray circles (the boundaries between the classes are not

shown), the other ®gure represents the number of nodes (-´-) and the classi®cation error on the training data (Ð) over time. Clearly visible by the error and the

sparse graph of the network, larger values of hq lead to an extraction of the rudimentary class distribution. Lower values allow the network to detect details of

the class distribution in the training data. With these parameters, several nodes are clumped nearby. But because some classes overlap, not even many more

nodes can solve the task better. Thus, the deletion criterion keeps the number of nodes small, without affecting the performance on the training data badly. A

value of qdel , 0 prohibits a deletion of nodes. Concluding, the learning rate of the insertion threshold hq and the deletion threshold qdel allow the user to

determine the desired generalization ability. Simulation parameters: hb � 0.1, hn � 0.01, ho � 0.15, TS� 20, TL� TY� Tq � 100, l � 10, qage � 50,

qi
L � 0.05, qo

L �20.05, qins � 0.2, qdelY � 0.01, qdelBL � 0.01

overlap in the circular area which causes a high error. Thus,

after 500 steps the internal states of the nodes responsible

for the overlapping area show a high long-term error (Fig.

7). As the learning parameter of the input weights expresses,

the network is extremely plastic. Nevertheless after 20,000

steps, the algorithm has learned by increasing its insertion

threshold, that a further insertion does not improve the

squared error and the network stabilizes, as can be seen

from the number of nodes (Fig. 6) and the learning para-

meters (Fig. 7).

Now the environment changes, new errors occur and the

algorithm tries to minimize them by changing its weights

and inserting new nodes. Although the task gets much

easier, there is still an unsolvable overlap between the

ellipse and the line that would cause a further insertion of

nodes. By increasing the insertion threshold of the relevant

nodes, the algorithm learns to stop insertion in the overlap-

ping area. At least after 40,000 steps it has adapted to the

environment such that no further learning is needed.

If the probability changes to zero in some regions, such as

F.H. Hamker / Neural Networks 14 (2001) 551±573 561

Fig. 6. The number of nodes and the general error measures of the LLCS in environments 1±6. Arrows indicate the number of learning steps at which

snapshots from the internal states in the different environments, presented in Figs. 7±9, are taken.

Fig. 5. Changing environment composed of ®ve areas (A±E) and three classes. Areas with presented patterns are marked with `1'. The environment changes

from 1 to 6 every 20,000 steps. Simulation parameters: hb � 0.1, hn � 0.01, ho � 0.15, hq � 0.5, TS� 20, TL� TY� Tq � 100, l � 10, qage � 50,

qi
L � 0.05, qo

L �20.05, qins � 0.1, qdel � 0.05, qdelY � 0.01, qdelBL � 0.01.

in the environment from 40,000 to 60,000 steps, those

remaining nodes, often called `dead nodes', play a

major role in life-long learning (Fig. 8). They are in

no way `dead nodes', instead they preserve the knowl-

edge of previous situations for future decisions. If the

old prototype patterns were removed, the knowledge

would be lost and the same, already learned situations

will again cause errors. Further insertions at the cross-

ing of the line with the ellipse result in a better approx-

imation. However, the number of nodes again becomes

stabilized after 50,000 steps (Fig. 6).

In the environment from 60,000 to 80,000 steps, most of

the nodes remain at their positions (Fig. 8). The reappear-

ance of area A does not raise the error (Fig. 6)Ðthe knowl-

edge was completely preserved. Since the environment

shows no overlaps, the error decreases to zero (Fig. 6).

In the environment from 80,000 to 100,000 steps the

patterns from the circular area change from class two to

class three (Fig. 9). This change of the environment illus-

trates impressively the localized de®nition of the stability

and plasticity. The network at 80,500 steps remains comple-

tely stable aside from nodes covering area A. Only here, the

network tries to cope with the new situation, inserts new

nodes and increases the learning rate. It turns out that the

all the new nodes cover the same class and most of them are

again deleted. Once more the network stabilizes.

Even serious changes in the environment from 100,000 to

120,000 steps are tolerated. The invertation of the occur-

rence of patterns in areas A, B, and C does not affect the

position of the centers (Fig. 9). The overlap of area D and E

raises the error and the network inserts new nodes, but

stabilizes again (Fig. 6).

Summarizing, the algorithm is able to cope with

examples of the most important life-long learning scenarios,

such as overlaps, never seen inputs, and temporarily not

appearing patterns.

F.H. Hamker / Neural Networks 14 (2001) 551±573562

Fig. 7. Internal states of the LLCS in environments 1 and 2. From left to right, two plots show the states in each environment, the ®rst until each 500 learning

steps and the second until each 20,000. From the top to the bottom, the input weights wi, the long-term error tL, the insertion threshold tq, the factor of the

input learning rate ai
b are presented.

4. Performance evaluation with real data sets

4.1. Stationary distribution

The main purpose of this comparison is to underline that

the LLCS automatically stop the insertion of further nodes

on real data with a stationary probability distribution and

that the performance is as good as those of the GNG. Thus,

the behavior of the LLCS on the data sets cancer, diabetes
and glass from the PROBEN Benchmark collection

(Prechelt, 1994), frequently used for performance compar-

ison (Heinke & Hamker, 1998; Yingwei et al., 1998), is

investigated.

4.1.1. Analysis of the data

In the PROBEN Benchmark collection different sets had

already been built from three different partitions of the

whole data set, which leads to three different mixtures,

cancer1, cancer2, and cancer3 (Prechelt, 1994). Each

of the mixtures had already been divided into three sets:

test set, training set and validation set. The data are analyzed

and described in more detail elsewhere (Heinke & Hamker,

1998). Missing values were coded with zero, which is not

different from a regular zero. This fact results in several

overlappings. cancer is a relatively easy data set which

shows some complex boundaries and a few missing values.

glass contains only a small number of samples. Thus, the

validation and test data do hardly describe the unknown real

distribution. Highly overlapped classes and missing values

are detected in diabetes.

4.1.2. Performance criteria

The performance of the networks GNG/DCS, GCS, FAM,

and MLP is described in Heinke and Hamker (1998). The

investigation of the MLP was done by Prechelt (1994) and

the results re¯ect his enormous effort to determine the optimal

F.H. Hamker / Neural Networks 14 (2001) 551±573 563

Fig. 8. Internal states of the LLCS in environments 3 and 4. From left to right, two plots show the states in each environment, the ®rst until each 500 learning

steps and the second until each 20,000. From the top to the bottom, the input weights wi, the long-term error tL, the insertion threshold tq, the factor of the

input learning rate ai
b are presented.

structure of the network. Unlike this comparison, where the

stopping of the insertion was determined due to the perfor-

mance on a validation data set, here the stopping of the inser-

tion is based on the insertion±evaluation cycle without any

additional data except from the training data. As an indication

for convergence on the data, training was stopped after 15

epochs without any insertion occurring. To investigate the

dependency on the insertion and deletion parameters, eight

parameter sets were used. For each set, 10 runs with a random

initialization of the weights and a different presentation order

of the patterns were performed.

4.1.3. Results

In general, the network does not perform much better

with parameter sets that lead to more nodes (Fig. 10).

Even small networks detect the major characteristics of

the distribution. By comparison to other networks, we

con®rm very good classi®cation results. Although the

networks of comparison were selected due to their perfor-

mance on a validation data set, the LLCS reaches similar

results, but without this advantageous selection criterion

(Fig. 11). Remarkably, the LLCS achieve these results

with much less nodes than used by GNG and GCS and

similar or even fewer than used by FAM as reported by

Heinke and Hamker (1998).

Without any speci®ed assumption, the LLCS insert an

appropriate number of nodes. They self-stabilize on a

stationary distribution and reach a performance equal to

networks such as GNG, GCS, FAM and MLP selected by

cross-validation. Further ®gures, such as the course of the

error and the number of nodes plotted over the learning

steps, are reported in Hamker (1999).

4.2. Non-stationary distribution

Relevant issues for the application of the LLCS deal with

F.H. Hamker / Neural Networks 14 (2001) 551±573564

Fig. 9. Internal states of the LLCS in environments 5 and 6. From left to right, two plots show the states in each environment, the ®rst until each 500 learning

steps and the second until each 20,000. From the top to the bottom, the input weights wi, the long-term error tL, the insertion threshold tq, the factor of the

input learning rate ai
b are presented.

non-stationary input probability distributions. Thus, a

benchmark based on real data was designed, which contains

major demands on life-long learning. It consists of 10 data

sets with 29 features and four classes. Each data set was

built from four images which contain four different materi-

als (classes), such as journals, cardboard, newspaper and

others, recorded under different lightning conditions. Each

pattern is gained from a color histogram of a tile sized

32 £ 32 pixels. For instance we have an image of

512 £ 512 pixels which contains journals. We take each

tile and measure for each pixel the distance to 29 color

prototypes, that were distributed in the three dimensional

color space. The feature of a tile is a vector of the average

distance of all pixels to the color prototypes. Thus, for each

tile we compute a feature vector that represents the covered

material. For details about the data and the feature extrac-

tion see Hamker, Debes, Pomierski and Gross (1998).

One after another, a data set is presented just once within

402 blocks each of 10 patterns belonging to the same class

so that the environment continuously changes. For example,

we have a data set gained from four images (two with jour-

nals, one with cardboard, and one with newspaper). We

randomly choose an image and select 10 tiles. The selected

tiles were disregarded for further presentations. As an exam-

ple of a changing environment, this process simulates the

typical process of material on a conveyor belt, where a

vision system selects grouped regions of similar features.

The output of the network on all data sets is recorded in

parallel (Fig. 12). This means the impact of training a parti-

cular data set on the performance of another data set can be

analyzed. According to the correspondence between differ-

ent data sets, learning in one environment is of advantage to

some environments, whereas others suffer from strong over-

laps. This procedure is repeated using four different para-

meter sets.

In this experimental context, a neural network shows

plasticity if it can learn a new data set as good as a neural

network that was not confronted with different data sets

before. A neural network shows stability if it is able to

preserve the old prototype patterns from a previous data

set, but only if they are not contradictoryÐi.e. relearning

of prototypes should only occur if they are inconsistent with

the current data.

4.2.1. Analysis of the data

Each data set contains 4096 samples. The overlap of differ-

ent data sets can be estimated by a confusion matrix, which

indicates to what extent feature vectors are assigned to a wrong

class. We extended this concept to estimate the confusion of a

trained data set to a non-trained data set. Thus, the LLCS were

F.H. Hamker / Neural Networks 14 (2001) 551±573 565

Fig. 10. Mean, stdv., best, worst error and the number of nodes of the LLCS for eight examined parameter sets on the test data (only the ®rst of each data set is

shown). As discussed in Section 2.3 more conservative parameter settings like parameter set 5±8 only detect the rudimentary class distribution. Nevertheless,

this is suf®cient. Even networks with very few nodes achieve quite good results. This again underlines the parameter insensitivity and con®rms the algorithm's

strategy to ®rstly learn the general distribution and then detect the details. Parameter set: 1:� {hq � 0.1, qins � 0.3, qdel � 0.2}; 2:� {hq � 0.1, qins � 0.3,

qdel � 0.4}; 3:� {hq � 0.1, qins � 0.4, qdel � 0.2}; 4:� {hq � 0.1, qins � 0.4, qdel � 0.4}; 5:� {hq � 0.2, qins � 0.3, qdel � 0.2}; 6:� {hq � 0.2,

qins � 0.3, qdel � 0.4}; 7:� {hq � 0.2, qins � 0.4, qdel � 0.2}; 8:� {hq � 0.2, qins � 0.4, qdel � 0.4}. Fixed parameters:hb � 0.1, hn � 0.01, ho � 0.15,

TS� 20, TL� TY� Tq � 100, l � 10, qage � 50, qi
L � 0.05, qo

L �20.05, qdelY � 0.01, qdelBL � 0.01.

trained for three epochs on a particular data set and the confu-

sion matrix of all non-trained data sets is estimated. In order to

achieve a more precise criterion, all patterns that result in a

maximal output activation lower than a threshold g [{0.1,

0.3, 0.5} were declared as a not suf®ciently learned pattern

with a separate class (new), instead of being assigned to the

class with the largest output activation.

The data show a strong overlap between the classes

(Fig. 13) and abrupt as well as slow changes in the temporal

presentation. From the ®rst data set to the third only slow

changes emerge, whereas afterwards abrupt changes occur.

As we can see from Fig. 13, several data sets do not

contain all classes. Especially, data set four contains only

patterns of one class that has a strong overlap with different

classes in other data sets. This is the reason for the large

increase of error when data set four is selected as training

data (Fig. 12). Particularly, the error on data set six increases

strongly, because both data sets share no common class.

Only the performance on data set nine can pro®t by the

training on data set four, because both share similar patterns

in each class (Fig. 13).

4.2.2. Analysis of plasticity

Plasticity de®nes that a neural network is capable to learn

new patterns. The general performance to learn a data set

was shown in Section 4.1. Thus, this analysis has to demon-

strate the network's capability to learn a new data set

after different data sets were presented. For a quantitative

F.H. Hamker / Neural Networks 14 (2001) 551±573566

Fig. 11. Mean test error, stdv., best and worst net of the LLCS in comparison to the networks analyzed in a previous benchmark (Heinke & Hamker, 1998) (for

MLP, Prechelt, 1994, best and worst are not plotted).

evaluation, two bounds were de®ned. The upper bound was

gained by training the network just once on a data set. The

lower bound was achieved by training the network on the

data set as long as the tested network was trained on differ-

ent data sets. In the latter condition, the number of nodes is

similar. Each bound is an average from 10 runs always using

the ®rst parameter set.

The error cannot fall below the lower bound, though the

case is different with the upper bound. Here, the training

process of a just initialized network is compared to a

network that was learned on different data sets before.

Thus, achieving the upper bound is a good performance,

but an error lower than the upper bound is even better.

The course of errors in Fig. 14 demonstrates a good

F.H. Hamker / Neural Networks 14 (2001) 551±573 567

Fig. 12. Average classi®cation error (parameter set 1) of data sets 1±10 gained from 10 different runs with non-stationary data. Parameters: 1:� {hq � 0.1,

qdel � 0.2}; 2:� {hq � 0.1, qdel � 0.4}; 3:� {hq � 0.2, qdel � 0.2}; 4:� {hq � 0.2, qdel � 0.4}. Fixed parameters:hb � 0.8, hn � 0.01, ho � 0.01,

TS� 100, TL� TY� Tq � 200, l � 100, qage � 60, qins � 0.4, qi
L � 0.1, qo

L �20.05, qdelY � 0.01, qdelBL � 0.01.

Fig. 13. Confusion matrix of all data sets with g � 0.1 (left) and g � 0.5 (right). See Fig. 16 for the structure of the matrix. A black rectangle indicates a large

value. Data sets with no overlap (high similarity) show a black diagonal within each 4 £ 5 array. Activations at other areas indicate a complete overlap. The

larger threshold g results in a bigger class Cnew.

plasticity performance. After the environment changes, the

error decreases, and in most cases falls below the upper

bound. Even more conservative parameter sets (sets 3 and

4) show a large decrease in the error, although these

networks operate with less than half of the nodes (Fig. 15).

4.2.3. Analysis of stability

Stability is the crucial aspect of the Stability±Plasticity

Dilemma. The illustration on arti®cial data has demon-

strated the capability to preserve the prototype pattern.

Nevertheless, if the environment changes, the new situation

can be inconsistent with the current situation, and the

network has to adapt. This means it loses some previous

knowledge in order to respond accurately.

Thus, an analysis of stability on real data cannot rely on

simply measuring the amount of forgetting (McCloskey and

Cohen, 1989; Ratcliff, 1990). Likewise, the amount of time

to relearn the pattern (Heterhington & Seidenberg, 1989) is

not the best criterion, because this depends too much on the

algorithm's learning strategy. An appropriate measure has

to consider the correspondence and the overlap of succes-

sive environments. In addition to the data analysis, we have

to ®nd a measure that includes the overlap of following

environments and indicates which data should be preserved.

To accomplish this, the categorization into `new' patterns is

helpful. In this line, a neural network shows stability after a

change in the environment if the classi®cation error is smal-

ler than the bound that results from the correspondence of

the data of following environments plus the patterns that

were assigned to class Cnew (Fig. 16):

Sg � 100% 2 �#correspondence 1 #newg�% �25�

F.H. Hamker / Neural Networks 14 (2001) 551±573568

Fig. 14. Results of the plasticity analysis. The error of the network is shown when presented a never seen data set (Ð), compared to the upper bound (1) and

the lower bound (£).

F.H. Hamker / Neural Networks 14 (2001) 551±573 569

Fig. 15. The number of nodes (Ð) and edges (´ ´ ´) of the network when presented the 10 different data sets one after another.

Fig. 16. Left: extract from the confusion matrix (Fig. 13) with g � 0.5. The cut shows training data set 6 and test data set 5. Right: evaluation of the confusion

matrix. The values on the main diagonal mark the correspondence of the data sets. Even if the data set 5 was not presented as a training set, the patterns of the

main diagonal could be classi®ed correctly. The patterns of other ®elds except for the class Cnew could probably not be preserved from relearning, because

these patterns from data set 6 collide with data set 5, but the amount of pattern from class Cnew could be expected to be preserved when the network is

trained on data set 6, because, although there might be an overlap, the patterns are less similar. For the above example the stability boundary S0:5 results in

Sg � 100% 2 �194% 1 58%�=4 � 37%.

For different values of the variable g , different bounds

emerge. The more the classi®cation error remains lower

than these bounds, the more stable is the network when

the environment changes (Fig. 17).

After the change from data set 1 to data set 2 the classi-

®cation error is larger than the bound, but this is merely

based on the short training time and the low number of

nodes, which hinder a precise representation of the data.

The further course clearly indicates the preservation of old

prototype patterns.

5. Conclusions

Continuous learning must solve the catastrophic interfer-

ence, which mainly occurs in a distributed representation,

but also localist or partly distributed representations suffer

from interference, especially if the network has not suf®-

cient nodes. Thus, we discussed different strategies to insert

new nodes in incremental neural networks. A similarity

based insertion as used in ART networks (Carpenter &

Grossberg, 1987) and also in RBF networks (Berthold &

F.H. Hamker / Neural Networks 14 (2001) 551±573570

Fig. 17. Results of the stability analysis. The ®gure shows the stability bounds estimated with g � 0.1 (-´-), g � 0.3 (± ±), and g � 0.5 (Ð), based on a

network trained with parameter set 1 compared to the error on the previously trained data (Ð), e.g. set 7 is training data and set 6 is observed. On the ®rst two

data sets the error is above the estimated bounds. This is due to the low number of nodes created so far. In many cases within parameter set 1 the error is below

the lowest bound, which underlines the exceptional stability property of the LLCS, but even the networks trained with the more conservative and less node

producing parameter sets show a good stability performance. Only in some cases, mostly if the training on the previous data set does not decrease the error to

the level of the reference network, which determines the bound, the error exceeds some bounds, but even then, the networks still preserve some knowledge.

Diamond, 1995; Platt, 1991; Yingwei et al., 1998) has the

advantage of increasing the number of nodes without an

instability concerning insertion. However, this advantage

is at the expense of a low performance and a high number

of nodes, because the optimal similarity is unknown, not

equally distributed within the input space, and may change

over time. If an error signal exists, it would be better to use it

for insertion. While a global error based insertion (Fahlman

& Lebiere, 1990) is useless for life-long learning, because

the error changes over time, a promising approach is a local

error based insertion criterion as used by Fritzke (1992) or

also in ARTMAP (Carpenter et al., 1991) triggered by the

Inter-ART-Reset. But this raises the question, how to

suppress insertion in overlapping decision areas, where

errors always occur. Furthermore, life-long learning

has to address the question in which cases the weights

of the network have to be adapted to learn new patterns

and when the weights should not change to guarantee

stability.

Our evolved neural network is based on previous work by

Fritzke (1992, 1995); Bruske and Sommer (1995); Bruske

(1998) and extends the ability of the Cell Structures to locally

adapt its stability and plasticityÐfor learning and for inser-

tion. The essential innovation compared to that previous work

is the self-adjustable balance between the extremes of the

Stability±Plasticity Dilemma by adapting the learning rate

and the insertion capability of each node separately. This

allows the network to self-stabilize for a stationary probability

density of the input patterns and to switch locally to plasticity if

relevant changes occurÐa framework useful as a general

strategy of growing RBF networks.

The empirical investigations for the example of super-

vised learning with real data con®rm no decrease in classi-

®cation performance as compared to the Cell Structures.

The choice of parameters allows a gradual change towards

the original behavior of the Cell Structures. Thus, the Life-

long Learning Cell Structures extend the quality of the Cell

Structures regarding a favorable compromise to the Stabi-

lity±Plasticity Dilemma, which is characterized as:

² The stability and plasticity is de®ned locally in the

network, i.e. for each center.

² The stability and plasticity concerns the adaptation of the

centers, the learning of decision boundaries and the

number of centers.

² The number of nodes is not prede®nedÐinstead an

adequate number is learned by continuously adapting

local insertion thresholds according to the performance

of the network on the data.

² In the case of a stable state, local plasticity only occurs

due to relevant changes in the input probability density,

i.e. changes in the error probability density.

Of course, the need for continuously supervised learning

systems is rare. To give an example, we applied the network

in a visual sorting prototype for wastepaper (Hamker et al.,

1998). The idea was to select valuable material from the rest

by gripping the material with a manipulator. To avoid time-

consuming wrong selections, especially if environmental or

material changes occur, the visual system, i.e. the network,

was continuously trained by a largely reliable tactile sensor.

Irrespective of this speci®c engineering task, our aim here is

to foster the concept of life-long or continuous learning.

Major applications can be spotted in the time series prog-

nosis and robotics domains. Thus, we would like to stress

the fact that without fundamental changes, simply by using

another learning scheme for the output layer, the algorithm

can be adapted for autonomous process control by using

local linear maps similar to Martinetz, Berkovich, and

Schulten (1993) or for autonomous robots by incorporating

reinforcement learning similar to Bruske et al. (1998) and

Gross, Stephan and Boehme (1996).

Although much still has to be done, incremental

networks embedded within a performance estimation to

control the number of nodes and the learning parameters

offer a serious approach for systems that act in changing

environments.

Acknowledgements

The body of this work was performed at the Department

of Neuroinformatik, Technische UniversitaÈt Ilmenau

(Germany). I thank Prof. H.-M. Gross for his support and

T. Vesper for his fruitful discussions and his implementation

of an initial version of the algorithm in his diploma thesis. I

would also like to thank D. Surmeli and the reviewers for

their helpful comments.

References

Ahrns, I., Bruske, J. & Sommer, G. (1995). On-line learning with Dynamic

Cell Structures. In Proceedings of the International Conference on

Arti®cial Neural Networks (pp. 141±146).

Amari, S. (1967). A theory of adaptive pattern classi®ers. IEEE Transac-

tions on Electronic Computers, 16, 299±307.

Berthold, M. R. & Diamond, J. (1995). Boosting the performance of RBF

networks with dynamic decay adjustment. In Advances in neural infor-

mation processing systems (NIPS 7) (pp. 521±528). Cambridge: MIT

Press

Broomhead, D. S., & Lowe, D. (1988). Multivariable functional interpola-

tion and adaptive networks. Complex Systems, 2, 321±355.

Bruske, J., & Sommer, G. (1995). Dynamic cell structure learns perfectly

topology preserving map. Neural Computation, 7, 845±865.

Bruske, J., Hansen, M., Riehn, L., & Sommer, G. (1996). Adaptive saccade

control of a binocular head with Dynamic Cell Structures. In Proceed-

ings of the International Conference on Arti®cial Neural Networks

(ICAN'96), 215±220.

Bruske, J. (1998). Dynamische Zellstrukturen. Theorie und Anwendung

eines KNN-Modells. PhD Thesis, Technische FakultaÈt der Christian

Albrechts-UniversitaÈt zu Kiel.

Bruske, J., Ahrns, L., & Sommer, G. (1998). An integrated architecture for

learning of reactive behaviors based on dynamic cell structures.

Robotics and Autonomous Systems, 22, 87±102.

Carpenter, G. A., & Grossberg, S. (1987). ART2: Self-organisation of

F.H. Hamker / Neural Networks 14 (2001) 551±573 571

stable category recognition codes for analog input patterns. Applied

Optics, 26, 4919±4930.

Carpenter, G. A., Grossberg, S., & Reynolds, J. H. (1991). ARTMAP:

supervised real-time learning and classi®cation of nonstationary data

by a self-organizing neural network. Neural Networks, 4, 543±564.

Carpenter, G. A., Grossberg, S., Markuzon, N., Reynolds, J. H., & Rosen,

D. B. (1992). Fuzzy ARTMAP: a neural network architecture for incre-

mental supervised learning of analog multidimensional maps. IEEE

Transactions on Neural Networks, 3, 698±713.

Chen, Y. Q., Thomas, D. W., & Nixon, M. S. (1994). Generating±shrinking

algorithm for learning arbitrary classi®cation. Neural Networks, 7,

1477±1489.

Eriksson, P. S., Per®lieva, E., Bjork-Eriksson, T., Alborn, A. M., Nordborg,

C., Peterson, D. A., & Gage, F. H. (1998). Neurogenesis in the adult

human hippocampus. Nature Medicine, 4, 1313±1317.

Fahlman, S. E. & Lebiere, C. (1990). The cascade-correlation learning

architecture. In Advances in neural information processing systems 2

(pp. 524±532). Los Altos, CA: Morgan Kaufmann Publishers.

Freeman, J. A. S., & Saad, D. (1997). On-line learning in radial basis

function networks. Neural Computation, 9, 1601±1622.

French, R. M. (1999). Catastrophic forgetting in connectionist networks.

Trends in Cognitive Sciences, 3, 128±135.

Fritzke, B. (1992). Wachsende ZellstrukturenÐein selbstorganisierendes

neuronales Netzwerkmodell. PhD Thesis, Technische FakultaÈt der

UniversitaÈt Erlangen-NuÈrnberg.

Fritzke, B. (1994). Growing cell structuresÐa self-organizing network

for unsupervised and supervised learning. Neural Networks, 7, 1441±

1460.

Fritzke, B. (1995). A growing neural gas network learns topologies. In

Advances in neural information processing systems (NIPS 7)

(pp. 625±632). Cambridge, MA: MIT Press.

Fritzke, B. (1997). A self-organizing network that can follow non-station-

ary distributions. In Proceedings of the International Conference on

Arti®cial Neural Networks (ICAN'97) (pp. 613±618). Springer.

Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the

bias/variance dilemma. Neural Computation, 4, 1±58.

Gross, H.-M., Stephan, V. & Boehme, H.-J. (1996). Sensory-based robot

navigation using self-organizing networks and Q-learning. In Proceed-

ings of the World Congress on Neural Networks (WCNN'96), San Diego

(pp. 94±99).

Grossberg, S. (1976). Adaptive pattern classi®cation and universal recod-

ing: I. Parallel development and coding of neural feature detectors.

Biological Cybernetics, 23, 121±134.

Grossberg, S. (1988). Nonlinear neural networks: principles, mechanisms,

and architectures. Neural Networks, 1, 17±61.

Grossberg, S., & Merrill, J. W. L. (1996). The hippocampus and cerebellum

in adaptively timed learning, recognition and movement. Journal of

Cognitive Neuroscience, 8, 257±277.

Hamker, F. H. & Gross, H.-M. (1997). Task-based representation in life-

long learning incremental neural networks. In VDI Fortschrittberichte,

Reihe 8, Nr. 663, Workshop SOAVE'97, Ilmenau (pp. 99±108).

Hamker, F. H. & Gross, H.-M. (1998). A lifelong learning approach for

incremental neural networks. In Proceedings of the Fourteenth

European Meeting on Cybernetics and Systems Research

(EMCSR'98), Vienna (pp. 599±604).

Hamker, F., Debes, K., Pomierski, T., Gross, H.-M., (1998). Multisensor-

ielles Integriertes Realzeit Inspektions-System MIRIS: LoÈsung der

MIKADO-Sortieraufgabe. Schriftenreihe des FG Neuroinformatik der

TU Ilmenau, Report. 2/98.

Hamker, F. H. (1999). Visuelle Aufmerksamkeit und lebenslanges Lernen

im Wahrnehmungs-Handlungs-Zyklus. PhD Thesis, Technische Univer-

sitaÈt Ilmenau.

Hamker, F.H., Paetz, J., ThoÈne, S., Brause, R., Hanisch, E., (2000). Erken-

nung kritischer ZustaÈnde von Patienten mit der Diagnose `Septischer

Schock' mit einem RBF-Netz. Report. 4/2000, Franfurt am Main: Insti-

tute of Imformatik, JW Goethe IniversitaÈt.

Heinke, D., & Hamker, F. H. (1998). Comparing neural networks:

a benchmark on growing neural gas, growing cell structures, and

fuzzy ARTMAP. IEEE Transactions on Neural Networks, 9, 1279±

1291.

Heskes, T. M. & Kappen, B. (1993). On-line learning processes in arti®cial

neural networks. In Mathematical foundations of neural networks

(pp. 199±233). Amsterdam: Elsevier Science Publishers.

Hetherington, P. & Seidenberg, M. (1989). Is there `catastrophic interfer-

ence' in connectionist networks? In Proceedings of the 11th Annual

Conference of the Cognitive Science Society (pp. 26±33). Hillsdale,

NJ: LEA.

Karayiannis, N. B., & Mi, G. W. (1997). Growing radial basis neural

networks: merging supervised and unsupervised learning with network

growth techniques. IEEE Transactions on Neural Networks, 8, 1492±

1506.

Karayiannis, N. B. (1999). Reformulated radial basis neural networks

trained by gradient descent. IEEE Transactions on Neural Networks,

10, 657±671.

Kohonen, T. (1982). Self-organized formation of topologically correct

feature maps. Biological Cybernetics, 43, 59±69.

Lim, C. P., & Harrison, R. F. (1997). An incremental adaptive network for

on-line supervised learning and probability estimation. Neural

Networks, 10, 925±939.

Martinetz, T. M. & Schulten, K. J. (1991). A `neural gas' network learns

topologies. In Arti®cial neural networks (vol. I, pp. 397±402). Amster-

dam: North Holland.

Martinetz, T. M., & Schulten, K. J. (1994). Topology representing

networks. Neural Networks, 4, 507±522.

Martinetz, T. M., Berkovich, S., & Schulten, K. J. (1993). Neural-gas

network for vector quantization and its application to time-series

prediction. IEEE Transactions on Neural Networks, 4, 558±569.

McClelland, J., McNaughton, B., & O'Reilly, R. (1995). Why there are

complementary learning systems in the hippocampus and neocortex:

insights from the success and failures of connectionist models of learn-

ing and memory. Psychological Review, 102, 419±457.

McCloskey, M., & Cohen, N. (1989). Catastrophic interference in connec-

tionist networks: the sequential learning problem. In G. H. Bower, The

psychology of learning and motivation (pp. 109±164). vol. 24. New

York: Academic Press.

Moody, J. & Darken, C. (1988). Learning with localized receptive ®elds. In

Proceedings of the 1988 Connectionist Models Summer School

(pp. 133±143). San Mateo: Morgan Kaufmann.

Murata, N., MuÈller, K.-R., Ziehe, A. & Amari, S. (1997). Adaptive on-line

learning in changing environments. In Proceedings of the Conference

on Neural Information Processing Systems (NIPS 9) (pp.599±604).

Cambridge, MA: MIT Press.

Obradovic, D. (1996). On-line training of recurrent neural networks with

continuous topology adaptation. IEEE Transactions on Neural

Networks, 7, 222±228.

Park, J., & Sandberg, I. W. (1993). Universal approximation using radial-

basis-function networks. Neural Computation, 5, 305±316.

Platt, J. (1991). A resource-allocating network for function interpolation.

Neural Computation, 3, 213±225.

Poggio, T., & Girosi, F. (1990). Regularization algorithms for learning that

are equivalent to multilayer networks. Science, 247, 978±982.

Prechelt, L. (1994). PROBEN1 a set of neural network benchmark

problems and benchmarking rules, Technical Report 21/94, FakultaÈt

fuÈr Informatik, UniversitaÈt Karlsruhe, (anonymous FTP: on ftp.ira.u-

ka.de/pub/uni-karlsruhe/papers/techreports/1994/1994-21.ps.gz)

Ratcliff, R. (1990). Connectionist models of recognition memory:

constraints imposed by learning and forgetting functions. Psychological

Review, 97, 285±308.

Robbins, H., & Monro, S. (1951). A stochastic approximation model.

Annual Math. Stat., 22, 400±407.

Roy, A., Govil, S., & Miranda, R. (1997). A neural-network learning theory

and a polynomial time RBF algorithm. IEEE Transactions on Neural

Networks, 8, 1301±1313.

Rumelhart, D. E. Hinton, G. E. & Williams, R. J. (1986). Learning internal

F.H. Hamker / Neural Networks 14 (2001) 551±573572

representations by error propagation. In Parallel distributed processing

(pp. 318±362). Cambridge, MA: MIT Press.

Shadafan, R. S., & Niranjan, M. (1994). A dynamic neural network archi-

tecture by sequential partitioning of the input space. Neural Computa-

tion, 6, 1202±1223.

Sompolinsky, H., Barkai, N. & Seung, H. S. (1995). On-line learning of

dichotomies: algorithms and learning curves. In Neural networks: the

statistical mechanics perspective (pp. 105±130). Singapore: World

Scienti®c.

Specht, D. F. (1990). Probabilistic neural networks. Neural Networks, 3,

109±118.

Whitehead, B. A., & Choate, T. D. (1994). Evolving space-®lling curves to

distribute radial basis functions over an input space. IEEE Transactions

on Neural Networks, 5, 15±23.

Yingwei, L., Sundararajan, N., & Saratchandran, P. (1998). Performance

evaluation of a sequential minimal Radial Basis Function (RBF) neural

network learning algorithm. IEEE Transactions on Neural Networks, 9,

308±318.

F.H. Hamker / Neural Networks 14 (2001) 551±573 573

