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Comparing Neural Networks: A Benchmark on
Growing Neural Gas, Growing Cell
Structures, and Fuzzy ARTMAP

Dietmar Heinke and Fred H. Hamker

Abstract—This article compares the performance of some such as “lifelong learning,” "on-line learning,” or “incremental
recently developed incremental neural networks with the well- learning” [2]. This aspect comes from the objective of the
known multilayer perceptron (MLP) on real-world data. The  n\ypiS project within which framework this research was
incremental networks are fuzzy ARTMAP (FAM), growing neu- d 31 (41 Th | of thi ect i bot-visi
ral gas (GNG) and growing cell structures (GCS). The real- YON€ [31, [4]. € goal o IS~ Project 1S a robot-vision
world datasets consist of four different datasets posing different System that operates under changing environmental conditions
challenges to the networks in terms of complexity of decision and changing physical characteristics of nonuniform textured
boundaries, overlapping between classes, and size of the datasetsppjects. In our opinion, incremental networks like the growing
The performance of the networks on the datasets is reported o, al gas (GNG), growing cell structures (GCS) and fuzzy
with respect to measure cIaSS|f|cgt|qn error, number of training ARTMAP (FAM) are good candidates for this task. Instead of
epochs, and sensitivity toward variation of parameters. Statistical . g : .
evaluations are applied to examine the significance of the results. Only testing these networks on our own datasets, we decided
The overall performance ranks in the following descending order: to compare them also on a public dataset.

GNG, GCS, MLP, FAM. The need for such a benchmark using real-world statistical

Index Terms—Benchmark, comparison of neural networks, €valuations and comparison of different neural networks has
fuzzy ARTMAP (FAM), growing neural gas (GNG), growing cell been recently highlighted by a number of researchers ([5],
structures (GCS), multilayer perceptron (MLP), real-world data.  [1], [6]). However, there already exist some benchmarks:
For example, a relatively new benchmark and collection of
software at the University of Toronto is DELVE [7]. DELVE
) aims at giving researchers the possibility to compare their
R ECENTLY, the number of neural network paradigms haz?pproaches with others on many datasets.

ipcreased _dramatically. This development led us tq the pp, impressive benchmark is also provided by the ELENA-
question of which is the “best” neural network for solvingenort [g]. It considers seven classifiers in connection with
a pattern classification task. In the present paper we consiggee ariificial databases and four real-world databases. How-
this question within the following framework: First, the answegyer the only neural network it considers is the multilayer
shoulld_ be_given fora real_-world application. Thus, the pattefﬂerceptron (MLP), which is compared with classifiers such
classification tasks for this benchmark should use real-wotld |e4rning vector quantization, Gaussian quadratic classifiers,
data which are widely available, so that results are reproduciley oihers. In most cases MLP achieves good results. Hence,
and build a foundation for the evaluation of new networks. Theetter classifier than MLP might also be better than the clas-
datasets should comprise different properties posing differefito < giscussed in ELENA. In other words, the performance
challenges to the networks. of MLP seems to be a good reference in a benchmark.

Second, the results should yield some general statementg, addition, MLP is the most frequently and successfully
about the performance of the neural networks. Since such &g network in the neural network community. Therefore,
benchmark produces empirical results, statistical evaluatiops p poses an important challenge for any new network or
are necessary to examine the relevance of the results [1]glfssjfication algorithm. A work focusing on MLP is the
this does not lead to a clear, general answer, at least SOR®hmark published by Prechelt [9]. This article comprises
rules, e.g., properties of the data, should be stated under whighssification results for MLP and benchmark datasets of real-
certain performances are to be expected. world problems (PROBEN1) that can be obtained via FTP.

Third, our tested neural networks should in principle bg, s article we will compare the results of the MLP on the

able to learn new patterns without forgetting the old oneproBEN1 datasets with the results of GNG, GCS, and FAM
This goal is often discussed in the literature under terns, the same datasets.

. INTRODUCTION
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A. Multilayer Perceptrons the training process. It consists of three layers including one

The reference network in this article is the well-knowfidden layer. The hidden layer forms a topological structure
MLP. This network, including the training algorithm calleqdefined, m_general,throug_h_h_ypertetrahedrons. This is a special
backpropagation, was first introduced by [11]. Since then,%oe of neighborhood definition of the Kohonen feature map.

variety of different training algorithms has been developdtf Units have a Gaussian activation function, in which the
(see, e.g., [12], [13]). weights define the center of the Gaussian function and the

Prechelt [9] uses the resilient propagation algorithfi€an djstamce bereen a unit and all of its neighbprs Qefines
(RPROP) introduced in [14]. This algorithm performs a locd['€ activation radius. The output of the network is simply
adaptation of the weight-updates according to the behavior@ttermined by a weighted sum of the activation of the hidden
the error function. This is achieved by an individual updaté@Yer- The output unit with the largest activation gives the
value for each weight. This adaptive update-value evolvE@ssification result. _
during the learning process in such a way that as long as thé N !eaming algorithm for the hidden layer has two parts:
sign of the partial derivative of the error function stays thi€ first part is a Kohonen-style learning rule, where the best-
same, the adaptive value is increased:; otherwise, the adapfR@ching unit and its neighbors are moved toward the input

value is decreased. This method assumes that each time {figior- For the best-matching unit and the neighbors there are
sign changes the last update was too big and the gradietmg_dﬁfergnt learning rates dgflned. The se_cond_ part concerns
descent jumped over a local minimum. This algorithm ithe insertion and remo_val ofhldden I_ayer units. First, eaf:h time
similar to Quickprop [15], but requires less adjustment 6t t_Jmt is a best-matchlpg unit the “S|_gnal counter'i of this unit
parameters to be stable [14], [9]. It is an epoch learnird increased. Second', in each ladaptllon step all S|gnal counters
method and is therefore a good method for medium and snf decreased by a given fraction. Finally, after a fixed number

training sets such as those of PROBENL. of adaption steps in the space between the unit with the largest
signal counter and its most distant neighbor, a unit is inserted.
B. Fuzzy ARTMAP (FAM) A unit is removed if, roughly speaking, the signal counter falls

) _ ~ below a given threshold. The learning algorithm of the output
Fuzzy ARTMAP [16] is connected with a whole seriegayer s the well-known Delta Rule.

of neural networks developed on the basis of the adaptive
resonance theory (ART) mtroduped by Gros;berg [17]. FA Growing Neural Gas (GNG)
is capable of supervised learning and consists of two A
networks which form a three-layered network. The GNG [21] (see [22] for a similar approach) has its origin
The input ART network utilizes fuzzy rules in order toin the neural gas algorithm [23] and in the GCS. In [10] the
define the similarity between input vectors and weight vecto@(iginal GNG [21] is extended to a supervised network as
The fuzzy rules lead to a partition of the input vector space inR§oposed in [18]. The hidden layer of GNG is also based
hyperrectangles defined by the weight vectors. The maxim@fi & graph but requires no determination of the network
size of the hyperrectang|es is determined by the Vigi|an§l@ﬂensionality beforehand as in GCS. Instead, the network
parameter. The output ART network can combine differestarts with two units at random positions and inserts new nodes
hyperrectangles in order to connect them with their comm@ Positions with high errors. These nodes are connected by
class. This is necessary if unconnected regions in the in@@ges with a certain age. Old edges are removed, resulting
space belong to the same class. in a topology preserving map with an induced Delaunay
The |earning a|gorithm for the input ART shows the fo||0W.trianguIation. Similar to the GCS, after a fixed number of
ing behavior: First, it decides if the current input vector is closgeps multiplied with the actual number of nodes a new node
enough to any of the existing hyperrectangles, as determirigdnserted between the location with the highest error or signal
by the vigilance parameter. If it is, the closest weight vector gounter and the highest one of all its neighbors. The algorithm
modified so that the corresponding region comprises the ingl@es not have a deletion criterion. Pattern presentation and
vector as well. If none of the current hyperrectangles is clo§alculation of the hidden layer activity are the same as in
enough a new region is initialized as the locus of the inptlte GCS. Only the computation of the output activation has
vector. The learning algorithm for the output ART compareghanged, slightly, by using a trigonometric function (see [10]
the class the input vector is mapped onto with the class for details).
this input defined by the data set. If the classes are different,
the input ART is forced to introduce a new region and thig. Discussion

region is connected with the correct class. If the input ART. All networks discussed show a similar three-layer structure

has already _mtroduced a new hyperrectangle, this regIon iy an input layer, a hidden layer, and an output layer. Within
connected with the correct class. this topology the learning method of MLP performs a global

, adaptation to the training dataset, whereas the incremental

C. Growing Cell Structures (GCS) networks perform a local adaptation. This might lead to a better
The GCS [18] can perform either unsupervised or supegeneralization property of MLP than with the incremental
vised learning. The supervised version of GCS combines twetworks. Hence, MLP might achieve better classification
families of networks, Kohonen feature map [19] and radiaésults than GNG, GCS, and FAM. At the same time the
basis functions network [20], with the ability to grow duringearning methods of FAM, GCS, and GNG enable them to
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insert automatically new nodes in the hidden layers and, TABLE |
consequently, eliminate the crucial parameter of number of DISPERSIONMATRIX OF THE DATASET cancer
hidden layer units. Class | 1 2

The incremental networks have a similar learning method. 1 0 050
Each of them has an unsupervised learning component in the 2 (0911 0

hidden layer. Here, each weight vector defines a compact area

in which the corresponding node produces high output activity. ) ) _ )

The third layer maps these different areas onto a classificati@§ resultingk is used to compute the confusion matrix of the
result. However, within this framework FAM, GNG and gcdest dataset. This procedure ensures a certain generalization
follow different rules: The unsupervised learning of GCS arpility of the k-nearest neighbor class!fier and characterizes
GNG are more statistically oriented, whereas FAM perforni8€ test dataset. The confusion mat€iis

a more geometrical learning. The similarity measure in FAM C;; = N(class= j|class= i) (1)

is a Fuzzy rule which forms class regions based on hyper-

rectangles, whereas GNG and GCS use the Euclidean distaffféch is the normalized number of the classification regpit
which forms radial-based regions. Comparing GCS and GNi the class: is given.

one major advantage of GNG is its adaptive graph, particu|ar|y|f the confusion value between two classes .iS close tO 100%,
when deleting nodes. the two classes are overlapping. If the confusion value is small

and the corresponding dispersion value is small, the overlap
indicated by the dispersion matrix is not confirmed by the
confusion matrix. This suggests a complex boundary between
theses classes.
The k-nearest neighbor classifier was chosen for two rea-
This section introduces the basic measures on which thens: First, it is a good, practical reference for the Bayesian
analysis of the benchmark data we use is based. The analgsi®r which is needed for computing a good confusion matrix
aims at characterizing the dataset in termswérlappingand [8]. Second, here, the confusion matrix is used for qualitative
complex boundariep8]. Overlappingindicates how much the characterization of the datasets. This should be done by a
data vectors of the different classes interfere with each othefassifier that is not the main focus of this paper.
The complex boundaryndicates to what extent a decision
boundary between different classes is simple, e.g., straight The Benchmark Data

lines. These characteristics are evaluated in the foIIowingWe used four types of classification data presented in

paragraphs with the dispersion and the confusion matrix. [9]. These datasets were chosen because they show different

1) Dispersion Matrpc The dispersion matrix is a CIaSS'CaI.de rees of difficulties in terms of overlapping and complexity
measure for overlapping between classes [24]. For computlg boundaries

tsheEi g:jgfgogoma:t'g df'lritﬂ:; ggg&r:ngiﬁz Ic?aetgfagg t?fnggta I;gr application of the validation method the datasets were
P ) 53 ided into three sets: test set, training set, and validation set.

N samples withe classes. The class; hasN; samples and a v
P : " S5 * P The different sets are built from three different partitions of
center of gravityg, of the input patterng

the dataset: training set, 50%, test set and validation set, 25%

Ill. STRUCTURE ANALYSIS OF THE BENCHMARK DATA

A. Data Structure Analysis

LN each. This partition is applied to three different orders of the
I, =— Z lz(1) — g.|%; clasgz(])) = w; whole dataset, leading to three different sequences for training,
Ni =1 - cancerl , cancer2 , andcancer3 [9]. For each of these

sequences the structure is analyzed.
1) Cancer: The first classification problem is a diagnosis
of breast cancer originally obtained from the University of
lg. — g | Wisconsin Hospitals, Madison, from Dr. W. H. Wolberg
dispersioti, j) = % [26]. The dataset consists of nine inputs, two outputs and
i 690 examples and is calledancer . Examples of input
If the dispersion measure between two classes is large, gaameters are the clump thickness, the uniformity of cell
classes hardly overlap. If the measure between ¢lagslj is size and cell shape, the amount of marginal adhesion, and
close to one or even lower, clasmight have a strong overlapthe frequency of bare nuclei. The output classifies the data
with classy. But this is not necessarily the case, if the classes either benign or malignant based upon cell descriptions
are multimodal and have complex boundaries. Therefore, tba@lected by microscopic examination. The dispersion matrix
measure is necessary but not sufficient for determining tb&the wholecancer set (Table I) suggests a slight overlap
overlap and an additional measure is needed. This additiobatween the two classes, or at least a complex boundary.
measure is given by the confusion matrix. Table 1l shows a reasonably equal distribution of classes
2) Confusion Matrix: The confusion matrix is computedand samples. To determine the confusion matrigasfcerl |,
by a k-nearest neighbor classifier (KNN) [25] together withhe & of the KNN classifier is set to 12 with an error for
the error counting method: First, tHeis determined by the the validation dataset of 1.72%. This results in a confusion
minimal classification error on the validation dataset. Secondatrix with a test set error of 1.72%. Foancer2 &k =5

where]| - | is the Euclidean norm.
The dispersion matrix is computed by
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TABLE 1l TABLE VI
DISTRIBUTION OF SAMPLES IN cancer CoNFusioN MATRIX IN diabetes
Dataset | cancerl cancer2 cancer3 Dataset | diabetesl | diabetes2 | diabetes3
1 2 1 2 1 2 1 2 1 2 1 2
TrainSet | 229 121 | 228 122 | 243 107 1 443 55.7 | 30.8 69.2|60.9 39.1
ValidSet | 120 55 | 115 60 | 107 68 2 8.2 918|114 886 |14.6 85.3
TestSet | 109 65 | 115 59 | 108 66
TABLE VII
TABLE Il DisPERSION MATRIX OF THE DATASET glass
CONFUSION MATRIX IN cancer Class 1 5 3 4 5 6
Dataset cancerl cancer2 cancer3 1 0 1013]|3.38|5.82|846(1.95
1 9 1 2 1 2 2 0.14 0 3.54 1597|8751 1.96
O 0.91] 091 | 0.66 | 0.52 0 0.76
6 0771074 | 1.23|1.74 | 2.79 0
TABLE IV
DisPERSIONMATRIX OF THE DATASET diabetes
TABLE VIl
Class 1 2 DISTRIBUTION OF SAMPLES AND CLASSES OFglassl
1 0 0.37
9 058 | 0 Class 11213456
TrainSet | 36 |37 16|11 (6|11
ValidSet [ 20|16 | 7| 2 (1] 8
TABLE V TestSet 14 |23 | 4 0 2 10
DISTRIBUTION OF SaMPLES IN diabetes
Dataset | diabetesl | diabetes2 | diabetes3 . . . . .
1 9 1 9 1 9 The confusion matrix ofdiabetes?2 is computed with
— i idati 0
TramSet | 127 257 1 127 257 [ 120 262 :l§ = 09 Wlthh a va:c!datlon error of 26.IO4 /ofarlwd a tes_t herrlor of
ValidSet | 71 1211 71 121 | 68 124 _4.9 %. This con irms again an oyer ap of class 1 with class 2,
TestSet | 70 122 | 70 122 | 78 114 higher than ordiabetesl and little overlap between class

2 and class 1 is indicated.
In diabetes3 the overlap is not as high as idia-
is selected with an error for the validation dataset of 1.14%¢tesl anddiabetes2 . The confusion matrix is evaluated
and an error of 4.02% on the test set. Theof the KNN with £ = 12, the validation error is 26.56% and the test error
classifier forcancer is five with a validation dataset error ofis 23.44%.
3.43%. Based upon the test set, the error is 4.60%. Table 11I13) Glass: The third dataset gives examples from the classi-
indicates that alcancer sets have complex boundaries anéication of glass based upon the description of glass splinters.
only small overlaps. Henceancer is a well-behaved datasetThe glass dataset consists of nine inputs, six outputs and
with complex decision boundaries. 214 samples. It comprises the result of a chemical analysis
2) Diabetes: The second classification problem concernaf glass splinters (percent content of eight different chemical
the diagnosed diabetes of Pima Indians. Tdiebetes elements) plus the refractive index. These are used to classify
dataset has eight inputs, two outputs, and 768 examples. Bakedsample to be either float processed, or nonfloat processed
upon personal data (age, number of times pregnant) and thkevant knowledge for building windows, vehicle windows,
results of medical examinations (e.g., blood pressure, bodgntainers, tableware or head lamps. This data set is motivated
mass index, result of glucose tolerance test, etc.), it statbg,forensic needs in criminal investigation.
whether the Pima indian individual is diabetes positive. The dispersion matrix in Table \ref{tab:dispersion_glass}
This dataset contains some zero elements that seemshows a contradictory picture. There exists no overlap between
replace missing values. As with theancer dataset, the certain classes, e.g. class 5 and class 1. But it also suggests
dispersion matrix of the diabetes set (Table IV) suggeststl@t there are several overlappings, e.g., class 4 / class 3
strong overlap between the two classes, or at least a compdexd class 1 / class 2. The relationship between the number
boundary. of samples and the size of output and input indicages
The distribution of samples and classes of th&betes priori a problem with this dataset. There are not enough sam-
set is reasonably uniform (Table V). The best KNN = 3) ples to achieve a good partition into training, validation and
classifier fordiabetesl has a validation error of 26.0% andtest sets, as illustrated by Table \ref{tab:distribution_glass1},
a test error of 25.5%. The confusion matrix confirms the highef{tab:distribution_glass2} and \ref{tab:distribution_glass3}
overlap of class 1 with class 2, where most of the samplesfof the different partitions of \verb+glass+.
class 1 are expected to belong to class 2; it does not confirnThis lead to problems for the KNN in evaluating the
the overlap of class 2 with class 1. confusion matrix. Due to the small dataset and because the
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TABLE IX TABLE Xl
ConFusioN MATRIX OF glassl ConFusioN MATRIX OF glass3
Class | 1 2 3 4 5 6 Class | 1 2 3 4 5 6
1 786121.4(00]| 00 0.0} 0.0 1 8261174 |10.0] 0.0 |[0.0] 0.0
2 3041696 00| 00 {00} 0.0 2 250175000} 0.0 |00 0.0
3 25.0 | 75.0|0.0| 0.0 0.0} 0.0 3 71.4 1286 |0.0 0.0 |0.0| 0.0
4 - - - — - - 4 0.0 |75.0(00(250|0.0} 0.0
) 0.0 0.0 { 0.0} 50.0(0.0]|50.0 5 - - - - - -
6 20.0120.0100]| 0.0 |0.0]60.0 6 143 0.0 |0.0] 0.0 ;0.0 | 85.7
TABLE X TABLE XIV
DISTRIBUTION OF SAMPLES AND CLASSES OFglass2 DisPERSION MATRIX OF THE DATASET thyroid
Class 1 21314 ]|5]|6 Class 1 2 3
TrainSet |36 {33 |8 |11 |5 | 14 1 0 0.59 | 0.98
ValidSet | 15123 (4] 0 (3] 9 2 1.35 0 0.95
TestSet | 19|20(5| 2 |1| 7 3 41.87 | 17.75 0
TABLE Xl TABLE XV
CONFUSION MATRIX OF glass2 DISTRIBUTION OF SAMPLES IN thyroid
Class 1 2 3 4 5 6 Dataset thyroidl thyroid2 thyroid3
1 73.7 1263 0.0 0.0 0.0 0.0 1 2 3 1 2 3 1 2 3
2 40.0 | 55.0{ 00| 50 | 00| 00 Trainset | 91 181 3328 [88 192 3320 [ 82 189 3329
3 100.0 | 0.0 | 0.0 0.0 0.0 0.0 ValidSet | 35 96 1669 |38 86 1676 |42 78 1680
4 0.0 50.0 | 0.0 | 50.0 0.0 0.0 TestSet | 40 91 1669 |40 90 1670 |42 101 1657
) 0.0 0.0 | 0.0]100.0| 0.0 0.0
6 16.7 | 0.0 1 0.0] 0.0 |16.7]|66.7
TABLE XVI
CoNFUSION MATRIX OF thyroidl
TABLE XII Class 1 9 3
DISTRIBUTION OF SAMPLES AND CLASSES OFglass3 1 50.0 1 15.0 | 35.0
Class 112 1314{(5] 6 2 44 1122 | 83.3
Trainset | 29 143|796 13 3 0.5 0.8 | 98.7
ValidSet | 18 {21 {310(3| 9
TestSet |23 11271410 7

exist from class 3 with class 1 and class 2 and also class 4
with class 2.
KNN is a statistically based classifier, it can not detect the 4) Thyroid: The fourth and last dataset is callggroid
rules underlying the distribution of classes. Thus, this datasgid has 21 inputs, three outputs, and 7200 examples. In
poses a high demand on the ability of a classifier to achievg@ntrast to all other sets thtayroid  set contains nine
generalization. The confusion matrix in Table IX is computeggglean input values and four other inputs which are often
with k& = 23, a validation error of 29.63% resulting in a teskxactly zero, and some others which are nonnormalized values.
error of 37.74%. Becausk is much higher than the numberthe problem underlying this dataset is to diagnose thyroid
of samples of four classes in the test set, small classes Ry@er- or hypofunction based upon patient query data and
ignored in favor of often-appearing classes. patient examination data.

On glass2 the validation dataset is more suitable, sup- The dispersion matrix of all samples is shown in Table XIV.
ported by the best KNN withk = 4. Thus, small classes Class 1 shows possible overlap between class 2 and class
are not necessarily ignored. Nevertheless, this leads to a higiClass 2 has some overlap with class 3 and less with class
validation error of 42.59% and a test error of 43.40%. The This dataset includes many more samples of class 3 than
resulting confusion matrix is shown in Table XI. There is ghe others.
high overlap between class 1 and class 2. Although smallThe distribution of the samples shows a similar problem to
classes could have been recognized, there are severe probigraiswithglass . Class 3 is so dominant that class 1 and class
in detecting them. Thus, the small classes also have highmight be ignored by a statistically based classifier. In each
overlap with other classes. of the partial setshyroid2  andthyroid3  contain nearly

Glass3 seems to be less difficult than the previous onele same number of samples in each class astiigesidl
(Table XII). With £ = 3, a validation error of 33.33% and Because of the large size of tlieyroid data sets, only
a test error of 33.96%, the confusion matrix is shown ifour k's for the KNN classifier were tested on thgyroid1
Table XIlIl. There is an overlap between the larger classes clast. This test shows that= 3 results in a minimal validation
1 and class 2, but less than in the previous sets. Other overlap®r of 5.67% and a test error of 6.67%.
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The confusion matrix (Table XVI) confirms the overlapcan be ruled out. In analysis of the networks, performance the
between class 1 and class 3 and a small overlap between clasgtificance levelkr was set to 0.1.
and class 2 as indicated by the dispersion matrix, but does noApart from the classification error three additional perfor-
confirm the overlap between class 1 and clasthgroid2 mance measures were used: the mean number of inserted
andthyroid3  show the same kind of overlap. nodes, the mean number of epochs used for training and the

5) Summary: The four datasets represent different levels d@ffect of variation of the parameters. The first performance
difficulty of classification.Cancer is a relatively easy clas- measure is only appropriate for the incremental networks as it
sification problem, with complex boundaries between classevaluates their insert and removal criteria. In addition, a lower
only little overlap between classes, and sufficient number némber of nodes means fast computation of classification re-
data points.Diabetes increases the degree of difficultysults and less memory requirement, which might be important
by consisting of overlapping classes in addition to complér applications. The second performance measure gives an
boundariesGlass , in addition to complex boundaries andmpression of how efficient the learning algorithm performs.
overlapping of classes, shows a lack of sufficient data. TA&e third performance measure is an important measure, since
same can be stated foryroid . Howeverthyroid shows finding the “correct” parameters for the network determines the
the additional feature of having linear boundaries between theccess or failure of the training process. We use the standard
classes due to Boolean input variables. The linearity can @eviation of the classification error on the test dataset as a
considered a facilitation of classification, but as the followingneasure for the effect of parameter variations on the behavior
sections show poses, it poses some difficulties to the GN(B the network.
and GCS.

B. Multilayer Perceptron
IV. BENCHMARKING RULES 1) Selected Resultsin [9] a “two-step benchmark test”

For a better comparison and evaluation of this benchmat@s done: First, 12 different kinds of network topologies

all equations and benchmarking procedures are introducedWere used including one hidden layered, two hidden, layered
and short cut architectures. According to [9] the number of

runs for these architectures were too few in order to decide
) ) ) which architecture is the significant best. Therefore, the largest
The main comparison between the networks is based UpgRhitecture of the 5%-best architectures was chosen and 60
their classification error. Each network was trained with difyns were performed with these so-called pivot architectures.
ferent initial values, different parameters and different ordeg poth steps two different measures were published. In the
of the training dataset. The details on the training methods @it step only the best classification errors were documented
each network are given in the following sections. After thg,q iy the second benchmark step the mean and the standard
training the mean of classification error on the test dat@Set yeviation were listed.
and its standard deviatiofv) on validation and test dataset |, order to perform a complete comparison with our results
were determined. The corresponding header of the tables,i, results in [9] were included into the comparison. Hence,
calledmean teso). In addition, the best run on the test datasgf,q comparison with MLP made here can be understood
is computed and calletest best ~qualitatively only and the order of magnitude of the values
The statistical comparison of the network behavior is pejs meaningful.
formed with at-test [27]. The ¢-test is a parametric test 3 agjidation Method: For controlling the training process
that compares the mean values of two samples. The tggt early stopping method was used [9]: Training was stopped
is appropriate even when the variance is unknown and fien the stopping criterioGL, was fulfilled or when a
samples are small and independent. However, it assumesyimum of 3000 epochs occurred. The stopping criterion

that the distribution of the underlying population is normalGLa is fulfilled when GL exceeds the threshols
The extension of theé-test used here is also suitable when

the variances of the samples are different, which is true GL(t) = 100<E'va(t) _ 1>' )
in most cases. The application of thetest answers the Eopi(t)

guestion, whether netwotk performs significantly better than Exceeding the threshold might indicate that a loss of gen-

network B on average. Because these classification errors are,._~ . o .
eralization ability has occurredr was set to five.

usually approximately log-normal distributed, the classification - o X :
errors of the networks are logarithmically transformed. This The minimum validation errokiy(t) is obtained by

transformation tries to meet the normal distribution condition Eope(t) = min E,.(¢). (3)
and because it is strictly monotone the transformation does vt
not change the test result. Finally, tiieiest is performed  The current validation error is squared error percentage
with the hypothesis: logarithmic error of network and B (SgP)
are the same, versus logarithmic error of netwétrks larger .
. n
than error of networkA. If the resulting P-value of thet- Cmax — Cmin 2
> (05— Gi)
=1

A. General Benchmark Rules

L N E=100- —/——————
test indicates a significant res@lP < «), network A performs 00 n-p
J

significantly better than networld on average. If the result =t
is not significant, a similar performance of netwatkand B Herep denotes the number of patterns.

(4)
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TABLE XVII
FREE PARAMETERS OF GCS FOR glass, cancer, AND diabetes  DaTA

Param Set 1 2 3 4 5 6
network dimension 2 2 2 3 3 3
learning rate of best 0.1 0.1 0.2 0.1 0.1 0.2
learning rate of neighbours | 0.006 | 0.006 | 0.012 | 0.006 | 0.006 | 0.012
learning rate of output 0.15 | 0.15 | 0.15 | 0.1 0.1 0.1

adaption steps 100 200 200 100 200 100
decreasing counters 0.995 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995
removal threshold 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005

TABLE XVIII
FREE PARAMETERS OF GNG FOR ALL DATA SETS
Param Sct 1 2 3 4 5 6
learning rate of best 0.1 0.1 0.2 0.1 0.2 0.1
learning rate of neighbours | 0.006 | 0.006 | 0.012 | 0.006 | 0.012 | 0.006
learning rate of output 0.15 | 0.15 | 0.15 0.3 0.3 0.15
adaption steps 100 200 200 100 100 10
decreasing counters 0.995 1 0.995 | 0.995 | 0.995 | 0.995 | 0.995
decreasing of signal counters | 0.5 0.5 0.5 0.5 0.5 0.5
maximal age of the edges 50 50 50 50 50 50
C. Fuzzy ARTMAP (FAM) the thyroid  data set, the learning rate was set to 0.01.

1) Simulation ParametersThe value of the vigilance pa- Because of the huge amount of training datéhiyroid  the

rameterp was restricted to be less than or equal to 0.6, becaB@Ximum number of epochs was decreased to 20. All other
the size of the hyperrectangles becomes too small with largéf@meters remained the same. _

vigilance values. When this happens, each hyperrectangl¢?) Validation Method:First, the early stopping method
represents little more than on data point, and the ability §f€d With MLP was tested. But this led to a premature

generalization is reduced. In order to decrease the possifignination of the training process and therefore the early

variations of parameters the values of the vigilance paramef&?PPing method had to be modified. Each network was

were set to 0. 0.3. 0.5. or 0.6. trained up to a given maximum of epochs. During the training
2) Validation Method: Preliminary simulations showed PrOCess, after every five epochs te.. stopping criterion

that FAM always converged to a stable state and that tH{¢S applied. From the networks that fulfille@lL, the one
happened fast. Because early stopping can not be appliedVjf! the minimum validation squared error percentage (SEP)
this case, the following control of the training process wa¥as chosen to be the best of that ranwas set to five.

used: FAM was trained with a certain parameter set until it

converged to its stable state (number of epochs). After that, the Growing Neural Gas
status with the lowest validation set error was chosen and the_L) Simulation parametersSimilarly to the GCS, the GNG
corresponding test set error was computed. Here 40 runs weré '

; . L nsi f several fr rameters. B reliminary run
performed with ten different orders of the training datase}%,0 sists of several free parameters. Because pre ary runs
: - ave shown that only some parameters have a strong influence
with ten runs for each of four vigilance parameter values.

on the outcome of the training, only a few parameters were
varied (see Table XVIII). Again, for each dataset 30 runs
D. Growing Cell Structures were performed: Six runs of every parameter set, each with

. . - . five different randomly chosen initializations. The maximum
1) Simulation ParametersPreliminary runs with several : : .
nuargber of epochs in GNG simulations was 200.

va_lrlatlons of parameters have revealed a robustness agair Validation Method: The same validation method as with
slightly changing values, therefore, not all parameters WeEE~S was used

varied in different runs. Others, as seemed appropriate, were
set to fixed values in all simulations. Each network was trained
five times with six different parameter sets (Table XVII). The
initialization and the order of presentation were random. This
means that for each data set, 30 runs were performed. Thén this chapter the results are discussed under the aspects of
maximum number of epochs in GCS simulations was 56ifferent performance measures. As introduced in the bench-
because preliminary simulations showed that longer trainimgark rules, the performance measures are: classification error
does not lead to a better performance. on the test datasets, the effect of variations of parameters on
For thethyroid dataset slightly different parameters wer¢he behavior of the networks, the number of training epochs
used. Because of instable output weights in simulations wiséimd the number of inserted nodes. Table XIX summarizes the

V. RESULTS
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TABLE XIX
THIS TABLE STATES THE BEST NETWORK FOR EVERY PERFORMANCE MEASURE ON EACH DATASET. THE FIRST THREE COLUMNS SHOW THE RESULT ON THE
CLASSIFICATION ERROR (BEST CLASSIFICATION ERROR, BEST MEAN OF CLASSIFICATION ERROR AND SIGNIFICANCE OF MEAN). THE THIRD COLUMN STATES THE
NETWORK WITH THE FEWEST TRAINING EPOCHS THE FOURTH CoLUMN NOTES THE NETWORK WITH FEWEST INSERTED NODES THE LAST COLUMN
GIVES THE NETWORK WITH THE SMALLEST STANDARD DEVIATION WHICH |s USED AS MEASURE FOR THEROBUSTNESS OF THENETWORKS
AGAINST PARAMETER VARIATIONS. PLEASE NOTE, THAT MLP I1s NEITHER INCLUDED IN THE SIGNIFICANCE TEST BECAUSE THE NECESSARY
DETAILS ARE NOT AVAILABLE NOR IN THE COMPARISON OF NODES BECAUSE OF ITS INCOMPATIBILITY WITH THE INCREMENTAL NETWORKS

Dataset | best-min | best-mean | signif.-worse | best-epoch | best nodes | best o
cancerl GCS MLP FAM FAM FAM MLP
cancer? FAM GCS - FAM FAM GNG
cancerd MLP GCS FAM FAM FAM GNG
diabetesl GCS MLP FAM FAM FAM GNG
diabetes2 | MLP MLP - FAM FAM GNG
diabetes3 | MLP MLP FAM FAM FAM GNG
thyroid1 FAM MLP GNG, GCS FAM FAM GCS
thyroid2 MLP MLP GNG, GCS FAM FAM GNG
thyroid3 MLP MLP GNG, GCS FAM GNG MLP

glassl GCS GNG - FAM FAM FAM

glass2 FAM GNG - FAM FAM MLP

glass3 GCS GCS - FAM FAM FAM

TABLE XX

COMPARISON OF NETWORKS ON THE cancer DATASETS. BEST RESULT ON THE TEST SET; MEAN RESULT AND
stdv. oN THE TEST SET; MEAN NUMBER OF EPOCHS TRAINED; THE MEAN NUMBER OF INSERTED NODES

[ Network [ dataset [ test-best | test-mean(o) | epoch-mean(o) | nodes
GCs T 060 | 1.84(0.98) | 4L.00 (8.75) | 105.80
GNG 1 1.15 1.70 (0.39) 163.17 (27.62) | 43.07
FAM 1 172 | 640 (2.73) | 345 (1.28) | 23.12
MLP 1 1.15 1.47 (0.60) 152 (111)

GCS 5 300 | 4.04(069) | 42.17 (10.80) | 110.93
GNG 2 2.90 4.22 (0.55) 159.33 (38.90) | 40.23
FAM 3 172 | 6.08 (240) | 3.44 (1.16) | 19.86
MIP 3 575 | 4.52 (0.70) | 81.00 (72.00)

GCS 3 530 | 3.12(0.64) | 41.33(3.30) |107.70
GNG 3 530 | 3.13 (047) | 132.67 (54.67) | 37.00
FAM 3 530 | 7.08 (3.63) | 2.67 (0.76) | 17.77
MLP 3 530 | 3.37 (0.71) | 51.00 (16.00)

results of this paper. Tables XX—XXIII show the details of theliabetes3 . However excludingliabetes3 , FAM with its

results. best network is in the range of the best of GCS and GNG. In
contrast tocancer the confusion matrix of theliabetes
A. Classification Error sets, especially onliabetesl anddiabetes2 indicates

high overlap. In particulargiabetes2  shows the strongest

In addition to Tables XX-XXIllI, Figs. 1-4 gi hical
n accition fo fabies ; F10S give a grap ICaoverlap. This matches the slightly worst performance of all

illustration of the performance on the datasets.

As seen in Table XX and Fig. 1, the best classification errgletworks ondlabetesz ) .
of all networks oncancer are in the same range. The same Thethyroid dataset results in a different performance of

is true for the mean values of the classification error on tf{a€ networks compared to other datasets (Fig. 3, Table XXII).
test dataset, excluding the result of FAM. Faamcerl and Here, the GNG and GCS perform significantly worse than
cancer3 the-test confirms that FAM performs significantlyMLP and FAM. Interestingly, the results of the FAM and
worse than all other networks (Table XIX). Apparently, oMLP are similar, especially the standard deviation of FAM,
dataset with complex boundaries and no overlap such which contrary results with all other datasets is comparable
cancer , GNG, GCS, and MLP performed similarly well,to that of the MLP. There are two reasons for the good
whereas FAM encountered problems. performance of FAM: First, the number of data samples for
On the diabetes dataset (Fig. 2, Table XXI) MLP percertain classes is too small compared to the complexity of
forms slightly better than the other networks, especially dhe dataset. Statistically oriented classifiers, such as GNG and
diabetes2 . Again, the FAM performs the worst; this isGCS, tend to have problems with such a dataset, because
shown by thet-test to be significant fodiabetesl and they might ignore these classes. Geometric methods, such as
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TABLE XXI
CoMPARISON OF NETWORKS ON THE diabetes  DATASETS. BEST RESULT oN THE TEST SET; MEAN RESULT
AND stdv. oN THE TEST SET; MEAN NUMBER OF EPOCHS TRAINED; THE MEAN NUMBER OF INSERTED NODES

[ Network [ dataset | test-best | test-mean(o) [ epoch-mean(c) | nodes
GCS T 2100 | 26.08 (2.72) | 34.83 (9.80) | 89.45
GNG i 53.40 | 26.01 (1.75) | 153.33 (42.35) | 39.60
FAM 1 23.44 33.11 (3.78) 6.60 (1.06) 25.95
MLP 1 55.00 | 24.57 (353) | 192 (98)

GCS 2 25.52 31.61 (3.77) 32.33 (13.11) 83.00
GNG 2 26.60 30.19 (1.61) | 122.17 (59.78) | 32.00
FAM 2 27.08 34.84 (3.39) 6.65 (1.41) 26.68
MLP 2 23.44 25.91 (2.50) 119 (42)
GCS 3 52.40 | 26.23 (2.62) | 39.33 (11.94) | 103.43
GNG 3 51.90 | 25.43 (1.85) | 147.67 (49.14) | 43.53
FAM 3 5812 | 34.23 (3.29) | 6.60 (L.15) | 26.55
MLP 3 51.35 | 23.06 (1.01) | 307 (193)
TABLE XXII

CoMPARISON OF NETWORKS ON THEthyriod ~ DATASETS. BEST RESULT ON THE TEST SET; MEAN RESULT,
AND stdv. oN THE TEST SET MEAN NUMBER OF EPOCHS TRAINED; THE MEAN NUMBER OF INSERTED NODES

| Network | dataset | test-best | test-mean(o) [ epoch-mean(o) | nodes |

acs 1 6.30 | 6.79 (0.28) | 20.00 (0.00) | 477.53
GNG 1 6.20 7.20 (0.40) 167.33 (52.34) | 92.03
FAM 1 167 | 2.34 (052) | 2.33 (0.48) | 32.76
MLP 1 2.00 2.32 (0.67) 491 (319)

GCS 2 6.60 6.92 (0.30) 20.00 (0.00) 475.86
GNG 2 6.40 | 7.25 (0.21) | 172.41 (45.49) | 93.72
FAM 2 1.28 2.20 (0.47) 2.35 (0.59) 34.30
MLP P 128 | 1.86 (0.41) | 660 (460)

GCS 3 690 | 7.35 (0.22) | 19.83 (0.01) | 47477
GNG 3 6.70 | 7.74(0.40) | 185.50 (32.01) | 96.90
FAM 3 1.89 2.43 (0.34) 2.55 {0.51) 39.60
MLP 3 150 | 2.09 (0.31) 598 (624)

TABLE XXl

CompPARISON OF GCS, GNG, FAM,AND MLP oN THE glass DATASETS. BEST RESULT ON THE TEST SET; MEAN
ResuLT AND stdv. oN THE TEST SET; MEAN NUMBER OF EPOCHS TRAINED; MEAN NUMBER OF INSERTED NODES

| Network | dataset | test-best | test-mean(o) | epoch-mean(o) | nodes
GCS 1 22.60 34.09 (6.03) 43.17 (9.51) 37.73
GNG 1 22.60 33.84 (7.46) | 137.00 (44.07) | 21.90
FAM 1 33.96 | 39.76 (3.59) | 2.20 (0.61) | 21.65
MLP i 32.08 | 39.03 (8.14) 67 (44)
GCS 2 32.10 43.97 (4.61) 38.00 (12.36) | 32.63
GNG 2 32.10 39.18 (3.89) | 157.33 (36.14) | 21.70
FAM 2 28.90 40.82 (8.50) 2.33 (0.47) 20.30
MLP 2 52.83 | 55.60 (2.83) 39 (9)
GCS 3 9450 | 3541 (8.30) | 4L.17 (10.14) | 35.63
GNG 3 26.40 40.30 (9.18) | 162.67 (41.41) | 21.73
FAM 3 30.10 | 44.10 (7.60) | 2.20 (0.61) | 22.30
MLP 3 33.96 59.25 (7.83) 66 (46)
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FAM, might have no problems with such datasets. This is alby the hidden layer of FAM than to radial-based regions of

supported by the results withlass (see below). Second, GNG and GCS. The same can be stated for MLP. Apparently,
nine inputs ofthyroid  are boolean variables. Therefore, th&AM can show good performance if the dataset consists of
boundaries between the different classes can be straight lifeear boundaries, or is generated by Boolean input values,
This is more suitable for the hyperrectangle regions generatthtains some classes with a small amount of data.
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The glass dataset is the only one with which MLP hasonglassl isthe MLP not as bad. GNG, GCS and FAM show
problems (Fig. 4, Table XXIIl). Oglass2 the worst GNGis no significant difference in result. The high errors of MLP
better than the best MLP, aglass2 andglass3 the mean may be due to the small number of samples in this dataset.
MLP has more errors than the worst GNG, GCS or FAM. Onlin a similar line of argument to that applied tioyroid |, the
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Fig. 5. Mean, best, and worst test error of the GCS in ten runs on the first set of each benchmark dataset with a fixed parameter set and a random
initialization of the weights. No validation criteria are used.

geometrically oriented FAM has fewer problems with smalnalysis of GCS and GNG shows that these networks adapt
sample size than the statistically oriented GNG and GCS. Tlysickly to the training set. Fig. 5 gives examples for GCS,
apparently allows FAM to overcome its generally bad perfofer details see [10]. Only a few epochs are needed to reach
mance. However, iglass the shapes of the class boundariethe range of the best results. Further training only slightly
are not as suitable for FAM as ithyorid , and therefore improves the result, but a higher amount of hidden nodes

FAM shows results similar to those of GNG and GCS. emerges. In general, if a network is needed that is not the
very best but is fast (while small), a GCS should be used and
B. Number of Inserted Nodes trained only a few epochs. This is because GCS does not stop

FAM has the lowest number of nodes in all cases apart framoutomatically as does FAM.
thyroid3  (Table XIX). However, the number of inserted
nodes in GCS and GNG roughly depends on the ratio between
trained epochs and adaption steps, since GCS and GNG insert VI. CONCLUSION
new nodes every epoch. Additional examinations in [10] reveal The present paper began with the question of which is
that GCS and GNG still perform better than FAM with fewethe “best” neural network for solving a pattern classification
numbers of training epochs, thus, a smaller amount of nodessk—the well-known MLP, or one of the more recently
Hence, if number of nodes is an important issue, GNG améveloped incremental networks, FAM, GCS, or GNG? This
GCS can be tuned to have fewer nodes without losing mughestion was examined in the framework of four real-world
performance. datasets representing different levels of difficulty of classifi-
cation problems. The first datasata@cer ) is a relatively
easy classification problem with complex boundaries between
Table XIX shows that GNG has for most datasets the lowastsses, only little overlap between classes and a sufficient
standard deviation. This is considered to be low sensitivitumber of data points. The second datasdibbietes )
to variation of parameters. The most prominent exception iiscreases the degree of difficulty by having overlapping classes
glass , where FAM is generally better. This might be due tin addition to complex boundaries. The third datagiigs )
the difference between geometrically oriented and statistica#ijiows, besides complex boundaries and overlapping of classes,
oriented classifiers as discussed above. a lack of sufficient data. The same is true for the fourth dataset
In [10] the different effects of the parameters in the differerfthyroid ). Howeverthyroid shows an additional feature
networks are examined further. For FAM, this reveals that tloé linear boundaries between the classes due to Boolean input
order of the training data is most important for the outcomeariables.
of the training. This is not surprising, because the order The reference in this benchmark was the result of the
influences the growth of the hyperrectangles which determinestensive study of MLP by Prechelt [9]. From a theoretical
the training result. The vigilance parameter plays an importariewpoint, one could expect a better performance for MLP
role only when it meets the correct discretization of the datas#tan of the incremental networks because MLP performs a
For GNG and GCS the crucial parameters is the adaption stgjmbal adaptation to the training dataset, whereas the incre-
If the adaption step is chosen too high, no insertions for ramgental networks perform a local adaptation. The results of

C. Variation of Parameters

classes tend to occur. this benchmark show that this is clearly not the case. On the
contrary, MLP performs in the same range as the incremental
D. Number of Epochs networks. Thus, the elimination of the parameter of the number

For all datasets FAM shows the lowest number of epocb$hidden nodes through the incremental mechanism outweighs
to reach automatic termination of learning. However, detailede disadvantage of local adaption in the incremental networks.
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Originally, we aimed at finding a clear answer to the quesf2]
tion which is the “best” network in terms of the classification
error. Since none of the networks consistently performeg,
significantly better than the other networks, there is no clear
answer to our question. However, we found some rules Whi(;P
state how well a certain network performs, given certai
properties of a dataset. These rules are summarized here.

Except for the fourth dataset MLP, GCS, GNG perform 5]
similarly, whereas FAM behaves worse and for the first twé
datasets this behavior is significantly worse according to the
t-test. Hence, FAM tends not only to have problems with®
datasets having overlapping classes but also with datasets
having complex boundaries. For the third dataset, despitél
its overlapping properties, the performance of FAM is not
significantly worse, because its more geometrically oriented
behavior has fewer problems with the few data points in thi$s]
dataset than the statistically oriented GNG and GCS.

For the fourth dataset a different picture emerges: GNG
and GCS behave significantly worse than MLP and FAMI9]
This is mainly due to the linear boundaries between classes
following the Boolean input variables. For these boundaries,
the hyperrectangle-based regions of FAM and the polygel9]
based regions of MLP are more suitable than the radial-based
regions of GNG and GCS.

Apart from the classification error, other performance meé]
sures were examined in this paper. For the number of inserted
nodes, an important performance measure for the incremenia|
networks, FAM performs best. However, the training of GNG
and GCS can be tuned so that they insert less units but s[tllﬁ]
perform better than FAM. For the number of epochs FAN4]
shows the shortest training time. However, GNG and GCS
also show rapid convergence, whereas MLP typically shows;
slow convergence. Finally, the dependence of the variation
of performance upon variation of parameters was examinétf!
Here, GNG clearly outperforms the other networks. For MLP,
the time consuming search of a good architecture and the best
choice of parameters, as demonstrated by [9], plays a crudidll
role. Only for the datasets with few data samples FAM does
show fewer variations in behavior than GNG. [18]

In summary, considering the similar classification perfor-
mance of MLP, GNG, GCS, the rapid convergence of GNfg)
and GCS and the small dependence on variation of parameters
of GNG, the overall ranking of networks in descending ord 70
is: GNG, GCS, MLP, and FAM. However, when the dataset
shows linear boundaries between classes, FAM and MLP can
perform better than GNG and GCS. (21

[22]
ACKNOWLEDGMENT

The authors thank Professor H.-M. Gross and D. Surmeli f&°!
comments on a preliminary version. They also wish to thank
T. Vesper and S. Wohlfahrt for implementing the algorithms[24]

[25]
REFERENCES [26]

[1] A. Flexer, “Statistical evaluation of neural network experiments: Mini{27]
mum requirements and current practice,"Hroc. 13th European Meet.
Cybern. Syst. Res1996.

F. H. Hamker and H.-M. Gross, “A lifelong learning approach for
incremental neural networks,” itdth European Meet. Cybern. Syst. Res.
(EMCSR’98) Vienna, Austria, 1998.

—_, “Task-relevant relaxation network for visuo-motory systems,” in
Proc. ICPR'96—Int. Conf. Pattern Recognitioviienna, Austria, 1996,
pp. 406-410.

F. Hamker, T. Pomierski, H.-M. Gross, and K. Debes, “Ein visuo-
motorisches System zur Loesung der MIKADO-Sortieraufgabe,” in
Proc. SOAVE’'97—Selbstorganization von adaptivem Verhdltaenau,
Germany, 1997.

L. Prechelt, “A quantitative study of experimental evaluations of neu-
ral network learning algorithms: Current research practidégural
Networks vol. 9, pp. 457-462, 1996.

B. D. Ripley, “Flexible nonlinear approaches to classification,” in
From Statistics to Neural Networks: Theory and Pattern Recognition
Applications Berlin, Germany: Springer-Verlag, 1993, pp. 105-126.
C. E. Rasmussen, R. M. Neal, G. E. Hinton, D. van Camp, and
M. Revow, “The DELIVE Manual Versionl.0,” Univ. Toronto,
Toronto, Ontario, Canada, Tech. Rep. Available: http://www.
cs.utoronto.ca/delve/, 1996.

A. Guérin-Dugie et al,, “Deliverable R3-B4-P-Task B4: Benchmarks,”
Elena-NerveslIEnhanced Learning for Evolutive Neural Architecture
Tech. Rep., June 1995. Available FTP: ftp.dice.ucl.ac.be/pub/neural-
nets/ELENA/Benchmarks.ps.Z

L. Prechelt, “PROBEN1—A set of benchmarks and benchmarking rules
for neural network training algorithms,” Tech. Report 21/94, Fakult
fur Informatik, Universiat Karlsruhe, Germany, 1994. Available FTP:
ftp.ira.uka.de /pub/papers/techreports/1994/1994-21.ps.Z

F. Hamker and D. Heinke, “Implementation and comparison of growing
neural gas, growing cell structures and fuzzy artmap,” Tech. Rep.,
Schriftenreihe des FG Neuroinformatik der TU limenau, Report 1/97,
1997.

D. E. Rumelhart, J. L. McClelland, and PDP Research Gr&gpallel
Distributed Processing; Explorations in the Microstructure of Cognition:
Volume 1—Foundations Cambridge, MA: MIT Press, 1988.

P. J. Werbos, “Backpropagation: Past and future,’Pioc. ICNN-88
New York, 1988, pp. 343-353.

T. Tollenaere, “Supersab: Fast adaptive backpropagation with good
scaling properties,Neural Networks 1990, pp. 561-573.

M. Riedmiller and H. A. Braun, “A direct adaptive method for faster
backpropagation learning: The RPROP algorithm,TBHEE ICNN-93

San Francisco, CA, 1993, pp. 586-591.

S. E. Fahlman, “Faster learning on backpropagation: An empirical
study,” in Proc. 1988 Connectionist Summer Schd®88, pp. 38-59.

G. A. Carpenter, S. Grossberg, M. Markuzon, J. H. Reynolds, and D. B.
Rosen, “Fuzzy ARTMAP: A neural network architecture for incremental
supervised learning of analog multidimensional magg&EE Trans.
Neural Networksvol. 3, pp. 698-713, 1992.

S. Grossberg, “Adaptive pattern classification and universal recoding:
I. Parallel developement and coding of neural feature detectBis|”
Cybern, vol. 23, pp. 121-134, 1976.

B. Fritzke, “Growing cell structures—A self-organizing network for
unsupervised and supervised learninbléural Networks vol. 7, no.

9, 1994.

T. Kohonen, “Self-organized formation of topologically correct feature
maps,” Biol. Cybern, vol. 43, pp. 59-69, 1982.

J. Moody and C. Darken, “Learning with localized receptive fields,”
in Proc. 1988 Connectionist Models Summer SchBolTouretzky, G.
Hinton, and T. Sejnowski, Eds. San Mateo, CA: Morgan Kaufmann,
1988, pp. 133-143.

] B. Fritzke, “A growing neural gas network learns topologies,”Ad-

vances in Neural Inform. Processing Sy&. Tesauro, D. S. Touretzky,
and T. K. Keen, Eds. Cambridge, MA: MIT Press, 1995, pp. 625-632.
J. Bruske and G. Sommer, “Dynamic cell structure learns perfectly
topology perserving map,Neural Comput. vol. 7, pp. 845-865,
1995.

T. Martinetz and K. J. Schulten, “A neural-gas network learns topolo-
gies,” in Artificial Neural Networks T. Kohonen, K. Makisara, and O.
Simula, Eds., Amsterdam, 1991, pp. 397—402.

C. W. Therrien,Decision Estimation and ClassificationNew York:
Wiley, 1989.

R. O. Duda and P. E. HarRattern Classifiaction and Scene Analysis
New York: Wiley, 1973.

W. H. Wolberg, “Cancer dataset obtained from Wiliams H. Wolberg
from the University of Wisconsin Hospitals, Madison.”

W. W. Hines and D. C. MontgomeryProbability and Statis-
tics in Engineering and Management Sciencélew York: Wiley,
1990.



HEINKE AND HAMKER: COMPARING NEURAL NETWORKS

Dietmar Heinke received the diploma degree in
electrical engineering in 1990 from the Technical
University Darmstadt, Germany. In 1993 he joined
the Department of Neuroinformatics at the Univer-
sity of llmenau, Germany, where he received the
Ph.D. degree in 1997.

From 1991 to 1992 he work at the Researct
Institute for Applied Artificial Intelligence (FAW)
in Ulm. While in llmenau, he visited the Cognitive
Science Centre, School of Psychology, University
of Birmingham, U.K. as a Research Fellow in 1996.

1291

Fred H. Hamker received the diploma degree
in electrical engineering from the Univemit”
Paderborn, Germany, in 1994. Since then he
has worked toward the Ph.D. degree at the
Department of Neuroinformatics, Technische
Universitt limenau (Germany), which is currently
under review. The main topics in his thesis cover
biological models of attention and neural networks
for life-long learning encountering the stability-
plasticity-dilemma.

In 1997 he participated at the Workshop on

Since 1998 he has been a Postdoctoral Research Fellow at the same institudenromorphic Engineering in Telluride (USA). Recently he joined the medical

His research interests include cognitive neuroscience, computational modelotata analysis project at the Workgroup of Adaptive System Architecture,

visual object recognition, visual attention, and neural networks. Department of Computer Science, J. W. Goethe UnivarsErankfurt am
Main.



