
RBF learning in a non-stationary
environment: the stability-plasticity dilemma

Fred H. Hamker

Radial Basis Function Networks 1: Recent Developments in

Theory and Applications.

Ed. by R.J. Howlett and L.C. Jain. Studies in fuzziness

and soft computing; vol. 66. Heidelberg, New York:

Physica Verlag , Chapter 9: 219-251, 2001.

Abstract This chapter focuses on learning with RBF networks in a non-
stationary environment. A non-stationary environment demands a neural
network to continuously learn. More difficult than following the change
is the ability of learning new patterns without forgetting old prototype
patterns, also termed as the stability-plasticity dilemma. A local rep-
resentation and the ability to grow are important prerequisites to face
the stability-plasticity dilemma, but not sufficient. Thus, in this con-
tribution a growing RBF network is proposed that learns its number of
nodes needed to solve the current task and dynamically adapts the learn-
ing rate of each node separately. As shown in several simulations, the
RBF network possesses the major characteristics needed to cope with
the stability-plasticity dilemma.

1 Introduction

Learning describes the mechanism by which a system obtains and adapts
a coherence between the environment and the task. In the past many
learning methods have been proposed which also apply to RBF networks.
Table 1 aims to bring some order into the terminology, especially from
the viewpoint of the stability-plasticity dilemma. Classical RBF learn-
ing has dealt with a stationary environment. RBF kernels are placed into
the weight space by several deterministic or batch learning procedures,
e.g. based on an optimization of an optimal function. The necessity
for stochastic on-line learning, in which the parameters of the network
are updated only depending on the current sample, arises if not all of
the training patterns are available all the time [12]. Generally, a station-

ary random process is assumed. Interesting real world applications for
RBF networks turn up in a non-stationary environment where continuous
learning is required. Especially in extension to adaptive on-line learning,
where the network tracks changes over time, sequential learning with a
RBF network seems to be advantageous, because of its local represen-
tation. Sequential learning addresses the ability of repeatedly training
a network with new data, without destroying the old prototype patterns.
This can be done either by one or by several training samples. Also life-
long learning emphasizes learning throughout the entire lifetime without
catastrophic interference. Like adaptive on-line learning, the network is
faced with a continuous stream of pattern, but previously learned knowl-
edge should be preserved, if it does not contradict to the current task.
This demand immediately meets the stability-plasticity dilemma [20]. In
some cases the term life-long learning is also used to address task inde-
pendent learning.

Table 1. Categorization of different learning tasks with regard to the stability-
plasticity dilemma.

set of samples each sample
Environment adapt adapt and preserve

incremental
stationary batch or stochastic —

off-line on-line
continuous

non-stationary sequential adaptive life long or
on-line sequential

1.1 Previous approaches

Learning in artificial neural networks is inevitably connected with forget-
ting. Later input patterns tend to wash away prior knowledge [20]. While
a gradual interference is unavoidable, the sudden and complete erasure
of previously well learned pattern – a catastrophic interference – severely
limits life-long learning. In distinction to networks with a global or dis-
tributed representation of knowledge, like a Multi-Layer-Perceptron, the
local representation of Radial Basis Function (RBF) networks is well
suited to cope with the problem of forgetting. Nevertheless, they have a
fixed number of nodes which has to be determined by the designer. In

growing RBF networks insertion is used to improve the mapping until a
criterion is reached, e.g. a minimal overall error, a maximal number of
nodes, or a low error on a validation data set.

There have been numerous attempts to insert new nodes in RBF networks
during learning [36] [43] [11] [15] [40] [35] [27] [38]. The most common
insertion or splitting criteria are i) the insertion of a node at the location
of the node with the largest error counter [15] [27], ii) the insertion of a
new node at the location of the node with the purest class counter [27],
iii) the insertion of a node at the location of a new input vector, if it is not
covered by the existing activation functions [36] [2] [3] [43] [35] [38].
The recently published M-RAN algorithm [44] [41] uses a combination
of novelty in the input and output space and a threshold that is compared
with the recent error. Although they used the term sequential learning,
they have not addressed changing environments or the stability-plasticity
dilemma. Most of the mentioned algorithms aim at an optimal design of
the network as a result of an incremental learning process. Only a few
focus on adaptive on-line learning [35] and continuous learning [42].

Nevertheless, all these algorithms disregard the stability-plasticity
dilemma, if they are used in continuous learning tasks – unlike some-
times claimed, a growing network and a local representation is not suf-
ficient. Why? What makes the difference in learning samples from a
non-stationary environment compared to a stationary environment? First
of all, possible discrete overlaps of decision areas in finite data sets turn
into continuous overlaps, and non-separable areas may emerge, which
can not be solved without error. Furthermore, the decision boundaries
change over time. Learning in such an environment requires an incre-
mental network that avoids a catastrophic allocation of new nodes. A
growing RBF network, in which the insertion depends on the overall er-
ror on the current task, has to rely on a maximal number of nodes or on a
minimal overall error. Neither of them can be determined with certainty
in advance.

Other non-RBF approaches comprise ART-like networks [19] [9] [10]
[30] which allow learning only if the pattern matches the stored proto-
type. While these networks are robust in unsupervised learning, error-
driven learning can in case of overlapping decision regions result in a

catastrophic allocation of new nodes, if in the course of the Inter-ART-
Reset in ARTMAP no appropriate prototype is detected. Again also
these networks have not been shown to cope with the hard problems of
the stability-plasticity dilemma, such as continuous overlaps of different
classes.

1.2 Proposed approach

From the latter arguments it became clear that a better compromise is to
dynamically learn how many nodes are needed for an appropriate solu-
tion without completely freezing the network and without prescribing a
minimal error. Thus, referred to the stability-plasticity dilemma, the es-
sential mechanisms for growing RBF networks are the insertion/deletion
of nodes and the learning rate.

1.2.1 Insertion of nodes

A general problem in learning is the bias-variance dilemma [18], where
the bias is a measure in how far the average mapping function resembles
the desired one and the variance describes the confidence of the mapping
function concerning different input patterns. The conflict lies in mini-
mizing the bias and avoiding a high variance, often termed as a good
generalization.

In life-long learning tasks growing is an important feature to decrease the
error of the task and to adapt to changing environments while preserving
old prototype patterns. But for two reasons insertion has to be stopped:
to prohibit a permanent increase in the number of nodes in overlapping
decision areas, where the task can not be solved and to avoid overfitting.
The approach preferred here, is to evaluate the previous insertion by the
observation of the error. Because each insertion influences the local be-
haviour the observed error should also be a local measurement and not
the average error on the task. Such an insertion-evaluation cycle allows
a local optimization, but decreases the ability to allocate new nodes if
previous insertions were not successful.

1.2.2 Adaptive learning parameters

As common procedure to minimize the bias in stochastic on-line learning
the learning rate is slowly annealed to zero. In a changing environment,
this approach turns into a conflict, as an annealed learning rate does not
allow the weights to follow the changes fast enough. To overcome this
problem in adaptive on-line learning different methods of adapting the
scale factor of the learning parameter have been proposed. Thus the ad-
justment of the weight vector ∆w depends on the old weight vector w and
the current pattern x scaled by an adaptive factor η(t) which is termed as
learning of a learning rule [1].

∆w = η(t) · f(w, x) (1)

Theoretical considerations of finding the optimal learning rate often as-
sume a global scale factor for all weight-adjustments that depends on the
past errors (e.g. [39] [32]). If the error is large, the learning rate takes on
a large value. If the error decreases to zero, the learning rate decreases
to zero. A different approach, almost independent on the chosen neural
network, is derived by minimizing a misadjustment, i.e. a small bias and
a small variance [25]. For practical purposes the bias and the variance is
estimated from the statistics of the weights by time averages over a period
T , which has to be chosen according to the typical time scale of changes.
Still, this measure does not take into account the differences within the
distribution in the input space. To address the stability-plasticity dilemma
individual adaptive learning rates for each node are more suitable. One
approach is to adapt the level of the learning rate according to the ratio
between two local error counters with a different time constant, because
this guarantees an asymptotic decrease in case of a local stationary dis-
tribution and an increase if the changing environment leads to new local
errors.

1.2.3 Framework

The above proposals are implemented within the framework of the Cell
Structures [14] [15] [16] [4] [7], because they already support the idea
of local error counters. Cell Structures cluster the input space like typi-
cal RBF networks, but the nodes are organized within a graph in which
the location of the centers and the connecting edges can be updated on-

line. It was shown that a competitive Hebbian learning rule enables vec-
tor quantizisers to learn perfectly topology preserving mappings [34].
Utilizing this neighborhood relation leads to a cooperative training and
performs a similarity regularization which can improve training perfor-
mance as indicated by excellent results in incremental learning tasks [15]
[4] [5] [24] and adaptive on-line learning [17].

The Cell Structures were designed to operate within different learning
regimes such as self-organizing, error-driven (or supervised), and rein-
forcement learning. In their original formulation involving competitive
Hebbian learning, all Cell Structures realize unsupervised learning. For
supervised learning the output weights updated according to a stochastic
gradient descent (least mean square rule, delta rule). They have also been
used with reinforcement learning [6].

In extension to an exclusively unsupervised on-line adaptation of the in-
put weights based on Self-Organizing Maps [29] and Neural Gas [33],
but without a decay of learning parameters, an error-modulated learning
[2] and a more sophisticated gradient-based learning [5] have been sug-
gested. Both introduce an error dependency for the adaptation of centers
similar to the one utilized in other RBF algorithms [28].

So far, the major drawback of the Cell Structures used in the context of
life-long learning is their permanent increase in the number of nodes and
in the drift of the centers to equal the input probability density in the un-
supervised adaptation case and to equal the error probability density in
the supervised adaptation case [21]. A predetermined number of nodes,
a dependence on the overall error or on the quantization error are not ap-
propriate, simply because appropriate figures for these criteria cannot be
known in advance. Thus, the Cell Structures are only capable to follow
an input probability density by using the utility-based removal [17] (high
plasticity) or by freezing the amount of nodes and allowing only minor
changes in the adaptation of the weights (high stability). This contri-
bution extends the Cell Structures to learn how many nodes are needed
for an appropriate solution and how to organize insertion and deletion of
nodes in order to tackle the stability-plasticity dilemma.

2 The algorithm

2.1 Structure

The extended Cell Structures, called Life-long Learning Cell Structures
(LLCS), perform in their representation layer a vector quantization and
consist of nodes or prototypes (Fig. 1). The neighborhood relationship
of the nodes is defined by an undirected graph G [34]. All edges that
emanate from a node i determine its neighbors Ni. The age of each edge
is continuously updated by a Hebbian adaptation rule. The total amount
of nodes is denoted with nN .

Figure 1. The representation layer composed of Gaussian activation functions
performs an adjustable nonlinear transformation of the pattern x. The output
layer assigns each activation distribution within the representation layer contin-
uously to a class. By inserting new nodes in regions, which lead to high errors
the overall performance is increased. The gray boxes indicate the extension of
the Cell Structures for life-long learning in a non-stationary environment.

2.2 Variables of each node

Each node i has a few variables, that regulate learning and insertion of
the nodes in the network (Fig. 2):

wi n–dimensional weight vector in the input space

wout
i m–dimensional weight vector in the output space

σi Width of the Gaussian. Extreme values of σ can be cru-
cial to the performance. Good results are obtained by
estimating the variance in the input-data of each best-
matching node or by simply averaging the length of all
emanating edges:

σi =
1

‖Ni‖

∑

j∈Ni

‖wi − wj‖ (2)

To avoid abrupt changes, σi can be implemented by a
moving average.

τSi Short-term error counter. The estimate of the aver-
age short-term error is adapted according to the time-
constant TS .

τLi Long-term error counter. Similar to the short-term er-
ror counter, the variable estimates the average error, but
considers a larger time-constant TL.

τIi Inherited error. This variable serves as a memory for the
error at the moment of insertion. It is updated at each
insertion, but only for the affected nodes. The inherited
error of a new node receives the average long-term error
τL of those two nodes, between which the new one is
inserted. Each of both nodes memorize their present
long-term error.

τϑi Insertion threshold. An insertion is only allowed, if the
long-term error exceeds this local threshold. It is in-
creased, if a previous insertion was not successful. An
exponential decrease according to the time-constant Tϑ

depends on a relevant change in the input probability
distribution.

Yi Age of the node. It is decreased for the best-matching
node according to the time-constant TY .

In
pu

t

O
ut

pu
t

w
ou

t

σ

ϑ

τ , τ

τ

τ

I

Y

 L S

In
pu

t w
ei

gh
ts

O
ut

pu
t w

ei
gh

ts

Width of the Gaussian:

Error counter:

Inherited error:

Insertion threshold:

Age (youth):

w

Figure 2. A RBF node of the Life-long Learning Cell Structures. Besides the
width of the Gaussian each node has error and age counters. In contrast to the
inherited error, which remains fixed until the node is selected for insertion, the
error counters are defined as moving averages according to their individual time
constant.

2.3 Adaptation of the representation layer

Only the unit and its neighbours that best match the input pattern are
allowed to learn. To locate the best matching unit b, calculate for all
nodes i the Euclidian distance di of the input pattern x ∈ R

n to the
weight vector wi ∈ R

n.

db = min
i∈G

(di); di = ‖x− wi‖ ∀ i ∈ G (3)

There are many reasons why the learning rate should be adaptive. If the
learning rate is held constant: a learning rate chosen too high will cor-
rupt previously learned knowledge and disturb the stability of the output
weights, a learning rate chosen too low does not allow the learner to fol-
low a changing environment. Because Cell Structures provide a local
processing strategy, a uniform learning rate does not make sense. Each
node should hold its individual adaptive learning rate ηi. The weight
change is performed by moving the prototype b and its neighbors c ∈ Nb

into the direction of the last training pattern.

4wb = ηi
b · (x− wb); 4wc = ηi

c · (x − wc) ∀ c ∈ Nb (4)

To estimate the appropriate learning rate two error counters with different
time-constants detect relevant changes in the input probability density,

expressed by the quality measure for learning BL of the best-matching
node b and its neighbors c ∈ Nb.

BL
(b/c) =

τS(b/c) + 1

τL(b/c) + 1
∀ c ∈ Nb (5)

Learning of a node is dependent on its location within the BY-diagram
(Fig. 3). The learning rate ηi allows an adaptation of the weights if
the nodes are either new or if temporal changes of the error occur. It is
determined for the best node b and its neighbors c by the base learning
rate of the winner ηb, learning rate of the neighbors ηn, modulated by
a localized network based input adaptation term αi

(b/c), which consists
of quality measure for learning BL, the age Y and a pre-defined input
adaptation threshold ϑi

L

ηi
(b/c) =

0 if αi
(b/c) < 0

η(b/n) if αi
(b/c) > 1

αi
(b/c) · η(b/n) else

with αi
(b/c) =

BL
(b/c)

1 + ϑi
L

+ Y(b/c) − 1

(6)

Within the adaptive phase the network approximates the input probability
density and does not account for the local distribution of the error (unsu-
pervised rule). To approximate the error probability density the learning
rate must be extended by a gradient-based or error-modulated learning
rule [7].

A newly inserted node always starts on the right side within the BY-
diagram (Fig. 3). The value of the quality measure for learning BL

depends on the nodes, which initiated this insertion, because their coun-
ters are used for the initialization. In case of a changing environment, the
short term error can increase faster than the long term error which leads
to a higher value of BL. In the opposite case (insertion decreases the
error) learning is reduced. If insertion takes place in regions of the input
space where decision regions overlap, the quality measure for learning
reaches BL ≈ 1 and learning is reduced with increasing age (decreasing
Y) of the node. The gradient of this cooling process is exponential and
dependent on the time-constant TY and on the proportion of the time-
constants TS , TL. A stationary input probability density always forces

η =0o
η =0i

high difference

opposite difference BL

Y

α
(i/o)

10

1

1

η(i/o)

η =1o

η =0..1o

η =0..1i

η =1i

B
L

Y

���

B
L

Y

B
L

Y

ϑo
L

ϑi

L

2

node
newold

node
1

10
2

centers

10

2

output

10

11

Figure 3. The figure shows the learning rate η in dependence of the quality
measure for learning BL, the age Y and the input/output adaptation threshold
ϑ

i/o
L . Top left: BY-Diagram to illustrate typical states of the nodes. Top right:

Illustration of eq. (6). Bottom left: Learning of the centers and the influence of
the user defined input adaptation threshold ϑi

L. Bottom right: Learning of the
output weights and the influence of the user defined output adaptation threshold
ϑo

L.

the nodes to reach the state Y ≈ 0; BL ≈ 1. Besides, suboptimal states
are prevented by a further insertion until the local error is not lowered
any more.

2.4 Adaptation of the output layer

In case of the example of error-driven learning discussed here, determine
the squared error of the output o ∈ R

m and the target ζ ∈ R
m when the

input x is presented.

Etask(x) = E squared
error

(x) = ‖ζ − o‖ (7)

Similar as in the representation layer the local output learning rates ηo are
determined by the quality measure BL, the age Y , the output adaptation
rate ηo and the output adaptation threshold ϑo

L.

ηo
i =

0 if αo
i < 0

ηo if αo
i > 1

αo
i · ηo else

with αo
i =

BL
i

1 + ϑo
L

+ Yi − 1 ∀ i ∈ G

(8)

Finally, the weights of the nodes j of the output layer are adapted.

4wji = ηo
i (ζj − oj) yi ∀ j ∈ {1 . . .m}, ∀ i ∈ G (9)

But only those, which show a sufficient high activation yi in the repre-
sentation layer, calculated with a Gaussian function.

yi = e
−
‖x−wi‖

2

σ2
i ∀i ∈ G (10)

2.5 Insertion and deletion of nodes in the representa-
tion layer

According to the concept of the local error based insertion criterion the
nodes in the representation layer compete to determine the node with the
highest similarity to the pattern. By maintaining a local error counter for
each node in the representation layer, new nodes are inserted next to input
patterns which lead to high errors. This substance of the Cell Structures,
the error-driven insertion, has its origin in the GCS. It ensures that the
resources are spread over a period of presented patterns, which leads to
a better exploitation of the overall resources. Additional criteria, e.g. a
prototype-insertion [2], can be used simultaneously to speed up on-line
learning.

How does the network learn whether a further insertion of nodes is useful
to solve the task? After a number of learning steps, the average error

of a node is compared to the error at the moment of the last insertion
(Fig. 4). If this error is greater or equal, the insertion was not successful
and a local insertion threshold attached to each node is increased. If the
threshold reaches the average error, a further insertion at that location
is not allowed. To permit exploration in the future, the threshold has
to be decreased by the change of the error. The chance of insertion is

Figure 4. Insertion-evaluation cycle. By the comparison of the current local
error with the previous error the last insertion is evaluated.

investigated after each Tins = λ · nN steps by determining the quality
measure for insertion BI considering the insertion tolerance ϑins.

BI
i = τLi − τϑi · (1 + ϑins) ∀ i ∈ G (11)

But not only the distance between the long-term error τL and the insertion
threshold τϑ is decisive. An insertion is only allowed, if a node q is found
with a maximal but positive insertion criterion Kins, which also considers
the age Y of the node. In this case a new node is inserted between q and
f , which is determined among the neighbours of q.

0 < Kins,q = max
i∈G

(Kins,i); Kins,i = BI
i − Yi ∀ i ∈ G

BI
f = max

c∈Nq

(BI
c); (12)

This criterion is only error based, which supports the acquisition of nodes
in regions with high errors independent of the input probability density.
Insertion means the edge between q and f is deleted and a new node r
is inserted, and connected with q and f . The weights wr, wout

r as well as
the counters τSr, τLr, and τϑr are determined by the arithmetical average
of the corresponding weights and error counters of q and f .

The last insertion is evaluated by comparing the long-term error τL of q,
f and r with the inherited error τI lowered by an insertion tolerance ϑins.

τLi ≥ τIi − (1− ϑins) ∀ i ∈ {q, f, r} (13)

If τL exceeds this memory term, the last insertion was not successful, and
the insertion threshold has to be adapted.

τϑi := τϑi + ηϑ · (τLi − τϑi · (1− ϑins))

∀ i ∈ {k|τLk > τIk · (1− ϑins); q, f, r}
(14)

Finally, by the assignment of the present long-term error to the inherited
error τI of q, f and r, the memory is updated.

τIi = τLi ∀ i ∈ {q, r, f} (15)

If f and q do not exist, no insertion evaluation takes place.

Looking back at the previous discussion on the insertion of nodes, an
incremental neural network can not know in advance whether a further
insertion reveals a subtle distribution or turns out as a waste of resources.
This is closely related to the bias-variance dilemma. An insertion im-
proves the network performance on the current data, but might result in a
loss of generalization. The proposed strategy to evaluate an insertion lo-
cally is a suitable criterion for simultaneously minimizing both bias and
variance. In the Life-long-Learning Cell Structures the learning rate of
the insertion threshold ηϑ determines this generalization property. The
larger the learning rate of the insertion threshold ηϑ the larger the effect
of a wrong insertion and the fewer insertions are possible until the in-
sertion threshold reaches the long-term error. This criterion detects the
decision boundaries between distinctly separated classes but avoids a too
low bias in areas with much overlap. The insertion tolerance ϑins deter-
mines how much the algorithm tolerates a fluctuation of the long-term

error without initiating an insertion. It should therefore not be used to
address the bias-variance dilemma.

Another criterion acts after an insertion and removes similar nodes. The
larger ϑdel the earlier similar nodes are deleted. A node d is only deleted,
if it has a minimal age ϑdelY , a sufficient stabilization ϑdelBL , a minimal
number of edges and if its criterion K is lower than the deletion threshold
ϑdel.

ϑdel > Kdel,d = min
i∈G

(Kdel,i) ∧

‖Nd‖ ≥ 2 ∧ Yd < ϑdelY ∧ BL
d < ϑdelBL

(16)

with

Kdel,i =
4wi

l
· 4wout

i ∀ i ∈ G (17)

the local similarity of the input weights:

4wi =
1

‖Ni‖

∑

j∈Ni

‖wi − wj‖ (18)

the average similarity of the input weights:

l =
1

nN

nN
∑

j=1

4wj (19)

and the local similarity of the output weights:

4wout
i =

1

‖Ni‖

∑

j∈Ni

‖wout
i − wout

j ‖ (20)

2.6 Adaptation of the counters and edges of the nodes
in the representation layer

The long-term error counter τLb and the short-term error counter τSb for
the winner b are updated as a moving average.

τ(L/S)b := e
− 1

T(L/S) · τ(L/S)b + (1− e
− 1

T(L/S)) ·Etask(x) (21)

The age Yb of the best-matching node b is simply decreased.

Yb := e
− 1

TY · Yb (22)

A prerequisite for the flexibility of insertion in changing environments is
the decrease of the insertion threshold τϑb, if the distribution of the error
changes.

τϑb := (1− Λ(αb)) · e
− 1

Tϑ · τϑb (23)

with

αb =
1 + |BL

b − 1|

1 + ϑi
L

− 1; Λ(x) =

0 if x < 0
1 if x > 1
x else

(24)

The edges of the graph are continuously updated. According to the Heb-
bian learning rule the age of all edges emanating from b are increased by
one and the age of the edge between b and the second best s is set to zero.
The second best node is defined as:

ds = min
i∈G,i 6=b

(di); di = ‖x − wi‖ ∀ i ∈ G (25)

If no edge between b and s exists, a new one is created. All edges older
than ϑage and all nodes without an edge are removed.

2.7 Parameter discussion

The algorithm expects the specification of several parameters. The major
parameters that concern the insertion and deletion, i.e. the size of the net-
work, are the learning rate of the insertion threshold ηϑ and the deletion
threshold ϑdel. The sensitivity to temporal changes of the environment is
adjusted by the relation of the time constants of the short-term error and
the long-term error TS/TL. The insertion threshold ϑins defines the sen-
sitivity to changes of the long-term error regarding an insertion of nodes.
Other parameters can be regarded as constants of the algorithm. This in-
sensitivity to parameter settings is a general feature of the Cell Structures
as indicated by a benchmark [24].

A B C

D,E

Environment
Class (Frequency)

1 2 3 4 5 6
A 1 Rectangle 1 1 0 1 1 0
B 1 Line 1 1 1 0 0 1
C 2 Ellipse 0 1 1 1 1 0
D 3 Circular area 1 0 0 0 1 1
E 2 Circular area 1 1 1 0 0 1

Figure 5. Changing environment composed of five areas (A − E) and three
classes. The environment changes from 1-6 each 20000 steps. Simulation
parameters: ηb = 0.1, ηn = 0.01, ηo = 0.15, ηϑ = 0.5, TS = 20,
TL = TY = Tϑ = 100, λ = 10, ϑage = 50, ϑi

L = 0.05, ϑo
L = −0.05,

ϑins = 0.1, ϑdel = 0.05, ϑdelY = 0.01, ϑdelBL = 0.01.

3 Illustration with artificial data sets

To illustrate the function of the RBF learning in a non-stationary envi-
ronment, the behavior of the network on a two-dimensional data set is
observed (Fig. 5). It is shown that even critical overlaps do not lead to a
permanent insertion, while the network is not frozen.

In the first 20000 steps the input contains an awful overlap in the circular
area which causes a high error. Thus, initially the internal states of the
nodes responsible for the overlapping area show a high long-term error.
From left to right, two plots in Fig. 6 show the states in each environ-
ment, the first after each 500 steps and the second after each 20000. As
the learning parameter of the input weights expresses, the network is ex-
tremely plastic. Nevertheless after 20000 steps, the algorithm has learned
by increasing its insertion threshold, that a further insertion does not im-
prove the squared error and stabilizes, as can be seen from the learning
parameters and the number of nodes.

Now the environment changes, new errors occur and the algorithm tries
to minimize them by changing its weights and inserting new nodes. Al-
though the environment gets much easier, there is still an unsolvable
overlap between the ellipse and the line that would cause a further in-

sertion of nodes. By increasing the insertion threshold of the relevant
nodes, the algorithm learns to stop insertion in the overlapping area. At
least after 40000 steps it has adopted to the environment such that no
further learning is needed.

If the probability changes to zero in some regions, like in the environment
from 40000 to 60000 steps, those remaining nodes, often called ”dead
nodes”, play a major role for the stability-plasticity dilemma (Fig. 7).
They are in no way ”dead nodes”, instead they preserve the knowledge of
previous situations for future decisions. If the old prototype patterns were
removed, the knowledge would be lost and the same, already learned
situations will again cause errors. Further insertions at the crossing of
the line with the ellipse result in a better approximation. However, the
number of nodes again stabilizes after 50000 steps.

In the environment from 60000 to 80000 steps, most of the nodes remain
at their positions. The repeated appearance of area A does not raise the
error – the knowledge was completely preserved. Since the environment
shows no overlaps the error decreases to zero.

In the environment from 80000 to 100000 steps, the patterns from the
circular area change from class two to class three (Fig. 8). This change
of the environment illustrates impressively the localized definition of the
stability and plasticity. The network at 80500 steps remains completely
stable aside from nodes covering area A. Only here, the network tries to
cope with the new situation, inserts new nodes and increases their leaning
rate. It turns out, that the new nodes all cover the same class and most of
them were again deleted. Once more the network stabilizes.

Even serious changes in the environment from 100000 to 120000 are
tolerated. The invertation of the occurrence of patterns in area A, B, and
C does not affect the position of the centers. The overlap of area D and
E raises the error and the network inserts new nodes but stabilizes again.

Summarizing, the algorithm is able to cope with all changing environ-
ments, like overlaps, never seen inputs and temporarily not appearing
patterns.

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

nodes
edges
+/− nodes

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

5

10

15

20

25

30

learning steps

nu
m

be
r

quantization error
squarred error
classification error

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

5

10

15

20

25

30

35

40

learning steps

er
ro

r
in

 %

Figure 6. Internal states of the RBF nodes in environment 1 and 2. From the top to the
bottom, the input weights wi, the long-term error τLi, the insertion threshold τϑi, the
adaptation term of the input learning rate αi

i are presented.

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

nodes
edges
+/− nodes

4 4.5 5 5.5 6 6.5 7 7.5 8

x 10
4

0

5

10

15

20

25

30

learning steps

nu
m

be
r

quantization error
squarred error
classification error

4 4.5 5 5.5 6 6.5 7 7.5 8

x 10
4

0

5

10

15

20

25

30

35

40

learning steps

er
ro

r
in

 %

Figure 7. Internal states of the RBF nodes in environment 3 and 4. From the top to the
bottom, the input weights wi, the long-term error τLi, the insertion threshold τϑi, the
adaptation term of the input learning rate αi

i are presented.

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

nodes
edges
+/− nodes

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

x 10
5

0

5

10

15

20

25

30

learning steps

nu
m

be
r

quantization error
squarred error
classification error

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

x 10
5

0

5

10

15

20

25

30

35

40

learning steps

er
ro

r
in

 %

Figure 8. Internal states of the RBF nodes in environment 5 and 6. From the top to the
bottom, the input weights wi, the long-term error τLi, the insertion threshold τϑi, the
adaptation term of the input learning rate αi

i are presented.

4 Evaluation using real data sets

4.1 Performance measures

Relevant issues for the application of the LLCS deal with non-stationary
input probability distributions. Nevertheless, it was shown that the net-
work automatically stops the insertion of further nodes on real bench-
mark data with a stationary probability distribution and achieves a perfor-
mance which is as good as those of the Cell Structures selected by cross-
validation [23] [24]. For the further evaluation of learning in changing

4021 8042 12063 16084 20105 24126 28147 32168 36189 40210
0

10

20

30

40

50

60

70

80

90

100

←1

←1

1→
←2

←2

2→

←3
←3

3→
←4

←4

4→

←5

←5

5→

←6

←6

6→

←7

←7

7→

←8

←8
8→

←9
←9

9→

←10

←10

10→

learning steps

cl
as

si
fic

at
io

n
er

ro
r

in
 %

Figure 9. Average classification error of the environments 1-10 gained from 10
different runs by changing the environment after each 4021 steps. Parameters:
ηϑ = 0.1, ϑdel = 0.2, ηb = 0.8, ηn = 0.01, ηo = 0.01, TS = 100, TL =

TY = Tϑ = 200, λ = 100, ϑage = 60, ϑins = 0.4, ϑi
L = 0.1, ϑo

L = −0.05,
ϑdelY = 0.01, ϑdelBL = 0.01.

environments a data set with strongly overlapping decision areas was de-
signed. It consists of 10 environments with 29 features and four classes.
Each environment was build from four images which contain four differ-

ent materials (classes), like journals, cardboard, newspaper and others,
recorded under different lightning conditions. The patterns are gained
from color-histograms of tiles sized 32x32 pixels. For details about the
data and the feature extraction see [22]. One after another the data from
an environment is only once presented (on-line learning). But even the
data from the environment is clumped into 402 blocks with 10 sam-
ples belonging to the same class, which makes learning more difficult
and more realistic to natural environments, which are structured in space
and/or time. The output of the network on all data sets are recorded in
parallel (Fig. 9). This means the impact of training a particular data set
on the performance on any other data set can be analyzed. According
to the correspondence between different data sets learning in one envi-
ronment is of advantage to some environments while others suffer from
strong overlaps.

If we look at fig. 9 we wonder if the network is stable or not. This
raises the question how to measure the stability and plasticity of a neural
network.

Plasticity means a neural network is capable to learn new patterns. A
high plasticity reveals that the network is not frozen after different data
sets were presented. Thus, we have to focus not on the overall error, but
on the difference of the performance between the network trained within
an environment and the network seen different environments before. For
a quantitative evaluation two bounds were defined. The upper bound was
gained by training the network only once in an environment. The lower
bound was achieved by training the network in the same environment as
long as the tested network was trained in different environments. Thus,
the number of nodes is similar. Each bound is an average of 10 runs. The
error can not fall below the lower bound. Achieving the upper bound is
a good performance, an error lower than the upper bound is even better.

Stability is the crucial aspect of the stability-plasticity dilemma. The il-
lustration on artificial data has impressively demonstrated the capability
to preserve the prototypes while confronted with new patterns elsewhere
from the input space. Nevertheless, if the environment changes, the new
situation can be inconsistent with the former situation and the network
has to adapt itself. This means it looses some previous knowledge in or-

der to respond accurately. For a quantitative analysis of stability criteria

confusion matrix of DS6 with DS5

current environment 6

pr
ev

io
us

 e
nv

iro
nm

en
t 5

C DBA

D

B

A

C

identical

to be

preserved

to be adapted

new class

150 13

0 47 4

32

973

300

0180

17 21

490

72 0

Figure 10. Left: Extract from the confusion matrix of two environments with
γ = 0.5. The cut shows environment 6 and 5. A black rectangle indicates a
large value. Right: Evaluation of the confusion matrix. The values on the main
diagonal mark the correspondence of the environments. Even if the data from
environment 5 was not presented for training, the samples of the main diagonal
could be classified correctly while training in environment 6. The patterns of
other fields except from the class Cnew collide with the current environment and
are expected to be not preserved according to the plasticity demand. But the
amount of pattern from class Cnew could be expected to be preserved when the
network is trained on data from environment 6, because, although there might
be an overlap, the patterns are less similar. For the above example the stability
boundary S0.5 results in Sγ = 100%− 194%+58%

4
= 37%.

like measuring the amount of forgetting [31] [37] and the amount of time
to re-learn the patterns [26] are used. The latter offers only little insight
into the stability characteristic, because it depends too much on the algo-
rithms learning strategy. On the first sight the amount of forgetting seems
to be a useful criterion, but forgetting is a necessary condition of plastic-
ity in overlapping decision areas. An appropriate measure has to define
which data has to be preserved and which should be adapted according
to the plasticity condition. Prototypes in overlapping decision areas are
expected to adapt to the new environment without affecting others, and
unseen or new patterns should enlarge the knowledge. Thus, we have
to estimate the amount of samples from the previous environment that is
similar or new to the data from the current environment. We expect this
amount of samples to be classified correctly while training with patterns

from the current environment.

The overlap of different data sets can be estimated by a confusion ma-
trix, which indicates to what extent feature vectors are assigned to a
wrong class. This concept is extended to estimate the confusion of data
from different environments. In order to achieve a more precise crite-
rion all patterns that result in an output activation lower than a threshold
γ ∈ {0.1, 0.3, 0.5}, were declared as a not sufficiently learned patterns
with a separate class (new), instead of being assigned to the class with
the largest output activation. Using this definition for the class Cnew we
obtain the stability boundary Sγ :

Sγ = 100%− (#correspondence + #newγ)% (26)

Fig. 10 illustrates this context with the data from environment five and
six. For different values of the variable γ different bounds emerge. The
more the classification error remains lower than these bounds the more
stable is the network when the environment changes.

4.2 Analysis of the data

Each environment contains of 4096 samples. Most environments show
a strong overlap between their classes (Fig. 11). From the first environ-
ment to the third only slow changes, whereas afterwards abrupt changes
occur. As can be seen from fig. 11, several environments do not con-
tain all classes, especially environment four contains only patterns of
one class that has a strong overlap to different classes in other environ-
ments. This is the reason of the large increase of error when data from
environment four is presented (Fig. 9). Especially the error of environ-
ment six increases strongly because both environments share no common
class. Only the performance on environment nine can profit by the train-
ing with data of environment four, because both share similar patterns
(Fig. 11).

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

 training data

 te
st

 d
at

a

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

 training data

 te
st

 d
at

a

Figure 11. Confusion matrix of all data sets with γ = 0.1 (left) and γ = 0.5

(right) after the network was trained for three epochs on the data of an environ-
ment. See fig. 10 for the structure of the matrix. Environments with no overlap
(high similarity) show a black diagonal within each 4x5 array. Activations at
other areas indicate a complete overlap. A larger threshold γ results in a bigger
class Cnew.

4.3 Analysis of stability and plasticity

The course of errors in fig. 12 demonstrates a good plasticity perfor-
mance. After the environment changes the error decreases and in most
cases it falls below the upper bound. Concerning stability, the change
from environment 1 to environment 2 is remarkable. Here, the classifica-
tion error is larger than the bound, but this is based on the short training
time and the few number of nodes, which hinder a precise representation
of the data. We have to keep in mind, that the bounds were estimated
after the training of three epochs. The further course clearly indicates the
preservation of old prototype patterns. Even networks with more conser-
vative parameter sets show a convincing stability and plasticity perfor-
mance, although these networks operate with less than half of the nodes
as shown in [23].

5 Conclusion

Learning in changing environments is faced with the catastrophic inter-
ference, which mainly occurs in a distributed representation. But also

4021 8042 12063 16084 20105 24126 28147 32168 36189 40210
0

10

20

30

40

50

60

learning steps

cl
as

si
fic

at
io

n
er

ro
r

in
 %

4021 8042 12063 16084 20105 24126 28147 32168 36189 40210
0

10

20

30

40

50

60

70

80

learning steps

cl
as

si
fic

at
io

n
er

ro
r

in
 %

Figure 12. The course of the error in different environments are gained from
the recordings of fig. 9. Left: Results of the plasticity analysis. The error of
the network is shown when presented a never seen environment (–), compared
to the upper bound (+) and the lower bound (x). Right: Results of the stability
analysis. The figure shows the stability bounds estimated with γ = 0.1 (− · −),
γ = 0.3 (– –) and γ = 0.5 (—) compared to the error in the previously trained
environment (–), e.g., environment 7 is trained and environment 6 is observed.
The error of the first two environments exceeds the estimated bounds. This is
due to the low number of nodes created so far. In most cases the error is about
or below the lowest bound, which underlines the exceptional stability property
of the LLCS. Only in some cases, mostly if the training on the previous data
set does not decrease the error onto the level of the reference network, which
determines the bound, the error exceeds the lowest bound. But even then the
networks still preserve some knowledge.

localist or partly distributed representations suffer from interference, es-
pecially if the network does not have sufficient nodes. Thus, different
strategies to insert new nodes in incremental neural networks were men-
tioned. A similarity based insertion as used in ART networks [8] and also
in RBF networks [36] [44] has the advantage to increase the number of
nodes without an instability concerning insertion, but at the expense of a
low performance and a high number of nodes, because the optimal simi-
larity is unknown, not equally distributed within the input space, and may
change over time. A different strategy is to insert a new node according
to an error based criterion. While a global error based insertion crite-
rion is not useful for life-long learning, because the error is not known
in advance and changes over time. A promising strategy is a local er-

ror based insertion criterion as used by GCS [14] or also in ARTMAP
[9] triggered by the Inter-ART-Reset. But this raises the question how
to suppress insertion in overlapping decision areas, where errors occur
all the time. Furthermore, learning in changing environments has to ad-
dress the question in which cases the weights of the network have to be
adapted to learn new patterns and when the weights should not change to
guarantee stability.

The evolved RBF network is based on the Cell Structures algorithm [14]
[16] [4] [7] and extends it to locally adapt the stability and plasticity –
for learning and for insertion. The essential innovation compared to the
previous work is the new interpretation of the stability-plasticity dilemma
by adapting the learning rate and the insertion capability of each node
separately. This allows the network to self-stabilize in case of a stationary
probability density of the input patterns and to switch locally to plasticity
if relevant changes occur – a framework, useful as a general strategy of
growing RBF networks.

The proposed algorithm is a favorable compromise to the stability-
plasticity dilemma, which is characterized as:

• The stability and plasticity is defined locally in the network, i.e.
for each center.

• The stability and plasticity concerns the adaptation of the centers,
the learning of decision boundaries and the number of centers.

• The number of nodes are not predefined – instead an adequate
number is learned by continuously adapting local insertion thresh-
olds according to the performance of the network on the data.

• In case of a stable state, local plasticity only occurs due to relevant
changes in the input probability density, i.e. changes in the error
probability density.

Although still much has to be done, RBF networks embedded within a
performance estimation to control the number of nodes and the learn-
ing parameters offer a serious approach for systems that act in changing
environments.

Acknowledgments

The body of this work was done at the Department of Neuroinformatik,
Technische Universität Ilmenau (Germany). I thank T. Vesper for his
fruitful discussions and for implementing parts of the algorithm in his
diploma thesis. As a foundation of this research, the combination of
action and perception, a research orientation of Prof. H.-M. Gross is
worth mentioning. I would also like to thank D. Surmeli for his helpful
comments on a preliminary version of this chapter.

References

[1] Amari, S. (1967) “A theory of adaptive pattern classifiers,“ IEEE
Transactions on Electronic Computers, Vol. 16, pp. 299-307.

[2] Ahrns, I., Bruske, J. and Sommer, G. (1995), “On-line learning with
Dynamic Cell Structures,“ Proceedings of the International Confer-
ence on Artificial Neural Networks, pp. 141-146.

[3] Berthold, M.R. and Diamond, J. (1995), Boosting the performance
of RBF networks with dynamic decay adjustment,“ Advances in
Neural Information Processing Systems (NIPS 7). MIT Press, Cam-
bridge, pp. 521-528.

[4] Bruske, J. and Sommer, G. (1995), “Dynamic cell structure learns
perfectly topology preserving map,“ Neural Computation, Vol. 7,
pp. 845-865.

[5] Bruske, J., Hansen, M., Riehn, L. and Sommer, G. (1996),
“Adaptive saccade control of a binocular head with Dynamic Cell
Structures,“ Proceedings of the International Conference on Artifi-
cial Neural Networks, pp. 215-220.

[6] Bruske, J., Ahrns, I. and Sommer, G. (1998), “An integrated ar-
chitecture for learning of reative behaviors based on dynamic cell
structures,“ Robotics and Autonomous Systems, Vol. 22, pp. 87-102.

[7] Bruske, J. (1998), Dynamische Zellstrukturen. Theorie und An-
wendung eines KNN-Modells. PhD-Thesis, Technische Fakultät der
Christian Albrechts-Universität zu Kiel.

[8] Carpenter, G.A. and Grossberg, S. (1987), “ART2: Self-
organisation of stable category recognition codes for analog input
patterns,“ Applied Optics, Vol. 26, pp. 4919-4930.

[9] Carpenter, G.A., Grossberg, S. and Reynolds, J.H. (1991),
“ARTMAP: Supervised real-time learning and classification of
nonstationary data by a self-organizing-neural network,“ Neural
Networks, Vol. 4, pp. 543-564.

[10] Carpenter, G.A., Grossberg, S., Markuzon, N., Reynolds, J.H. and
Rosen, D.B. (1992), Fuzzy ARTMAP: A neural network archi-
tecture for incremental supervised learning of analog multidimen-
sional maps,“ IEEE Transactions on Neural Networks, Vol. 3, pp.
698-713.

[11] Chen, Y.Q., Thomas, D.W. and Nixon, M.S. (1994), “Generating-
shrinking algorithm for learning arbitrary classification,“ Neural
Networks, Vol. 7, pp. 1477-1489.

[12] Freeman, J.A.S. and Saad, D. (1997), “On-line learning in radial
basis function networks,“ Neural Computation, Vol. 9, pp. 1601-
1622.

[13] French, R.M. (1999), “Catastrophic forgetting in connectionist net-
works,“ Trends in Cognitive Sciences, Vol. 3, pp. 128-135.

[14] Fritzke, B. (1992), Wachsende Zellstrukturen - ein selbstorgan-
isierendes neuronales Netzwerkmodell. PhD-Thesis, Technische
Fakultät der Universität Erlangen-Nürnberg.

[15] Fritzke, B. (1994), “Growing cell structures – a self-organizing net-
work for unsupervised and supervised learning,“ Neural Networks,
Vol. 7, pp. 1441-1460.

[16] Fritzke, B. (1995), “A growing neural gas network learns topolo-
gies,“ Advances in Neural Information Processing Systems (NIPS
7). MIT Press, Cambridge, pp. 625-632.

[17] Fritzke, B. (1997), “A self-organizing network that can follow non-
stationary distributions,“ Proceedings of the International Confer-
ence on Artificial Neural Networks. Springer, pp. 613-618.

[18] Geman, S., Bienenstock, E. and Doursat, R. (1992), “Neural net-
works and the bias/variance dilema,“ Neural Computation, Vol. 4,
pp. 1-58.

[19] Grossberg, S. (1976), “Adaptive pattern classification and univer-
sal recoding: I.Parallel development and coding of neural feature
detectors,“ Biological Cybernetics, Vol. 23, pp. 121-134.

[20] Grossberg, S. (1988), “Nonlinear neural networks: Principles,
mechanisms, and architectures,“ Neural Networks, Vol. 1, pp. 17-
61.

[21] Hamker, F.H. and Gross, H.-M. (1997), “Task-based representation
in lifelong learning incremental neural networks,“ VDI Fortschrit-
tberichte, Reihe 8, Nr. 663, Workshop SOAVE’97 (Ilmenau), pp.
99-108.

[22] Hamker, F., Debes, K., Pomierski, T. and Gross, H.-M. (1998),
Multisensorielles Integriertes Realzeit Inspektions-System MIRIS:
Lösung der MIKADO-Sortieraufgabe. Schriftenreihe des FG Neu-
roinformatik der TU Ilmenau, Report 2/98.

[23] Hamker, F. (1999), Visuelle Aufmerksamkeit und lebenslanges Ler-
nen im Wahrnehmungs-Handlungs-Zyklus. PhD-Thesis, Technis-
che Universität Ilmenau.

[24] Heinke, D. and Hamker, F.H. (1998), “Comparing Neural Net-
works: A Benchmark on Growing Neural Gas, Growing Cell Struc-
tures, and Fuzzy ARTMAP,“ IEEE Transactions on Neural Net-
works, Vol. 9, pp. 1279-1291.

[25] Heskes, T.M. and Kappen, B. (1993), “On-line learning processes
in artificial neural networks,“ Mathematical Foundations of Neural
Networks, Elsevier Science Publishers, Amsterdam, pp. 199-233.

[26] Hetherington, P. and Seidenberg, M. (1989), “Is there “catastrophic
interference“ in connectionist networks?“ Proceedings of the 11th
Annual Conference of the Cognitive Science Society, LEA, Hills-
dale, pp. 26-33.

[27] Karayiannis, N.B. and Mi, G.W. (1997), “Growing radial basis neu-
ral networks: Merging supervised and unsupervised learning with
network growth techniques,“ IEEE Transactions on Neural Net-
works, Vol. 8, pp. 1492-1506.

[28] Karayiannis, N.B. (1999), “Reformulated radial basis neural net-
works trained by gradient descent,“ IEEE Transactions on Neural
Networks, Vol. 10, pp. 657-671.

[29] Kohonen, T. (1982), “Self-organized formation of topologically
correct feature maps,“ Biological Cybernetics, Vol. 43, pp. 59-69.

[30] Lim, C.P. and Harrison, R.F. (1997), “An incremental adaptive net-
work for on-line supervised learning and probability estimation,“
Neural Networks, Vol. 10, pp. 925-939.

[31] McCloskey, M. and Cohen, N. (1989), “Catastrophic interference
in connectionist networks: The sequential learning problem,“ The
Psychology of learning and motivation. Vol. 24, Academic Press,
New York, pp. 109-164.

[32] Murata, N., Müller, K.-R., Ziehe, A. and Amari, S. (1997),
“Adaptive on-line learning in changing environments,“ Proceed-
ings of the Conference on Neural Information Processing Systems
(Nips 9), MIT Press, pp. 599-604.

[33] Martinetz, T.M. and Schulten, K.J. (1991), “A “neural gas“ network
learns topologies,“ Artificial Neural Networks, volume I, Amster-
dam: North Holland, pp. 397-402.

[34] Martinetz, T.M. and Schulten, K.J. (1994), “Topology representing
networks,“ Neural Networks, Vol. 7, pp. 507-522.

[35] Obradovic, D. (1996), “On-line training of recurrent neural net-
works with continuous topology adaptation,“ IEEE Transactions
on Neural Networks, Vol. 7, pp. 222-228.

[36] Platt, J. (1991), “A resource-allocating network for function inter-
polation,“ Neural Computation, Vol. 3, pp. 213-225.

[37] Ratcliff, R. (1990), “Connectionist models of recognition memory:
Constraints imposed by learning and forgetting functions,“ Psycho-
logical Review, Vol. 97, pp. 285-308.

[38] Roy, A., Govil, S. and Miranda, R. (1997), “A neural-network
learning theory and a polynomial time RBF algorithm,“ IEEE
Transactions on Neural Networks, Vol. 8, pp. 1301-1313.

[39] Sompolinsky, H., Barkai, N. and Seung, H.S. (1995), “On-line
learning of dichotomies: algorithms and learning curves,“ Neural
Networks: The Statistical Mechanics Perspective. World Scientific,
Singapore, pp. 105-130.

[40] Shadafan, R.S. and Niranjan, M. (1994), “A dynamic neural net-
work architecture by sequential partitioning of the input space,“
Neural Computation, Vol. 6, pp. 1202-1223.

[41] Sundararajan, N., Saratchandran, P. and YingWei, L. (1999), Radial
basis function neural networks with sequential learning : MRAN
and its applications. Series: Progress in neural processing, Vol. 11.,
World Scientific, Singapore.

[42] Tagscherer, M. (1998), “ICE - an incremental hybrid system for
continuous learning,“ Proceedings of the International Conference
on Artificial Neural Networks, pp. 597-602.

[43] Whitehead, B.A. and Choate, T.D. (1994), “Evolving space-filling
curves to distribute radial basis functions over an input space,“
IEEE Transactions on Neural Networks, Vol. 5, pp. 15-23.

[44] Yingwei, L., Sundararajan, N. and Saratchandran, P. (1998),
“Performance evaluation of a sequential minimal Radial Basis
Function (RBF) neural network learning algorithm,“ IEEE Trans-
actions on Neural Networks, Vol. 9, pp. 308-318.

