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Comparing Neural Networks: A Benchmark on
Growing Neural Gas, Growing Cell

Structures, and Fuzzy ARTMAP
Dietmar Heinke and Fred H. Hamker

Abstract—This article compares the performance of some
recently developed incremental neural networks with the well-
known multilayer perceptron (MLP) on real-world data. The
incremental networks are fuzzy ARTMAP (FAM), growing neu-
ral gas (GNG) and growing cell structures (GCS). The real-
world datasets consist of four different datasets posing different
challenges to the networks in terms of complexity of decision
boundaries, overlapping between classes, and size of the datasets.
The performance of the networks on the datasets is reported
with respect to measure classification error, number of training
epochs, and sensitivity toward variation of parameters. Statistical
evaluations are applied to examine the significance of the results.
The overall performance ranks in the following descending order:
GNG, GCS, MLP, FAM.

Index Terms—Benchmark, comparison of neural networks,
fuzzy ARTMAP (FAM), growing neural gas (GNG), growing cell
structures (GCS), multilayer perceptron (MLP), real-world data.

I. INTRODUCTION

RECENTLY, the number of neural network paradigms has
increased dramatically. This development led us to the

question of which is the “best” neural network for solving
a pattern classification task. In the present paper we consider
this question within the following framework: First, the answer
should be given for a real-world application. Thus, the pattern
classification tasks for this benchmark should use real-world
data which are widely available, so that results are reproducible
and build a foundation for the evaluation of new networks. The
datasets should comprise different properties posing different
challenges to the networks.

Second, the results should yield some general statements
about the performance of the neural networks. Since such a
benchmark produces empirical results, statistical evaluations
are necessary to examine the relevance of the results [1]. If
this does not lead to a clear, general answer, at least some
rules, e.g., properties of the data, should be stated under which
certain performances are to be expected.

Third, our tested neural networks should in principle be
able to learn new patterns without forgetting the old ones.
This goal is often discussed in the literature under terms
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such as “lifelong learning,” ”on-line learning,” or “incremental
learning” [2]. This aspect comes from the objective of the
MIRIS project within which framework this research was
done [3], [4]. The goal of this project is a robot-vision
system that operates under changing environmental conditions
and changing physical characteristics of nonuniform textured
objects. In our opinion, incremental networks like the growing
neural gas (GNG), growing cell structures (GCS) and fuzzy
ARTMAP (FAM) are good candidates for this task. Instead of
only testing these networks on our own datasets, we decided
to compare them also on a public dataset.

The need for such a benchmark using real-world statistical
evaluations and comparison of different neural networks has
been recently highlighted by a number of researchers ([5],
[1], [6]). However, there already exist some benchmarks:
For example, a relatively new benchmark and collection of
software at the University of Toronto is DELVE [7]. DELVE
aims at giving researchers the possibility to compare their
approaches with others on many datasets.

An impressive benchmark is also provided by the ELENA-
report [8]. It considers seven classifiers in connection with
three artificial databases and four real-world databases. How-
ever, the only neural network it considers is the multilayer
perceptron (MLP), which is compared with classifiers such
as learning vector quantization, Gaussian quadratic classifiers,
and others. In most cases MLP achieves good results. Hence,
a better classifier than MLP might also be better than the clas-
sifiers discussed in ELENA. In other words, the performance
of MLP seems to be a good reference in a benchmark.

In addition, MLP is the most frequently and successfully
used network in the neural network community. Therefore,
MLP poses an important challenge for any new network or
classification algorithm. A work focusing on MLP is the
benchmark published by Prechelt [9]. This article comprises
classification results for MLP and benchmark datasets of real-
world problems (PROBEN1) that can be obtained via FTP.
In this article we will compare the results of the MLP on the
PROBEN1 datasets with the results of GNG, GCS, and FAM
on the same datasets.

II. I NTRODUCTION TO THE NEURAL NETWORKS USED

For a better comparison of our performance evaluation an
introduction to the networks is given. This brief overview
mainly gives a description of the training algorithm, the
number of parameters and their meaning (see [10] for details).

1045–9227/98$10.00 1998 IEEE
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A. Multilayer Perceptrons

The reference network in this article is the well-known
MLP. This network, including the training algorithm called
backpropagation, was first introduced by [11]. Since then, a
variety of different training algorithms has been developed
(see, e.g., [12], [13]).

Prechelt [9] uses the resilient propagation algorithm
(RPROP) introduced in [14]. This algorithm performs a local
adaptation of the weight-updates according to the behavior of
the error function. This is achieved by an individual update-
value for each weight. This adaptive update-value evolves
during the learning process in such a way that as long as the
sign of the partial derivative of the error function stays the
same, the adaptive value is increased; otherwise, the adaptive
value is decreased. This method assumes that each time the
sign changes the last update was too big and the gradient-
descent jumped over a local minimum. This algorithm is
similar to Quickprop [15], but requires less adjustment of
parameters to be stable [14], [9]. It is an epoch learning
method and is therefore a good method for medium and small
training sets such as those of PROBEN1.

B. Fuzzy ARTMAP (FAM)

Fuzzy ARTMAP [16] is connected with a whole series
of neural networks developed on the basis of the adaptive
resonance theory (ART) introduced by Grossberg [17]. FAM
is capable of supervised learning and consists of two ART
networks which form a three-layered network.

The input ART network utilizes fuzzy rules in order to
define the similarity between input vectors and weight vectors.
The fuzzy rules lead to a partition of the input vector space into
hyperrectangles defined by the weight vectors. The maximum
size of the hyperrectangles is determined by the vigilance
parameter. The output ART network can combine different
hyperrectangles in order to connect them with their common
class. This is necessary if unconnected regions in the input
space belong to the same class.

The learning algorithm for the input ART shows the follow-
ing behavior: First, it decides if the current input vector is close
enough to any of the existing hyperrectangles, as determined
by the vigilance parameter. If it is, the closest weight vector is
modified so that the corresponding region comprises the input
vector as well. If none of the current hyperrectangles is close
enough a new region is initialized as the locus of the input
vector. The learning algorithm for the output ART compares
the class the input vector is mapped onto with the class of
this input defined by the data set. If the classes are different,
the input ART is forced to introduce a new region and this
region is connected with the correct class. If the input ART
has already introduced a new hyperrectangle, this region is
connected with the correct class.

C. Growing Cell Structures (GCS)

The GCS [18] can perform either unsupervised or super-
vised learning. The supervised version of GCS combines two
families of networks, Kohonen feature map [19] and radial
basis functions network [20], with the ability to grow during

the training process. It consists of three layers including one
hidden layer. The hidden layer forms a topological structure
defined, in general, through hypertetrahedrons. This is a special
type of neighborhood definition of the Kohonen feature map.
Its units have a Gaussian activation function, in which the
weights define the center of the Gaussian function and the
mean distance between a unit and all of its neighbors defines
the activation radius. The output of the network is simply
determined by a weighted sum of the activation of the hidden
layer. The output unit with the largest activation gives the
classification result.

The learning algorithm for the hidden layer has two parts:
the first part is a Kohonen-style learning rule, where the best-
matching unit and its neighbors are moved toward the input
vector. For the best-matching unit and the neighbors there are
two different learning rates defined. The second part concerns
the insertion and removal of hidden layer units. First, each time
a unit is a best-matching unit the “signal counter” of this unit
is increased. Second, in each adaption step all signal counters
are decreased by a given fraction. Finally, after a fixed number
of adaption steps in the space between the unit with the largest
signal counter and its most distant neighbor, a unit is inserted.
A unit is removed if, roughly speaking, the signal counter falls
below a given threshold. The learning algorithm of the output
layer is the well-known Delta Rule.

D. Growing Neural Gas (GNG)

The GNG [21] (see [22] for a similar approach) has its origin
in the neural gas algorithm [23] and in the GCS. In [10] the
original GNG [21] is extended to a supervised network as
proposed in [18]. The hidden layer of GNG is also based
on a graph but requires no determination of the network
dimensionality beforehand as in GCS. Instead, the network
starts with two units at random positions and inserts new nodes
at positions with high errors. These nodes are connected by
edges with a certain age. Old edges are removed, resulting
in a topology preserving map with an induced Delaunay
triangulation. Similar to the GCS, after a fixed number of
steps multiplied with the actual number of nodes a new node
is inserted between the location with the highest error or signal
counter and the highest one of all its neighbors. The algorithm
does not have a deletion criterion. Pattern presentation and
calculation of the hidden layer activity are the same as in
the GCS. Only the computation of the output activation has
changed, slightly, by using a trigonometric function (see [10]
for details).

E. Discussion

All networks discussed show a similar three-layer structure
with an input layer, a hidden layer, and an output layer. Within
this topology the learning method of MLP performs a global
adaptation to the training dataset, whereas the incremental
networks perform a local adaptation. This might lead to a better
generalization property of MLP than with the incremental
networks. Hence, MLP might achieve better classification
results than GNG, GCS, and FAM. At the same time the
learning methods of FAM, GCS, and GNG enable them to



HEINKE AND HAMKER: COMPARING NEURAL NETWORKS 1281

insert automatically new nodes in the hidden layers and,
consequently, eliminate the crucial parameter of number of
hidden layer units.

The incremental networks have a similar learning method.
Each of them has an unsupervised learning component in the
hidden layer. Here, each weight vector defines a compact area
in which the corresponding node produces high output activity.
The third layer maps these different areas onto a classification
result. However, within this framework FAM, GNG and GCS
follow different rules: The unsupervised learning of GCS and
GNG are more statistically oriented, whereas FAM performs
a more geometrical learning. The similarity measure in FAM
is a Fuzzy rule which forms class regions based on hyper-
rectangles, whereas GNG and GCS use the Euclidean distance
which forms radial-based regions. Comparing GCS and GNG,
one major advantage of GNG is its adaptive graph, particularly
when deleting nodes.

III. STRUCTURE ANALYSIS OF THE BENCHMARK DATA

A. Data Structure Analysis

This section introduces the basic measures on which the
analysis of the benchmark data we use is based. The analysis
aims at characterizing the dataset in terms ofoverlappingand
complex boundaries[8]. Overlappingindicates how much the
data vectors of the different classes interfere with each other.
The complex boundaryindicates to what extent a decision
boundary between different classes is simple, e.g., straight
lines. These characteristics are evaluated in the following
paragraphs with the dispersion and the confusion matrix.

1) Dispersion Matrix: The dispersion matrix is a classical
measure for overlapping between classes [24]. For computing
the dispersion matrix first the within-class inertia of the data
set must be computed: Let us assume the database consists of

samples with classes. The class has samples and a
center of gravity of the input patterns

class

where is the Euclidean norm.
The dispersion matrix is computed by

dispersion

If the dispersion measure between two classes is large, the
classes hardly overlap. If the measure between classand is
close to one or even lower, classmight have a strong overlap
with class But this is not necessarily the case, if the classes
are multimodal and have complex boundaries. Therefore, the
measure is necessary but not sufficient for determining the
overlap and an additional measure is needed. This additional
measure is given by the confusion matrix.

2) Confusion Matrix: The confusion matrix is computed
by a -nearest neighbor classifier (KNN) [25] together with
the error counting method: First, theis determined by the
minimal classification error on the validation dataset. Second,

TABLE I
DISPERSIONMATRIX OF THE DATASET cancer

the resulting is used to compute the confusion matrix of the
test dataset. This procedure ensures a certain generalization
ability of the -nearest neighbor classifier and characterizes
the test dataset. The confusion matrixis

class class (1)

which is the normalized number of the classification result,
if the class is given.

If the confusion value between two classes is close to 100%,
the two classes are overlapping. If the confusion value is small
and the corresponding dispersion value is small, the overlap
indicated by the dispersion matrix is not confirmed by the
confusion matrix. This suggests a complex boundary between
theses classes.

The -nearest neighbor classifier was chosen for two rea-
sons: First, it is a good, practical reference for the Bayesian
error which is needed for computing a good confusion matrix
[8]. Second, here, the confusion matrix is used for qualitative
characterization of the datasets. This should be done by a
classifier that is not the main focus of this paper.

B. The Benchmark Data

We used four types of classification data presented in
[9]. These datasets were chosen because they show different
degrees of difficulties in terms of overlapping and complexity
of boundaries.

For application of the validation method the datasets were
divided into three sets: test set, training set, and validation set.
The different sets are built from three different partitions of
the dataset: training set, 50%, test set and validation set, 25%
each. This partition is applied to three different orders of the
whole dataset, leading to three different sequences for training,
cancer1 , cancer2 , andcancer3 [9]. For each of these
sequences the structure is analyzed.

1) Cancer: The first classification problem is a diagnosis
of breast cancer originally obtained from the University of
Wisconsin Hospitals, Madison, from Dr. W. H. Wolberg
[26]. The dataset consists of nine inputs, two outputs and
690 examples and is calledcancer . Examples of input
parameters are the clump thickness, the uniformity of cell
size and cell shape, the amount of marginal adhesion, and
the frequency of bare nuclei. The output classifies the data
as either benign or malignant based upon cell descriptions
collected by microscopic examination. The dispersion matrix
of the wholecancer set (Table I) suggests a slight overlap
between the two classes, or at least a complex boundary.

Table II shows a reasonably equal distribution of classes
and samples. To determine the confusion matrix ofcancer1 ,
the of the KNN classifier is set to 12 with an error for
the validation dataset of 1.72%. This results in a confusion
matrix with a test set error of 1.72%. Forcancer2



1282 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 6, NOVEMBER 1998

TABLE II
DISTRIBUTION OF SAMPLES IN cancer

TABLE III
CONFUSION MATRIX IN cancer

TABLE IV
DISPERSIONMATRIX OF THE DATASET diabetes

TABLE V
DISTRIBUTION OF SAMPLES IN diabetes

is selected with an error for the validation dataset of 1.14%
and an error of 4.02% on the test set. Theof the KNN
classifier forcancer is five with a validation dataset error of
3.43%. Based upon the test set, the error is 4.60%. Table III
indicates that allcancer sets have complex boundaries and
only small overlaps. Hence,cancer is a well-behaved dataset
with complex decision boundaries.

2) Diabetes: The second classification problem concerns
the diagnosed diabetes of Pima Indians. Thediabetes
dataset has eight inputs, two outputs, and 768 examples. Based
upon personal data (age, number of times pregnant) and the
results of medical examinations (e.g., blood pressure, body
mass index, result of glucose tolerance test, etc.), it states,
whether the Pima indian individual is diabetes positive.

This dataset contains some zero elements that seem to
replace missing values. As with thecancer dataset, the
dispersion matrix of the diabetes set (Table IV) suggests a
strong overlap between the two classes, or at least a complex
boundary.

The distribution of samples and classes of thediabetes
set is reasonably uniform (Table V). The best KNN
classifier fordiabetes1 has a validation error of 26.0% and
a test error of 25.5%. The confusion matrix confirms the high
overlap of class 1 with class 2, where most of the samples of
class 1 are expected to belong to class 2; it does not confirm
the overlap of class 2 with class 1.

TABLE VI
CONFUSION MATRIX IN diabetes

TABLE VII
DISPERSIONMATRIX OF THE DATASET glass

TABLE VIII
DISTRIBUTION OF SAMPLES AND CLASSES OFglass1

The confusion matrix ofdiabetes2 is computed with
with a validation error of 26.04% and a test error of

34.9%. This confirms again an overlap of class 1 with class 2,
higher than ondiabetes1 and little overlap between class
2 and class 1 is indicated.

In diabetes3 the overlap is not as high as india-
betes1 anddiabetes2 . The confusion matrix is evaluated
with , the validation error is 26.56% and the test error
is 23.44%.

3) Glass: The third dataset gives examples from the classi-
fication of glass based upon the description of glass splinters.
The glass dataset consists of nine inputs, six outputs and
214 samples. It comprises the result of a chemical analysis
of glass splinters (percent content of eight different chemical
elements) plus the refractive index. These are used to classify
the sample to be either float processed, or nonfloat processed
relevant knowledge for building windows, vehicle windows,
containers, tableware or head lamps. This data set is motivated
by forensic needs in criminal investigation.

The dispersion matrix in Table \ref{tab:dispersion_glass}
shows a contradictory picture. There exists no overlap between
certain classes, e.g. class 5 and class 1. But it also suggests
that there are several overlappings, e.g., class 4 / class 3
and class 1 / class 2. The relationship between the number
of samples and the size of output and input indicatesa
priori a problem with this dataset. There are not enough sam-
ples to achieve a good partition into training, validation and
test sets, as illustrated by Table \ref{tab:distribution_glass1},
\ref{tab:distribution_glass2} and \ref{tab:distribution_glass3}
for the different partitions of \verb+glass+.

This lead to problems for the KNN in evaluating the
confusion matrix. Due to the small dataset and because the
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TABLE IX
CONFUSION MATRIX OF glass1

TABLE X
DISTRIBUTION OF SAMPLES AND CLASSES OFglass2

TABLE XI
CONFUSION MATRIX OF glass2

TABLE XII
DISTRIBUTION OF SAMPLES AND CLASSES OFglass3

KNN is a statistically based classifier, it can not detect the
rules underlying the distribution of classes. Thus, this dataset
poses a high demand on the ability of a classifier to achieve a
generalization. The confusion matrix in Table IX is computed
with , a validation error of 29.63% resulting in a test
error of 37.74%. Because is much higher than the number
of samples of four classes in the test set, small classes are
ignored in favor of often-appearing classes.

On glass2 the validation dataset is more suitable, sup-
ported by the best KNN with Thus, small classes
are not necessarily ignored. Nevertheless, this leads to a high
validation error of 42.59% and a test error of 43.40%. The
resulting confusion matrix is shown in Table XI. There is a
high overlap between class 1 and class 2. Although small
classes could have been recognized, there are severe problems
in detecting them. Thus, the small classes also have high
overlap with other classes.

Glass3 seems to be less difficult than the previous ones
(Table XII). With , a validation error of 33.33% and
a test error of 33.96%, the confusion matrix is shown in
Table XIII. There is an overlap between the larger classes class
1 and class 2, but less than in the previous sets. Other overlaps

TABLE XIII
CONFUSION MATRIX OF glass3

TABLE XIV
DISPERSIONMATRIX OF THE DATASET thyroid

TABLE XV
DISTRIBUTION OF SAMPLES IN thyroid

TABLE XVI
CONFUSION MATRIX OF thyroid1

exist from class 3 with class 1 and class 2 and also class 4
with class 2.

4) Thyroid: The fourth and last dataset is calledthyroid
and has 21 inputs, three outputs, and 7200 examples. In
contrast to all other sets thethyroid set contains nine
Boolean input values and four other inputs which are often
exactly zero, and some others which are nonnormalized values.
The problem underlying this dataset is to diagnose thyroid
hyper- or hypofunction based upon patient query data and
patient examination data.

The dispersion matrix of all samples is shown in Table XIV.
Class 1 shows possible overlap between class 2 and class

3. Class 2 has some overlap with class 3 and less with class
1. This dataset includes many more samples of class 3 than
the others.

The distribution of the samples shows a similar problem to
that withglass . Class 3 is so dominant that class 1 and class
2 might be ignored by a statistically based classifier. In each
of the partial setsthyroid2 and thyroid3 contain nearly
the same number of samples in each class as doesthyroid1 .

Because of the large size of thethyroid data sets, only
four ’s for the KNN classifier were tested on thethyroid1
set. This test shows that results in a minimal validation
error of 5.67% and a test error of 6.67%.
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The confusion matrix (Table XVI) confirms the overlap
between class 1 and class 3 and a small overlap between class1
and class 2 as indicated by the dispersion matrix, but does not
confirm the overlap between class 1 and class 2.thyroid2
and thyroid3 show the same kind of overlap.

5) Summary:The four datasets represent different levels of
difficulty of classification.Cancer is a relatively easy clas-
sification problem, with complex boundaries between classes,
only little overlap between classes, and sufficient number of
data points.Diabetes increases the degree of difficulty
by consisting of overlapping classes in addition to complex
boundaries.Glass , in addition to complex boundaries and
overlapping of classes, shows a lack of sufficient data. The
same can be stated forthyroid . However,thyroid shows
the additional feature of having linear boundaries between the
classes due to Boolean input variables. The linearity can be
considered a facilitation of classification, but as the following
sections show poses, it poses some difficulties to the GNG
and GCS.

IV. BENCHMARKING RULES

For a better comparison and evaluation of this benchmark
all equations and benchmarking procedures are introduced.

A. General Benchmark Rules

The main comparison between the networks is based upon
their classification error. Each network was trained with dif-
ferent initial values, different parameters and different order
of the training dataset. The details on the training methods for
each network are given in the following sections. After the
training the mean of classification error on the test dataset
and its standard deviation on validation and test dataset
were determined. The corresponding header of the tables is
calledmean test In addition, the best run on the test dataset
is computed and calledtest best.

The statistical comparison of the network behavior is per-
formed with a -test [27]. The -test is a parametric test
that compares the mean values of two samples. The test
is appropriate even when the variance is unknown and the
samples are small and independent. However, it assumes
that the distribution of the underlying population is normal.
The extension of the-test used here is also suitable when
the variances of the samples are different, which is true
in most cases. The application of the-test answers the
question, whether network performs significantly better than
network on average. Because these classification errors are
usually approximately log-normal distributed, the classification
errors of the networks are logarithmically transformed. This
transformation tries to meet the normal distribution condition
and because it is strictly monotone the transformation does
not change the test result. Finally, the-test is performed
with the hypothesis: logarithmic error of network and
are the same, versus logarithmic error of networkis larger
than error of network If the resulting -value of the -
test indicates a significant result , network performs
significantly better than network on average. If the result
is not significant, a similar performance of networkand

can be ruled out. In analysis of the networks, performance the
significance level was set to 0.1.

Apart from the classification error three additional perfor-
mance measures were used: the mean number of inserted
nodes, the mean number of epochs used for training and the
effect of variation of the parameters. The first performance
measure is only appropriate for the incremental networks as it
evaluates their insert and removal criteria. In addition, a lower
number of nodes means fast computation of classification re-
sults and less memory requirement, which might be important
in applications. The second performance measure gives an
impression of how efficient the learning algorithm performs.
The third performance measure is an important measure, since
finding the “correct” parameters for the network determines the
success or failure of the training process. We use the standard
deviation of the classification error on the test dataset as a
measure for the effect of parameter variations on the behavior
of the network.

B. Multilayer Perceptron

1) Selected Results:In [9] a “two-step benchmark test”
was done: First, 12 different kinds of network topologies
were used including one hidden layered, two hidden, layered
and short cut architectures. According to [9] the number of
runs for these architectures were too few in order to decide
which architecture is the significant best. Therefore, the largest
architecture of the 5%-best architectures was chosen and 60
runs were performed with these so-called pivot architectures.
In both steps two different measures were published. In the
first step only the best classification errors were documented
and in the second benchmark step the mean and the standard
deviation were listed.

In order to perform a complete comparison with our results
both results in [9] were included into the comparison. Hence,
the comparison with MLP made here can be understood
qualitatively only and the order of magnitude of the values
is meaningful.

2) Validation Method: For controlling the training process
the early stopping method was used [9]: Training was stopped
when the stopping criterion was fulfilled or when a
maximum of 3000 epochs occurred. The stopping criterion

is fulfilled when exceeds the threshold

(2)

Exceeding the threshold might indicate that a loss of gen-
eralization ability has occurred. was set to five.

The minimum validation error is obtained by

(3)

The current validation error is squared error percentage
(SEP)

(4)

Here denotes the number of patterns.
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TABLE XVII
FREE PARAMETERS OF GCS FOR glass, cancer, AND diabetes DATA

TABLE XVIII
FREE PARAMETERS OF GNG FOR ALL DATA SETS

C. Fuzzy ARTMAP (FAM)

1) Simulation Parameters:The value of the vigilance pa-
rameter was restricted to be less than or equal to 0.6, because
the size of the hyperrectangles becomes too small with larger
vigilance values. When this happens, each hyperrectangle
represents little more than on data point, and the ability of
generalization is reduced. In order to decrease the possible
variations of parameters the values of the vigilance parameter
were set to 0, 0.3, 0.5, or 0.6.

2) Validation Method: Preliminary simulations showed
that FAM always converged to a stable state and that this
happened fast. Because early stopping can not be applied in
this case, the following control of the training process was
used: FAM was trained with a certain parameter set until it
converged to its stable state (number of epochs). After that, the
status with the lowest validation set error was chosen and the
corresponding test set error was computed. Here 40 runs were
performed with ten different orders of the training dataset,
with ten runs for each of four vigilance parameter values.

D. Growing Cell Structures

1) Simulation Parameters:Preliminary runs with several
variations of parameters have revealed a robustness against
slightly changing values, therefore, not all parameters were
varied in different runs. Others, as seemed appropriate, were
set to fixed values in all simulations. Each network was trained
five times with six different parameter sets (Table XVII). The
initialization and the order of presentation were random. This
means that for each data set, 30 runs were performed. The
maximum number of epochs in GCS simulations was 50,
because preliminary simulations showed that longer training
does not lead to a better performance.

For thethyroid dataset slightly different parameters were
used. Because of instable output weights in simulations with

the thyroid data set, the learning rate was set to 0.01.
Because of the huge amount of training data inthyroid the
maximum number of epochs was decreased to 20. All other
parameters remained the same.

2) Validation Method: First, the early stopping method
used with MLP was tested. But this led to a premature
termination of the training process and therefore the early
stopping method had to be modified. Each network was
trained up to a given maximum of epochs. During the training
process, after every five epochs the stopping criterion
was applied. From the networks that fulfilled the one
with the minimum validation squared error percentage (SEP)
was chosen to be the best of that run;was set to five.

E. Growing Neural Gas

1) Simulation parameters:Similarly to the GCS, the GNG
consists of several free parameters. Because preliminary runs
have shown that only some parameters have a strong influence
on the outcome of the training, only a few parameters were
varied (see Table XVIII). Again, for each dataset 30 runs
were performed: Six runs of every parameter set, each with
five different randomly chosen initializations. The maximum
number of epochs in GNG simulations was 200.

2) Validation Method: The same validation method as with
GCS was used.

V. RESULTS

In this chapter the results are discussed under the aspects of
different performance measures. As introduced in the bench-
mark rules, the performance measures are: classification error
on the test datasets, the effect of variations of parameters on
the behavior of the networks, the number of training epochs
and the number of inserted nodes. Table XIX summarizes the
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TABLE XIX
THIS TABLE STATES THE BEST NETWORK FOR EVERY PERFORMANCE MEASURE ON EACH DATASET. THE FIRST THREE COLUMNS SHOW THE RESULT ON THE

CLASSIFICATION ERROR (BEST CLASSIFICATION ERROR, BEST MEAN OF CLASSIFICATION ERROR AND SIGNIFICANCE OF MEAN). THE THIRD COLUMN STATES THE

NETWORK WITH THE FEWEST TRAINING EPOCHS. THE FOURTH COLUMN NOTES THE NETWORK WITH FEWEST INSERTED NODES. THE LAST COLUMN

GIVES THE NETWORK WITH THE SMALLEST STANDARD DEVIATION WHICH IS USED AS MEASURE FOR THEROBUSTNESS OF THENETWORKS

AGAINST PARAMETER VARIATIONS. PLEASE NOTE, THAT MLP IS NEITHER INCLUDED IN THE SIGNIFICANCE TEST BECAUSE THE NECESSARY

DETAILS ARE NOT AVAILABLE NOR IN THE COMPARISON OFNODES BECAUSE OFITS INCOMPATIBILITY WITH THE INCREMENTAL NETWORKS

TABLE XX
COMPARISON OF NETWORKS ON THE cancer DATASETS. BEST RESULT ON THE TEST SET; MEAN RESULT AND

stdv. ON THE TEST SET; MEAN NUMBER OF EPOCHS TRAINED; THE MEAN NUMBER OF INSERTED NODES

results of this paper. Tables XX–XXIII show the details of the
results.

A. Classification Error

In addition to Tables XX–XXIII, Figs. 1–4 give a graphical
illustration of the performance on the datasets.

As seen in Table XX and Fig. 1, the best classification error
of all networks oncancer are in the same range. The same
is true for the mean values of the classification error on the
test dataset, excluding the result of FAM. Forcancer1 and
cancer3 the -test confirms that FAM performs significantly
worse than all other networks (Table XIX). Apparently, on
dataset with complex boundaries and no overlap such as
cancer , GNG, GCS, and MLP performed similarly well,
whereas FAM encountered problems.

On the diabetes dataset (Fig. 2, Table XXI) MLP per-
forms slightly better than the other networks, especially on
diabetes2 . Again, the FAM performs the worst; this is
shown by the -test to be significant fordiabetes1 and

diabetes3 . However excludingdiabetes3 , FAM with its
best network is in the range of the best of GCS and GNG. In
contrast tocancer the confusion matrix of thediabetes
sets, especially ondiabetes1 and diabetes2 indicates
high overlap. In particular,diabetes2 shows the strongest
overlap. This matches the slightly worst performance of all
networks ondiabetes2 .

The thyroid dataset results in a different performance of
the networks compared to other datasets (Fig. 3, Table XXII).
Here, the GNG and GCS perform significantly worse than
MLP and FAM. Interestingly, the results of the FAM and
MLP are similar, especially the standard deviation of FAM,
which contrary results with all other datasets is comparable
to that of the MLP. There are two reasons for the good
performance of FAM: First, the number of data samples for
certain classes is too small compared to the complexity of
the dataset. Statistically oriented classifiers, such as GNG and
GCS, tend to have problems with such a dataset, because
they might ignore these classes. Geometric methods, such as
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TABLE XXI
COMPARISON OF NETWORKS ON THE diabetes DATASETS. BEST RESULT ON THE TEST SET; MEAN RESULT

AND stdv. ON THE TEST SET; MEAN NUMBER OF EPOCHS TRAINED; THE MEAN NUMBER OF INSERTED NODES

TABLE XXII
COMPARISON OF NETWORKS ON THE thyriod DATASETS. BEST RESULT ON THE TEST SET; MEAN RESULT,

AND stdv. ON THE TEST SET; MEAN NUMBER OF EPOCHS TRAINED; THE MEAN NUMBER OF INSERTED NODES

TABLE XXIII
COMPARISON OF GCS, GNG, FAM,AND MLP ON THE glass DATASETS. BEST RESULT ON THE TEST SET; MEAN

RESULT AND stdv. ON THE TEST SET; MEAN NUMBER OF EPOCHS TRAINED; MEAN NUMBER OF INSERTED NODES

FAM, might have no problems with such datasets. This is also
supported by the results withglass (see below). Second,
nine inputs ofthyroid are boolean variables. Therefore, the
boundaries between the different classes can be straight lines.
This is more suitable for the hyperrectangle regions generated

by the hidden layer of FAM than to radial-based regions of
GNG and GCS. The same can be stated for MLP. Apparently,
FAM can show good performance if the dataset consists of
linear boundaries, or is generated by Boolean input values,
contains some classes with a small amount of data.
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Fig. 1. Mean test error, stdv., best and worst net of the various algorithms (for MLP no best and worst is plotted) oncancer .

Fig. 2. Mean test error, stdv., best, and worst net of the various algorithms (for MLP no best and worst is plotted) ondiabetes.

Fig. 3. Mean test error, stdv., best, and worst net of the various algorithms (for MLP no best and worst is plotted) onthyroid .

Fig. 4. Mean test error, stdv., best, and worst net of the various algorithms (for MLP no best and worst is plotted) onglass .

The glass dataset is the only one with which MLP has
problems (Fig. 4, Table XXIII). Onglass2 the worst GNG is
better than the best MLP, onglass2 andglass3 the mean
MLP has more errors than the worst GNG, GCS or FAM. Only

onglass1 is the MLP not as bad. GNG, GCS and FAM show
no significant difference in result. The high errors of MLP
may be due to the small number of samples in this dataset.
In a similar line of argument to that applied tothyroid , the
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Fig. 5. Mean, best, and worst test error of the GCS in ten runs on the first set of each benchmark dataset with a fixed parameter set and a random
initialization of the weights. No validation criteria are used.

geometrically oriented FAM has fewer problems with small
sample size than the statistically oriented GNG and GCS. This
apparently allows FAM to overcome its generally bad perfor-
mance. However, inglass the shapes of the class boundaries
are not as suitable for FAM as inthyorid , and therefore
FAM shows results similar to those of GNG and GCS.

B. Number of Inserted Nodes

FAM has the lowest number of nodes in all cases apart from
thyroid3 (Table XIX). However, the number of inserted
nodes in GCS and GNG roughly depends on the ratio between
trained epochs and adaption steps, since GCS and GNG insert
new nodes every epoch. Additional examinations in [10] reveal
that GCS and GNG still perform better than FAM with fewer
numbers of training epochs, thus, a smaller amount of nodes.
Hence, if number of nodes is an important issue, GNG and
GCS can be tuned to have fewer nodes without losing much
performance.

C. Variation of Parameters

Table XIX shows that GNG has for most datasets the lowest
standard deviation. This is considered to be low sensitivity
to variation of parameters. The most prominent exception is
glass , where FAM is generally better. This might be due to
the difference between geometrically oriented and statistically
oriented classifiers as discussed above.

In [10] the different effects of the parameters in the different
networks are examined further. For FAM, this reveals that the
order of the training data is most important for the outcome
of the training. This is not surprising, because the order
influences the growth of the hyperrectangles which determines
the training result. The vigilance parameter plays an important
role only when it meets the correct discretization of the dataset.
For GNG and GCS the crucial parameters is the adaption step.
If the adaption step is chosen too high, no insertions for rare
classes tend to occur.

D. Number of Epochs

For all datasets FAM shows the lowest number of epochs
to reach automatic termination of learning. However, detailed

analysis of GCS and GNG shows that these networks adapt
quickly to the training set. Fig. 5 gives examples for GCS,
for details see [10]. Only a few epochs are needed to reach
the range of the best results. Further training only slightly
improves the result, but a higher amount of hidden nodes
emerges. In general, if a network is needed that is not the
very best but is fast (while small), a GCS should be used and
trained only a few epochs. This is because GCS does not stop
automatically as does FAM.

VI. CONCLUSION

The present paper began with the question of which is
the “best” neural network for solving a pattern classification
task—the well-known MLP, or one of the more recently
developed incremental networks, FAM, GCS, or GNG? This
question was examined in the framework of four real-world
datasets representing different levels of difficulty of classifi-
cation problems. The first dataset (cancer ) is a relatively
easy classification problem with complex boundaries between
classes, only little overlap between classes and a sufficient
number of data points. The second dataset (diabetes )
increases the degree of difficulty by having overlapping classes
in addition to complex boundaries. The third dataset (glass )
shows, besides complex boundaries and overlapping of classes,
a lack of sufficient data. The same is true for the fourth dataset
(thyroid ). However,thyroid shows an additional feature
of linear boundaries between the classes due to Boolean input
variables.

The reference in this benchmark was the result of the
extensive study of MLP by Prechelt [9]. From a theoretical
viewpoint, one could expect a better performance for MLP
than of the incremental networks because MLP performs a
global adaptation to the training dataset, whereas the incre-
mental networks perform a local adaptation. The results of
this benchmark show that this is clearly not the case. On the
contrary, MLP performs in the same range as the incremental
networks. Thus, the elimination of the parameter of the number
of hidden nodes through the incremental mechanism outweighs
the disadvantage of local adaption in the incremental networks.
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Originally, we aimed at finding a clear answer to the ques-
tion which is the “best” network in terms of the classification
error. Since none of the networks consistently performed
significantly better than the other networks, there is no clear
answer to our question. However, we found some rules which
state how well a certain network performs, given certain
properties of a dataset. These rules are summarized here.

Except for the fourth dataset MLP, GCS, GNG perform
similarly, whereas FAM behaves worse and for the first two
datasets this behavior is significantly worse according to the
-test. Hence, FAM tends not only to have problems with

datasets having overlapping classes but also with datasets
having complex boundaries. For the third dataset, despite
its overlapping properties, the performance of FAM is not
significantly worse, because its more geometrically oriented
behavior has fewer problems with the few data points in this
dataset than the statistically oriented GNG and GCS.

For the fourth dataset a different picture emerges: GNG
and GCS behave significantly worse than MLP and FAM.
This is mainly due to the linear boundaries between classes
following the Boolean input variables. For these boundaries,
the hyperrectangle-based regions of FAM and the polygen-
based regions of MLP are more suitable than the radial-based
regions of GNG and GCS.

Apart from the classification error, other performance mea-
sures were examined in this paper. For the number of inserted
nodes, an important performance measure for the incremental
networks, FAM performs best. However, the training of GNG
and GCS can be tuned so that they insert less units but still
perform better than FAM. For the number of epochs FAM
shows the shortest training time. However, GNG and GCS
also show rapid convergence, whereas MLP typically shows
slow convergence. Finally, the dependence of the variation
of performance upon variation of parameters was examined.
Here, GNG clearly outperforms the other networks. For MLP,
the time consuming search of a good architecture and the best
choice of parameters, as demonstrated by [9], plays a crucial
role. Only for the datasets with few data samples FAM does
show fewer variations in behavior than GNG.

In summary, considering the similar classification perfor-
mance of MLP, GNG, GCS, the rapid convergence of GNG
and GCS and the small dependence on variation of parameters
of GNG, the overall ranking of networks in descending order
is: GNG, GCS, MLP, and FAM. However, when the dataset
shows linear boundaries between classes, FAM and MLP can
perform better than GNG and GCS.
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für Informatik, Universiẗat Karlsruhe, Germany, 1994. Available FTP:
ftp.ira.uka.de /pub/papers/techreports/1994/1994-21.ps.Z

[10] F. Hamker and D. Heinke, “Implementation and comparison of growing
neural gas, growing cell structures and fuzzy artmap,” Tech. Rep.,
Schriftenreihe des FG Neuroinformatik der TU Ilmenau, Report 1/97,
1997.

[11] D. E. Rumelhart, J. L. McClelland, and PDP Research Group,Parallel
Distributed Processing; Explorations in the Microstructure of Cognition:
Volume 1—Foundations. Cambridge, MA: MIT Press, 1988.

[12] P. J. Werbos, “Backpropagation: Past and future,” inProc. ICNN-88,
New York, 1988, pp. 343–353.

[13] T. Tollenaere, “Supersab: Fast adaptive backpropagation with good
scaling properties,”Neural Networks, 1990, pp. 561–573.

[14] M. Riedmiller and H. A. Braun, “A direct adaptive method for faster
backpropagation learning: The RPROP algorithm,” inIEEE ICNN-93,
San Francisco, CA, 1993, pp. 586–591.

[15] S. E. Fahlman, “Faster learning on backpropagation: An empirical
study,” in Proc. 1988 Connectionist Summer School, 1988, pp. 38–59.

[16] G. A. Carpenter, S. Grossberg, M. Markuzon, J. H. Reynolds, and D. B.
Rosen, “Fuzzy ARTMAP: A neural network architecture for incremental
supervised learning of analog multidimensional maps,”IEEE Trans.
Neural Networks, vol. 3, pp. 698–713, 1992.

[17] S. Grossberg, “Adaptive pattern classification and universal recoding:
I. Parallel developement and coding of neural feature detectors,”Biol.
Cybern., vol. 23, pp. 121–134, 1976.

[18] B. Fritzke, “Growing cell structures—A self-organizing network for
unsupervised and supervised learning,”Neural Networks, vol. 7, no.
9, 1994.

[19] T. Kohonen, “Self-organized formation of topologically correct feature
maps,”Biol. Cybern., vol. 43, pp. 59–69, 1982.

[20] J. Moody and C. Darken, “Learning with localized receptive fields,”
in Proc. 1988 Connectionist Models Summer School, D. Touretzky, G.
Hinton, and T. Sejnowski, Eds. San Mateo, CA: Morgan Kaufmann,
1988, pp. 133–143.

[21] B. Fritzke, “A growing neural gas network learns topologies,” inAd-
vances in Neural Inform. Processing Syst., G. Tesauro, D. S. Touretzky,
and T. K. Keen, Eds. Cambridge, MA: MIT Press, 1995, pp. 625–632.

[22] J. Bruske and G. Sommer, “Dynamic cell structure learns perfectly
topology perserving map,”Neural Comput., vol. 7, pp. 845–865,
1995.

[23] T. Martinetz and K. J. Schulten, “A neural-gas network learns topolo-
gies,” in Artificial Neural Networks, T. Kohonen, K. M̈akisara, and O.
Simula, Eds., Amsterdam, 1991, pp. 397–402.

[24] C. W. Therrien,Decision Estimation and Classification. New York:
Wiley, 1989.

[25] R. O. Duda and P. E. Hart,Pattern Classifiaction and Scene Analysis.
New York: Wiley, 1973.

[26] W. H. Wolberg, “Cancer dataset obtained from Wiliams H. Wolberg
from the University of Wisconsin Hospitals, Madison.”

[27] W. W. Hines and D. C. Montgomery,Probability and Statis-
tics in Engineering and Management Science. New York: Wiley,
1990.



HEINKE AND HAMKER: COMPARING NEURAL NETWORKS 1291

Dietmar Heinke received the diploma degree in
electrical engineering in 1990 from the Technical
University Darmstadt, Germany. In 1993 he joined
the Department of Neuroinformatics at the Univer-
sity of Ilmenau, Germany, where he received the
Ph.D. degree in 1997.

From 1991 to 1992 he work at the Research
Institute for Applied Artificial Intelligence (FAW)
in Ulm. While in Ilmenau, he visited the Cognitive
Science Centre, School of Psychology, University
of Birmingham, U.K. as a Research Fellow in 1996.

Since 1998 he has been a Postdoctoral Research Fellow at the same institution.
His research interests include cognitive neuroscience, computational modeling,
visual object recognition, visual attention, and neural networks.

Fred H. Hamker received the diploma degree
in electrical engineering from the Universit¨at
Paderborn, Germany, in 1994. Since then he
has worked toward the Ph.D. degree at the
Department of Neuroinformatics, Technische
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