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Abstract

Studies of attention suggest a model in which attention emerges from a parallel,

distributed competition. The central purpose of this contribution is to explain the

�ndings of single cell recordings gained in two di�erent experimental paradigms by

taking into account feedback from successive stages. It is shown that the developed

model can quantitatively obtain similar results as measured in the experiment.

1 Introduction

The neural processes of feature analysis, object selection by attention and object recog-
nition have traditionally been decomposed into distinct, often sequential stages. Recent
neurophysiological �ndings, however, show that attention modulates the visual processing
at early stages [1],[2].

Taken the results of neurophysiological recordings together, the e�ect of attention turns
out not to be a simple enhancement of processing within a spotlight of attention. The
e�ect of attention depends on whether a presentation of stimuli within the receptive �eld
is sequential or simultaneous [5], [2]. Furthermore, attention re
ects the current interest of
the viewer, i.e. a top-down component adds and modi�es the pattern of the visual world
as re
ected in experiments recording from V4 [6].

Models proposed so far have only partially constrained by neurophysiological record-
ings. Competition might inevitably entangled with the processing of stimuli, as suggested
by Usher and Niebur [7]. They suppose that a parallel competition based on lateral inter-
actions within one stage is suÆcient for simple feature search, but they kept us dark about
what mechanism might guide a search for conjunctions. Instead of switching o� the input
of non-attended locations, a di�erent approach is to assume a temporal tagging in which
all neurons within a focus of attention receive a higher synchronous �ring probability [8].
This model was used to reproduce experimental data obtained from Moran and Desimone
[3]. A more �ne graded model presented by Grossberg and Raizada [9] illustrates the
dynamics of an attended location task, e.g. as in the experiment of Reynolds et al. [5],
and grouping in V1 and V2. Similar as in the previous model [8], attention is implemented
as a locational bias, but the attentional capturing mechanism is not explained.

White spots on the map of models cover the issue of top-down activation by targets and
the role of feedback connections, expected to play a major role in the cortical information
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ow. Recently, in extension to the model of Usher and Niebur [7], it was shown that even
a search for conjunctions can be based on a parallel competition if the features are bound
by their common location due to feedback [10]. The sequential selection, that is often
presupposed, is a result of a parallel competition constrained by noise and a high overlap
in the feature space.

2 Brief description of methods

Figure 1: The model consists of four strongly interconnected functional blocks with in-
terwinded bottom-up and top-down pathways. Feature-sensitive neurons (FS) of the to-
pographically ordered units dynamically represent features by a population code. Each
dimension has its own unit. They project their activity to neurons of higher complexity
and larger receptive �elds (FL). This simulates the general idea of bottom-up processing
in the ventral pathway. Each stage reads out its features to �lter and project back the
strongest feature (DL). Thus, the feature-sensitive units (F) receive a top-down activity
from the following stages or �nally from short-term memory coding the features of a cue.
Between two stages and within each dimension unspeci�c cells (US) modulate the projec-
tion by increasing the projection weight in dependence of their location and activation.
They also send their activity to location-sensitive neurons (L) simulating one function of
the dorsal stream or subcortical areas. Their �ring rates contain all information needed
for determining the location of an action. They unite the activity of the feature-sensitive
neurons via the unspeci�c neurons from di�erent dimensions, which code the bottom-
up saliency and the task-driven, top-down importance. In fact, the whole processing is
completely parallel, there is no sequential order in the blocks.
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This contribution suggests a general principle how the bottom-up and top-down 
ow
cooperate and how attention emerges within these pathways. Since recent results have
demonstrated cooperative and nonlinear e�ects, the analysis and description of atten-
tional phenomena in this model is at the level of collective, dynamic activation variables.
Generally speaking, such a population code is equivalent to the projection of the responses
of cells into a functional parameter space.

In essence, the 
ow of activation and the role of attention within the receptive �eld
is addressed. Figure 1 gives an overview of the proposed model containing two stages
of growing receptive �eld size. Given a stimulus, each feature-sensitive unit F consists
of several neurons n describing the population response u of the bottom up signal u",
top-down signal u#, lateral inter unit communication u	, and receptive �eld interactions
u$:

_u(t) = p � u"(t)� u#(t) + r � u"(t)� u	(t) + s � u"(t)� q
�
u$(t) + u(t) �

X
u	(t)

�

Thus, the bottom-up input pattern is continuously compared to the top-down target u#

and lateral feature memory u	. The top-down pathway and the lateral inter unit connec-
tions act in a multiplicative fashion which enhances matching bottom-up patterns. They
implement a Bayesian inference operation, i.e. an input pattern is compared with the
prior or expected information encoded in the population [11]. An input pattern that does
not match a top-down or lateral pattern results in a lower activation of the feature de-
tector. The current implementation considers only competitive (inhibiting) connections
within the receptive �eld u$. This simpli�cation only applies for very sparse presentation
scenes. Finally, depending on the intrinsic activation of each neuron, the activation is
counterbalanced by the unit activity. The rationale behind this rule is a feature detector
with the ability to superimpose di�erent input patterns and simultaneously to perform a
competition without erasing the minor pattern, as done by other models that read out a
population code. One of those additive activation rule models [12] gains more importance
for the top-down projection of a feature representation (see unit DL in Fig. 1). In com-
parison to the bottom-up feature pathway, the top-down expectation pathway must not
convey superimposed features, but it has to urge a decision in receptive �eld competition
by prescribing a target to the previous layer. Thus, unit DL reads out the strongest feature
and projects this population code back to all locations within the receptive �eld of the
current unit.

The unspeci�c neurons z calculate the computational weight of the features in each
dimension Dl and each location i separately. Their activation determines the bottom-up
projection from layer Lk in location i:

u
"Lk;Dl
i (t) = w

"Lk;Dl
i (z(t)) � uLk;Dl

i (t) with w
"Lk;Dl
i (z(t)) = w" � (1 + z

Lk;Dl
i (t))

The unspeci�c neurons are reciprocally linked to location coding neurons, whose response
is no further speci�c to a particular dimension.

This theoretical work is proven to be relevant by simulating the dynamics while per-
forming an attended location task, the same as in the experiment of Luck et al. [2], and
a guided feature selection task, the same as in the experiment of Motter [4], [6].
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3 Results

3.1 Attended location task
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Figure 2: Simultaneous and sequential conditions in the experiment of Luck et al. [2].
Left: Monkeys were trained to attend a speci�c location within a receptive �eld of a
recorded neuron in V4 while ignoring the other. A typical sequential trial consists of an
attended-location nontarget, two ignored-location nontargets, and an attended location
target. A simultaneous trial di�ers by presenting items at both locations simultaneously.
The input pattern of the model is chosen to re
ect the same condition as in the experiment.
Right: The feature-sensitive cells with a large receptive �eld show a quantitatively similar
behavior as the recordings of the neurons in V4 from the experiment of Luck et al. The
peak activity in the simultaneous trials is lower than in the sequential trials. However, since
the e�ect of attention is to reduce the suppression within the receptive �eld, the in
uence of
attention is higher in the simultaneous trials, as indicated by the larger di�erence between
ignore and attend conditions.

The attended location task is currently the most widespread experiment for neurophys-
iological recordings [3], [2], [5]. This task requires to attend a location while the activation
of a cell, whose receptive �eld covers this location and beside it, being measured. Thus,
the attentional capturing process has already been done. It is reasonable to assume that
attending to one location is re
ected by the activation of corresponding location-sensitive
cells of the model, although attention in the presented model is more than a simple com-
petition within one layer. As can be seen in the guided feature selection task attentional
e�ects are possible without any activation of the location-sensitive cells. But they integrate
activity from all stages and di�erent dimensions to determine a location for action. Thus,
The simulation was chosen to be alike the experimental setup of Luck et al. [2] (�g. 2).
The average activity of the neuron with the best match among the feature-sensitive cells
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with a large receptive �eld (FL) closely resembles the recordings within the experiment.

3.2 Guided feature selection task
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Figure 3: Match and non-match conditions in the experiments of Motter [4], [6]. Left: In
either task a monkey is initially faced with a �xation spot, whose color also serves as a
cue. The conditional discrimination task can be performed after the presented array of
oriented colored bars is reduced to two bars. During the stimulus presentation period,
several items could be the �nal target. In the match condition a color or luminance match
occurs between the �xation spot and the item in the receptive �eld. In another experiment
a cue switch paradigm is used to investigate the behavior if the target changes during the
stimulus presentation phase. Stimuli previously represented potential targets change into
distractors and vice versa. Right: The simulation is performed with three potential targets
and three potential distractors. After the scene is presented the activity of all neurons
coding the target and the distractor raises. Due to top-down activation of one feature (e.g.
color), the neurons representing the target remain stronger activated. After changing the
top-down activation, the attentional system switches in order to bias the current potential
targets.

The guided feature selection task was mostly discussed in terms of a yet unknown
attentional e�ect, I suppose, due to the unimportant locational information { the dominant
selection criterion in most models. Therefore, reliable models have to simulate both,
attended location and feature selection tasks.

The simulation is in line with the experiment of Motter (see �g. 3) [4], [6]. The results
closely resemble the average temporal development of the activation in the match (M)
and non-match (NM) condition during the stimulus presentation phase of the experiment.
After the cue switches, a delayed response occurs due to an activity change, similar as the
activity of the feature-sensitive cells (FS) in the model. Thus, the simulation demonstrates
a possible explanation of the measured parallel bias and the switch of the bias in case of
a changing top-down activation.
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4 Conclusion

Several models have been proposed to account for distinct attentional e�ects. These
assumptions are now constrained by neurophysiological recordings which give a larger
insight into the underlying mechanisms. The model presented here, bears on this. The
performed simulations quantitatively resemble the results, even the recorded dynamics,
of currently fundamental experiments, for instance [2], [4], [6]. Most models assume an
exclusive stage in which selection occurs { that is a separation between parallel and serial
processing { whereas this model suggests that attention might be better interpreted as
a graded process. Selection occurs when a constraint demands this. There is no unitary
part in the model that accounts for attention, but competition in di�erent parts converge
to let the system operate on the same event, which resembles in several aspects the biased
competition [13] and the integrated competition [14] theory.

On a long-term basis models incorporating feedback should outperform the dominant,
but for real visual scenes weak feedforward paradigm in object recognition. Directed
attention mediates this recognition process and abolishes the overestimated separation
between segmentation and recognition.
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