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ABSTRACT

A lifelong learning incremental neural network based on the Growing Neural Gas is presented. The Growing
Neural Gas inserts new nodes depending on a local error measure and thus, the representation of input patterns
depends on the fulfillment of the actual task, which is defined as a task based representation. In extension,
our algorithm learns to insert by evaluating the course of the error in an insertion-evaluation cycle. On an
artificial data set, it is demonstrated that the algorithm stops insertion inside of overlapping decision areas and
adapts to changing environments while preserving old prototype patterns.

1. Introduction

Learning is one of the main issues of artificial neural network design. It describes a mechanism by
which a system obtains a representation of its environment. Recent research addresses the topic of
on-line learning, incremental learning and lifelong learning, which all discuss the same problem but
emphasize different aspects. The necessity for on-line learning, in which the couplings of the network
are updated after the presentation of each example, arises if not all training patterns are available all
the time [8] [17]. Most publications referring to on-line learning focus on the role of the learning rule
and the convergence of the learning process. For systems, like robots, which are faced with patterns
during their entire lifetime, studying on-line learning in contexts such as a changing environment [17]
encounters the problems of stability and plasticity. Incremental learning addresses the ability of
repeatedly training a network with new data, without destroying the old prototype pattern. Lifelong
learning emphasizes learning throughout the entire lifetime. Another approach in the context of lifelong
learning, but not discussed here, is the transfer of knowledge from one task to another by learning task-
independent knowledge [24].
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The questions of stopped learning: Is the collected data relevant and sufficient to cope with the
problem? and When should the learning process be stopped?, changes in the context of lifelong learning
to the questions: Is the network flexible enough to learn new data? and Does it remember previous
data? The aim of this approach is to reveal new lifelong learning algorithms, based on incremental
neural networks with a local insertion criterion and to develop sophisticated neural systems, which
learn throughout their lifetime and automatically adapt to changing environments without immediately
forgetting previous information.

2. Task-based representation

Unsupervised learning algorithms like Kohonen's Self-Organizing Feature Maps (SOFM) [18] or
Neural Gas [19] freeze the ability of learning by decaying parameters. Networks with a global
representation of knowledge, like a Multi-Layer-Perceptron (MLP) have to suffer from the
disadvantage that changing only one weight affects nearly all patterns stored in the network.
Furthermore, the weights are significantly under-constrained because of the exclusively error-driven
learning method [21]. Networks with a local or distributed representation of knowledge appear to be
better candidates for lifelong learning scenarios. One type of a local representation of knowledge
utilized in recent literature for on-line learning are Radial Basis Function networks (RBF) [8].
Nevertheless, RBF have a fixed number of nodes, no matter whether the weights and the width of the
Gaussians of the hidden nodes are determined by a previous clustering method or by on-line training
[8]. Since the data stream is open and not known in advance, the restriction to a fixed number of nodes
can lead to a suboptimal representation. Thus, lifelong learning demands changes of parameters

independent of time and a pattern memory independent of the storage of a new pattern.
Incremental networks with a local representation of
patterns fulfill these demands. The Adaptive
Resonance Theory (ART) [14] is aimed at learning
new associations without forgetting old ones. ART
networks, Fuzzy-ARTmap [5] and similar networks
like CLAN [16] 'insert' new nodes based on a
similarity measure. The other family of incremental
networks use an error measure to insert new nodes.
They can be subdivided into local error insertion
rules like Growing Cell Structures [9], Growing
Neural Gas [10], Dynamic Cell Structures [3] and
global error insertion rules like Cascade-Correlation
task-based [7] or an incremental one hidden layer Perceptron [6].
representation To evaluate some incremental networks in the
supervised case, we performed a benchmark on
Fuzzy-ARTmap, Growing Cell Structures and
Growing Neural Gas in comparison to a MLP [15].
Although the performance depends on the data set,
the Growing Cell Structures and Growing Neural Gas
perform not worse than a MLP, but they converge
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space faster and parameter changes show only a little effect
on their results. In most cases, the performance of the
Fig. 1: Task-based representation of the sensory Fuzzy-ARTmap is not as good as that of the other
space. networks [15]. The Cascade-Correlation algorithm
performed worse and required one order of magnitude
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more epochs than the GCS on the two spiral benchmark [9]. The incremental learning technique that
constructs a single sigmoidal hidden layer is shown to outperform Cascade-Correlation, but further
comparisons are needed [6].

Nevertheless, the most important question in lifelong learning incremental networks addresses the rule
of insertion. Inserting new nodes solely in dependence on the similarity of the input pattern leads to a
purely sensor-based representation, which does not reflect the requirements of further processing
stages. In contrast, an error-based insertion adapts the representation in dependence on the task and
therefore leads to a task-based representation (Fig. 1). A task-based representation is superior to a
sensor-based representation, because for recognition as well as for action the representation changes
in order to reduce the error of the whole system. Learning a sensor-based representation arranges the
input pattern according to its similarity which is in general a useful way to decrease the amount of
possible solutions [21] but it is not necessarily an optimal solution to solve the task [20].

On-line learning in a lifelong context is a stochastic process and the distribution of the input signals is
unknown. Without reducing the plasticity of the network by modifying the learning rates, fluctuations
of the weights are inevitable. As explained, a time-dependent decrease of learning parameters is not
applicable to lifelong learning. Amari proposed the learning of a learning rule [2]. According to his
proposal, the change of the weight vector reveals whether it reached an optimal state. Heskes and
Kappen [17] developed an algorithm for learning a parameter adaptation by estimating the statistics of
the weights or by estimating the error potential of the algorithm. The latter requires the training of an
ensemble of networks.

For the type of incremental networks with a local error insertion rule, we propose an error-based
learning of the learning and insertion parameters by using the error information gained from the
performance of the system on its task. This credit assignment approach has its origin in the original
algorithm [9], but in contrast to the original insertion criterion the error has to be evaluated (Fig. 1).

3. Basic Principles

In general, a lifelong learning algorithm has to cope with complex boundaries or overlaps in the
decision areas (Fig. 2) and the error of the network depends on the available data. Data with linearly
separable decision areas should be learned without any error for all networks, which should also be
achieved on data with complex boundaries. Theoretically, discrete overlaps can be solved, but with an
unacceptable demand of resources. A continuous overlap can not be solved by any network. The
boundary between the decision areas depends on the probability distribution of each class and should
minimize the overall error.
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Fig. 2: Possible decision areas in feature space. A decision area is an area in the feature space that
requires the recognition of a specific class or the choice of a specific action. From left to right, the
figure shows linearly separable boundaries, complex boundaries, a discrete overlap and a continuous
overlap. The kind of boundary or overlap between decision areas affects the learning and insertion
strategy: Linearly separable boundaries are easy to learn and the error will decrease to zero. Decision
areas with complex boundaries require high separation capabilities but can be solved without error. A
discrete overlap can also be solved, but in general with an unaccaptable demand of resources. A
continuous overlap always leads to an error in solving the task.

In contrast to a limited data set with fixed boundaries, in lifelong learning the boundaries may change
and new clusters may emerge. Nevertheless, although the boundaries change over time, the problems
concerning the overlap of decision boundaries will persist. Thus, growth has to be stopped if a further
insertion is not useful. For this reason, each node not only owns an averaged longterm error counter,
it is also equipped with an insertion threshold and an averaged longterm error counter at the moment
of the last insertion (insertion error) (Fig. 3). An insertion is only carried out, if the error is higher than
the insertion threshold. The node with the highest difference between error and insertion threshold is
chosen and the insertion threshold is increased only if the actual error is higher or equal to the insertion
error. This means the last insertion is termed unsuccessful, if the error does not decrease and the node
is punished by increasing the insertion threshold.

Fig. 3: Insertion evaluation cycle. The
average long time error 7; of the task is
compared to the error at the moment of
the last insertion 7. If this error is
greater or equal, the insertion was not
successful and the insertion threshold
7,1s increased. If the threshold reaches
the average error, a further insertion is
not possible at that location. To permit
exploration in futur, the threshold can
be decreased with a large time

Another aspect in lifelong learning incremental networks concerns the adaptivity of the nodes. In [1]
an error modulated Kohonen type learning rule was used to achieve a uniform approximation error
independent of the input probability density. Here the modulation depends on the age of a node and on
the difference between the average long time error and the average short time error and aims at
reducing fluctuations. This means a node learns more if the short time error is larger than the long time
error and if the node is younger.

In most applications at least, the amount of storage capacity and simulation time are limited. For this
reason, a deletion criterion is introduced to remove redundant nodes. This can be useful, especially if
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the environment changes very often or the exploration rate is very high, e.g. the insertion threshold has
a small time constant. The deletion criteria takes into account the number of neighbors, the similarity
of the output weights and the size of the Voronoi region.

4. Lifelong learning scenarios

An autonomous agent is a typical example in which a system is faced with a changing environment,
and thus, has no prior knowledge about the training set. Many authors in this field use vector
quantization techniques like Kohonen’s feature map, Neural Gas or Radial Basis Function networks
for clustering the input data space [11] [12] [23], but passive clustering is not sufficient for an adequate
sensory representation. To avoid this shortcoming, some authors proposed learning only in case of
negative reinforcement signals [11], which according to our definition leads to a task-based
representation. Nevertheless, incremental networks have the advantage that the number of nodes is also
aresult of learning by doing. The interaction of an animat with its environment causes reinforcement
signals, which adapt the action selection as well as the sensory representation (Fig. 5). The output
weights may be trained by a neural version of Q-learning [12] or other reinforcement learning
algorithms. An incremental network used so far in the context of reinforcement learning is presented
in [4], but in contrast to the lifelong adaptive network presented here, the nodes were restricted to a
maximum amount.

Lifelong supervised learning seems confusing, because all the time an expert teaches a system (Fig. 4).
But such a constellation can be biologically plausible by an inter-module supervision [22]. Furthermore
it can be useful for robotic systems, especially when operating in non-standardized environments. They
must be equipped with the highest possible flexibility to fulfill their task and with robustness towards
changing process-variables for an economic employment, i.e., assembly tasks like error detection, flaw
location and sorting. This kind of application demands a lot of flexibility when considering variable
illumination and changing physical characteristics of the material, like deformation, dirtiness and
wetness. The expert can be a human supervisor, who improves the system by teaching it again when
necessary or in multisensor systems, a sub-system based on reliable but “expensive” sensors. The
advantage of sorting systems based on this strategy is that the non-contacting and therefore fast visual
sensor is responsible for separation and access initiation. The contacting tactile sensors are only needed
for the verification and learning of the visual hypothesis after access of the manipulator [13].

The change of weights from the hidden to the output layer is calculated according to the delta rule as

roposed in the publication of the original algorithm [9] [10].
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Fig. 4: An example of a lifelong supervised Fig. 5: An example of a simple agent with lifelong
classifier. reinforcement learning.
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6. Brief description of the algorithm

The basic principle is the same as in the original GNG [10]. Modifications concern the local counters
of each node (Fig. 6), the control of learning and insertion and an explicit deletion criteria, which
allows to steer the density of the nodes in consideration of their output-weight similarity. The following
equations give a brief overview of the most important aspects.

\ \
| Fig. 6: Node of the lifelong GNG. Besides the width of
Width of the Gaussian: 4 .

the Gaussian each nodes owns a longtern error counter

7,, a shortterm error counter 7, the inherited error at the
moment of insertion 7, an insertion threshold 7, and the
youth of the node Y, which decreases exponentially with
the time constant T, from one to zero when the node was
best matching. Despite the inherited error, which remains

A

w

{

Error counter:

Output

Inherited error: T

Insertion threshold: )

Input weights

Output weights  w°%

{

Age (youth): Y

 For all nodes i, calculate the Euclidian distance d, of the input to the weight vector and locate the best
matching unit b and calculate the activation of all nodes y, with a Gaussian function (identical to
[10]).

* Determine the output and the error A zaccording to the used supervised or reinforcement mechanism.

* Adapt the long time error counter 7; and the short time error counter 7, with the time constant 7+

1 1

T(L/S) - e T(L/S)..C(L/S) +(1 _e T(L/S)). AT

* Decrease the insertion threshold 7, of each node and the youth Y of the best node b:

* Determine the quality measure of the best node and its neighbors for learning B" and insertion B’ with
consideration of the insertion threshold

ins*

3 I — —_— .
S B = T, " Ty, (105

* Determine the learning rate of the best node and its neighbors from the quality measure and youth.

C [0 e 15,
Nomy, = em) if o, >2 o, = 5 + Y,
04" Ny else L

and allow a minimal learning rate of the input weights determined by @, :

I / /
Nemy = MAX(My Nprm) My = Ny (1 -) 0y,
* Increase matching for b and its direct topological neighbors 7.
Aw, = 'r],/,/-(x—wb)

Aw, = 'r]:,/'(x—wn) VneN,
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» Adapt edges (identical to [10]).
o After A'ny steps, find node ¢ and its neighbors f for insertion if the following criterion is fulfilled:

max max
0 < Ky = ieG(Kpp) 5 Ky = ieN (K 5 K, = B,

ns,q ins. ins,i 1 i

- If g and fexist, insert new node » with the arithmetical average of weights and error counters.
- Adapt moving insertion threshold for node », ¢ and f:

IF t,-1,,(1-0,) >0 THEN 7, := t1y+ny (1, - T4 (1-0,))
- Check deletion criteria and find node d, whose criterion is higher than the deletion threshold #,,,:

max 1 Aw
Vs < Kpug = ieG(Kyy)) NINA=2 ANY <0y, Koty = V] 'T'AW
Aw = LE ||wi—w].|| local density of the input weights
IV, jew
/= LE w; whole density of the input weights
Ry j=1

Aw ™ = LE Iw ™ -w ™| local density of the output weights

In the above equations N, denotes the set of direct topological neighbors of cell » and G the set of all
cells of the network.

7. Examples

For a demonstration of the above ideas, we present a simulation of the lifelong supervised learning on
an open data set containing overlappings i) without changing the environment and ii) with changing
the environment. For illustration purposes a 2D artificial data set is chosen. It should be remarked that
the performance of the presented algorithm in its converging stable state is comparable to the result of
the original GNG on a public benchmark data set with real world data [15], as indicated in [25].

The first simulation illustrates the control of insertion, especially in overlapping areas. The overlap of
the line with the ellipse in environment 1,4,5,6 are managed with only a few nodes. Also the algorithm
exhibits no problems with the total overlap of the two circles in environment 3,4. Finally, the areas with
low probability are represented as well.

The second simulation illustrates the performance while changing the environment to underline the
flexibility of the algorithm. In some cases, the previously presented data is not completely kept (Fig.
11 env. 4). This depends on the deletion criteria. An area remains stable, if it is represented by three
or more nodes, otherwise it may be destroyed by neighboring areas. Reducing the deletion threshold
increases the density and ensures a saver representation but demands a higher simulation time and
storage capacity for real data. In general, the algorithm shows a flexibility against unseen data, and
keeps the old data in case of no contradiction.
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Class Area Environment (probability)
1 2 3 4 5 6
A B=T ¢ A 1 Rectangle 1 1 1 1 1 1
B 1 Line 1 0 0 1 1 1
C 2 Ellipse 1 1 1 1 1 1
D.E D 3 circle 1 1 1 1 0.1 0.01
E 2 circle 0 0 1 1 0 0

Fig. 8: Artificial environments based on five areas (A-E). Each environment consists of different probabilities of each class
in the areas.

Environment 1 Environment 4
Environment 2 Environment 5
Environment 3 Environment 6

Fig. 9: Results of the algorithm on the artificial data set after 10000, 50000 and 200000 steps (adopted from [25]).

Class Area Environment (probability)
1 2 3 4 5 6
A =T ¢ A 1 Rectangle 1 1 0 1 1 0
B 1 Line 1 1 1 0 0 1
C 2 Ellipse 0 1 1 1 1 0
DE D 3 circle 0 0 0 0 1 1
E 2 circle 1 1 1 0 0 0

Fig. 10: Changing environment based on five areas (A-E). The environment changes from 1-6 always after 20000 steps.
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Fig. 11: Results of the algorithm on the changing environment simulation. Top: The result after every 20000 steps in the current
environment. Middle: The course of nodes and edges in the simulation. Bottom: The quantization, squared and classification
errors. Although a permanent error in environment 2 and 3 occurs, the number of nodes does not increase. After changing the

environment, the network quickly adapts to the new situation and preserves the old pattern, which is clearly visible in
environments 3 and 6.

8. Conclusion

A lifelong learning incremental neural network based on the GNG algorithm was presented to
coordinate insertion and learning. It was shown that the network can learn to stop insertion in regions
where the error can not be decreased. Furthermore, in changing environments the network remains
stable for old prototype patterns and adaptive for new or modified prototype patterns.

Although the presented algorithm is derived heuristically and lacks a theoretical basis, the results
obtained on artificial as well as on real world data sets indicate a good performance and are a promising
step towards lifelong learning in neural networks. A detailed performance evaluation is in work.
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