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Abstract

Studies of attention suggest a model in which attention emerges from a parallel,
distributed competition. Within that framework, this contribution tries to explain the
findings of the experiment by CHELAZZI ET AL. [1] by taking into account feedback
from successive stages. It is shown that the developed model can qualitatively obtain
the same results as measured in the experiment. Furthermore, the model shows
promising similarities to human reaction times in visual search tasks.

1 Introduction

Recent neurophysiological findings show that at very early stages, attention modulates
the visual processing [2,3]. Among others, the reason is to create a representation that
serves to filter out irrelevant information and to emphasise information needed for the
current task [4]. For example, V4 neurons show an enhanced activity if the presented
colour or luminance items match the features of the cue [5]. This dynamic effect occurs
in parallel across the visual field and it seems to segment the scene into possible
candidates and background, before a final selection takes place. Relating these ob-
servations to psychophysical studies such as visual search, this effect seems to be a
physiological counterpart of restricting search to subgroups, which share the same
feature [6].

If the task requires to perform a saccadic eye movement or a grasping operation,
competition in the dorsal stream has to be coordinated with the processing in the
ventral stream. Or in general, the processing in different brain areas must be integrated
into a joint behavioural result [7,8]. This contribution aims to illustrate, how a dis-
tributed competition for a task-relevant item can be integrated by using backward
connections.

A possible basis for goal-directed competition among neurons in inferior temporal
cortex (IT) is shown in an experiment by CHELAZZI ET AL. [1]. Monkeys were presen-
ted a cue to hold in memory. During a delay period the neuron sensitive for the target
showed a higher rate of activity, presumably a top-down projection from the working
memory. After the delay period, the monkeys were given a picture containing the cue

* Since September 1998 he joined the medical data analysis project MEDAN at the
J.W.Goethe- Universitét Frankfurt (email: hamker@cs.uni-frankfurt.de).
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and other objects and instructed to initiate an eye movement towards the target. The

recordings of average firing rates show that the neuron sensitive for the target and the

neuron sensitive for a distractor became active but only the neuron sensitive for the
target remains high or was even enhanced while the neuron sensitive for the distractor
was suppressed.

It is supposed by USHER and NIEBUR that this behaviour occurs due to lateral inter-

actions in IT cortex [9]. They present a model which consists of self-excitatory cells

coupled with an inhibitory pool. Apart from a bottom-up input, the cells receive a goal
directed signal. Their simulations show similar responses as observed in the above
experiments. They came to the conclusion that the experiment of CHELAZZI ET AL.
shows an example of a parallel competition but in case of a search for conjunctions of
features a serial scan is needed: “Assuming that each feature dimension (colors,
shapes, etc.) is represented by a different memory module, it is easy to see why the
selection mechanism reaches its limitations. In the example [...] red vertical target
among red horizontal and blue vertical distractors, the top-down attentional input is
provided to both the red and the vertical assemblies. Therefore both assemblies will
win the interaction whether there is or there is not a conjunctive target in the display.

The parallel stage is useless in this case and the decision has to be based on a serial

scan of all objects.” [9]

However, two important questions remained unsolved:

*  How can a competition among IT neurons define the location of the saccade?
Although the receptive field of IT neurons does not cover the complete visual
field, it is large enough that even a distributed coding can not clearly indicate the
target location.

*  How may a target defined by a conjunction of features emerge as a winner by a
parallel competition?

This contribution addresses the above questions and presents a solution based on

feedback connections from successive layers. In this hypothesis, competition among IT

neurons can not be regarded as an isolated process without influence of the preceding
layer.

2 The Model

2.1 Overview

This model consists of three simulated areas: an object-sensitive, a location-sensitive
and a feature-sensitive area. The neurons in the object-sensitive area may be regarded
as IT neurons of two different dimensions (e.g. colour and form) located within the
same receptive field (Fig. 1). The feature-sensitive area can be interpreted as V4/V2
neurons at different locations within this receptive field. Again two different dimen-
sions were simulated. No direct cross-dimensional interactions were taken into consi-
deration. The location-sensitive area is responsible for the selection of a location, e.g.
for an eye movement.
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Figure 1. Overview of the model. It consists of three functional blocks which are reciprocially
connected. Feature-sensitive neurons of the topographically ordered feature maps code in
parallel features in different dimensions and project their activity to neurons of higher
complexity and much larger receptive fields called object-sensitive neurons. They simulate
processing in the ventral pathway. Similar to the model in [9], they receive a top-down activity
from short-term memory coding the features of the cue and compete for visual processing via an
inhibitory pool. Feature-sensitive neurons also project to an integrating neuron within their
receptive field which sends its activity to location-sensitive neurons simulating one function of
the dorsal stream: Their competition determines the location to which attention is directed. A
high activity of a location-sensitive neuron allows the feature-sensitive neurons in the same
receptive field to enhance their activity while feature-sensitive neurons at other locations are
suppressed. Thus, each competition in a stage is not independent from the competition in other
stages, they build a closed loop. Similar to the theory in [10], the features in different
dimensions are integrated via a common location.
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2.2 Feature-sensitive area

Neurons are known to be broadly tuned to variations of stimulus parameters and sharp
tuning can be achieved by recurrent cortical excitation [11]. Thus, in this model each
feature is represented by a population code within a neural field of local excitation and
global inhibition [12] (Fig. 3), and determined by the area of activation. Because the
input of the model should simulate the output of the previous stage, again a population
code is used where the location determines the feature and the height the strength of
each feature (Fig. 2). Thus, the more difficult the task, the broader the input curve and
the more salient an item the higher the curve. This kind of coding also relates to the
findings of target-distractor and distractor-distractor similarity [13].

Figure 2. Effect of attention on a population

o5 1  of laterally connected neurons. Attention
os: 1  strengthens  the lateral excitatory
ot 1 connections, which results in a sharply tuned
osf- | curve of a broad input distribution. Top lefi:
| weekly tuned excitation. Bottom left:

broadly tuned selectivity without attention.
Top right: sharply tuned selectivity due to
the enhancement of the Ilateral

0.2 | . .
//\\ interconnections.
01 |

A high activity of an integrating neuron strengthens the lateral weights in the neural
fields of all dimensions located in the same receptive field (Fig. 3). This results in a
sharply tuned curve and thus, in an unambiguously coded feature (Fig. 2). Because the
integrating neuron also prevents its feature-sensitive neurons from global inhibition
within the receptive field of the object-sensitive neurons, the competition for proces-
sing leads to an ambiguity resolution [14].
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2.2 Object-sensitive and location-sensitive area

Different dimensions (e.g. colour or form) were located on different maps. Each map
consists of several neurons coding a different object related feature. They compete
against each other via a low global inhibition (Fig. 4). External inputs come from the
feature-sensitive neurons and from working memory holding the features of the cue.
Thus, task-driven visual search is obtained by a brief activation of object-sensitive
neurons. This refers to the results in [1], where it was observed that IT neurons coding
the relevant features of the task are primed by an external source, which is assumed to
bias the overall competition in favour of the goal [7].

All integrating neurons from the feature-sensitive area project to location-sensitive
neurons (Fig. 4), which compete for the location of a planned action (e.g. an eye
movement). The firing rates of the integrating neurons hold all information needed for
determining the location of an action, because they sum up the activity of the feature-
sensitive neurons from different dimensions, which code the bottom-up saliency and
the task-driven top-down importance by their activity. For the purpose of an anticipa-
tion of a planned action the decision enhances processing in the ventral stream by a
feedback from the location-sensitive neurons to the integrating neurons, which appears
to shrink the receptive field around the target [15].
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Figure 4. Connections in the object-sensitive area. The input from the feature-sensitive neurons
project in two ways onto the object-sensitive neurons. The first component is a regular additive
input and the second prevents the neuron from the global inhibition. The latter works very
nonlinearly and has only an effect if the firing rate of a feature-sensitive neuron is high. After
the onset of visual search and after every wrong selection, the object-sensitive neurons are
activated for a short time from working memory.

3 Simulation results

The results presented here were restricted to a target defined as a conjunction of
features. Thus, both dimensions in the object-sensitive area (say red and vertical)
receive a top-down input, assumed to be directed from working memory.

In extension to the USHER and NIEBUR model [9], the neurons of the feature-sensitive
area compete for projecting to the next higher stage, i.e., within the receptive field of
an object-sensitive neuron the locations of the feature-sensitive neurons compete for an
enhanced processing. By recurrent connections resonance occurs only at those loca-
tions where both dimensions code the properties of the target.

The top row in figures 5 and 6 illustrates the strength of overlap between different
features in the input of the model. The broader the input, the more the maximum
changes due to noise. In each dimension the target and a distractor have one feature in
common. Although the target object-sensitive neurons receive a top-down input in both
dimensions and gain a competitive advantage (3™ row in fig. 5), a distractor which is
equal to the target in the first dimension wins the competition first (fig. 5): A selection
in the location modifies the competition in the feature-sensitive area as explained. The
emerging sharply tuned neural curve causes the object-sensitive neurons to represent
the selected object features. By inhibition of return the winner breaks down and the
search is continued unless the target is detected.

Comparing this experiment with the second experiment (fig. 6) in which the overlap of
the features in the input is reduced in the second dimension, the top-down activation is
now strong enough to guide the competition directly to the target.
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Figure 5. Results of a conjunction search
(target ‘0” w™-10,2; 0,2], three distractors
‘A’ with w™-[0,2; 0,5], two distractors ‘+’
with w™™- [0,5; 0,2]). From the top row:
location of the neuron with the maximal
input activation, feature-sensitive neurons,
object-sensitive neurons and location-
sensitive neurons. Left: first dimension.
Right: second dimension. After attention is
directed to two distractors the target is
found.
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Figure 6. Results of a conjunction search
(target ‘0” w™-10,2; 0,2], three distractors
‘A’ with w™-[0,2; 0,5], two distractors ‘+’
with w™™- [0,5; 0,2]). From the top row:
location of the neuron with the max. input
activation, feature-sensitive neurons, object-
sensitive neurons and location-sensitive
neurons. Left: first dimension. Right: second
dimension. Due to a lesser overlap in the
second dimension, the same distractor as in
the first simulation is not as harmful and the
target is detected immediately.
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4 Discussion

4.1 Relation to experiments

Coming back to the introductory questions, the model explains how a competition
among IT neurons can define the location of the saccade: The computational advantage
is transferred via feedback to layers with smaler receptive fields. These neurons code
the selective weight of an object feature by their activity but in a finer locational
resolution. Because different dimensions are linked together due to their common
location, the competition in separate areas is integrated into a uniform perception.

In extension to explaining a possible role of feedback to lower stages in the CHELAZZI
ET AL. [1] experiment, several visual search tasks have been simulated showing promi-
sing similarities to human reaction times. Fig. 6 shows the average times. It is assumed
that the arrangement and choice of the items influences the neural representation of a
population code to some extend as in this model, which improves or deterioates the
capability of a parallel competition resulting in different detection times.

0.45,

Figure 6. Mean and stdv. of detection times with five distractors
% % (10 simulations with different noise). In the first experiment the

target is found on average after the detection of two distractors
— often termed as “serial” search. But it is known that
conjunction search can be more efficient than “serial” seach
times, e.g. if saturated colour stimuli are used (exp. 7 in [16]).
These easier conditions result in a faster detection of the target,
Ko a Ko b as illustrated in the second experiment.
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4.2 Comparison to other models

MozER and SITTON distinguish between two classes of models: the spatial-selection
perspective and the ubiquitous-competition perspective [17]. In the spatial-selection
perspective attention selectively routes the neural activation; attention selection and the
representation of object features are separated modules. Most models of attention
belong in this category. In the ubiquitous-competition perspective attention emerges
from a competition among representations of stimuli in different areas. An example of
this category is [18].

The model presented here belongs the the latter category. Although it shows some
similarities to [19], it suggests an underlying neural circuit how object representation
at different hierarchies and location may interact. A feedback of a location area to the
represenation of stimuli is also presented in [20], but the competition in the identifica-
tion pathway is disregarded.

Although there are no findings that clearly settle between those models, the ubiquitous-
competition perspective seems to be more in line with current results and theories,
compare [7,8,3].

5 Conclusion

The results of this model suggest that visual search is always a parallel competition
among objects and no serial mechanism is needed but serial processing occurs by the
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enhancement of desired patterns and suppression undesired patterns. This model
supports the theories of a parallel and integrated competition in which different areas
bias the competition, e.g. [7, 8]. Future research has to extend the model to simulate
more than one receptive field and to consider experimental results more precisely.
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