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ABSTRACT
With the advent of Internet of Things (IoT), an increasing
number of devices may spontaneously communicate to ex-
change information. This puts emphasis on wireless sensor
networks (WSNs) and, in particular, on intelligent medium
access control (MAC) protocols, as there is a need to guaran-
tee a certain quality of service (QoS) on timely data/packet
delivery. Most existing approaches, however, are either
of random nature, making it impossible to guarantee any
bounded delay, or do not scale well for a higher number of
nodes. As a result, we propose slot sharing TDMA (short
s2TDMA), a deterministic contention resolution scheme in
form of generating TDMA cycles with shared slots at the
event of collisions. Every TDMA slot is assigned to a range
of IDs, in which the corresponding nodes can transmit. By
further dividing these slots in case of collisions, we implement
an interval tree search enabling for fast collision resolution in
logŝ-complexity, where ŝ is the number of slots in each cycle.
Since our scheme is activated upon collisions, it incurs in zero
overhead during normal operation and is able to quickly react
to changing traffic load such as bursty traffic. We perform a
large set of detailed simulations on OMNeT++ showing that
our technique offers a fast collision resolution and is able to
handle a large number of nodes in the network.
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•Networks → Network protocol design; Network relia-
bility; Sensor networks;
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1. INTRODUCTION
In the era of IoT, different devices will spontaneously com-

municate with each other to exchange information allowing
for new interesting applications. For example, wearables can
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communicate with existing smart home structures to improve
comfort and user experience or even call an ambulance in
emergency situations.

This, however, poses a number of challenges that need to
be addressed. In particular, there can be a potentially large
number of nodes transmitting on a communication channel
and, hence, leading to increased collisions and data loss.

While we expect IoT applications to tolerate some data
loss, there is a need to guarantee a certain QoS on which
they can rely. That is, devices should be able to reliably
deliver data in a timely manner, which needs to be enabled
from the MAC layer upwards.

In this context, CSMA-based approaches seem to be suit-
able, as these do not require devices to synchronize and,
hence, offer good energy efficiency. In addition, they are
known to be very effective in handling retransmissions in
case of collisions at the communication channel. However,
their effectiveness drastically reduces at high load, e.g., as
the number of transmitting devices increases. That is, the
retransmission delay potentially becomes unbounded and,
therefore, no QoS guarantees can be given.

On the other hand, TDMA-based approaches allow for
a reliable communication at high loads, but they lack the
necessary flexibility, particularly, for dynamic reconfiguration

— devices may join and leave the network at arbitrary points
in time — apart from relying on devices to synchronize.

Hybrid MACs [2] [9] have been proposed to overcome this
problem. These are based on combining CSMA and TDMA
to allow for deterministic behavior, especially, at high loads
and, at the same time, for reconfiguration flexibility.

Although these hybrid approaches allow guaranteeing QoS
at high loads, they do not easily scale to an increasing number
of devices or nodes in the network. In other words, these are
effective when a few nodes produce high communication load,
but rapidly degrade when multiple nodes are responsible for
that communication load, as discussed later in more detail.
In addition, they require control messages to be exchanged
adding further delay and making them react slowly, which
can be problematic for bursty traffic.

In order to allow for faster response times, other approaches
have been presented [5] [7] [10]. These rely on collision res-
olution schemes that schedule retransmissions and therefore
avoid further interference between nodes. Since they just ac-
tivate on collisions, they do not result in any overhead during
normal operation and allow for fast data transfers. However,
they are either of random nature again making any QoS guar-
antees impossible, or only work for a small number of nodes.



Similar to the previously mentioned approaches, this paper
proposes a hybrid MAC. However, in contrast to them, our
approach better scales to an increasing number of nodes. This
makes it more suitable for upcoming IoT and, in general, for
WSN applications where large numbers of nodes are to be
expected.

1.1 Contributions
In this paper, we propose s2TDMA, a hybrid MAC that

allows deterministic collision resolution in receiver-initiated
WSNs, i.e., those where nodes only send when awakened by
the receiver. Our technique consists in generating TDMA
cycles — called arbitration cycles — upon collisions. The
particularity of the proposed scheme is that every TDMA
slot is assigned to a range of IDs, in which the corresponding
nodes can transmit, i.e., slots are shared by multiple nodes.

Whenever a collision occurs, the current slot is further
divided into multiple sub-slots with smaller ID ranges. This
enables fast collision resolving in logx-complexity being x the
number of slots per each such cycles as illustrated later in
detail.

In addition, we analyze the probability of collision and the
worst-case communication delay according to the proposed
scheme. Finally, extensive simulation results are presented
based on OMNeT++. These compare the performance and
show benefits by s2TDMA with respect to other approaches
from the literature.

1.2 Structure of the Paper
The rest of this paper is structured as follows. Related

work is discussed in Section 2. Next, Section 3 explains
our system model and assumptions. Section 4 introduces
the proposed MAC protocol and Section 5 analyses colli-
sion probabilities and communication delays mathematically.
Section 6 presents our experimental evaluation based on
simulation and Section 7 concludes the paper.

2. RELATED WORK
There are many different approaches from the literature

that are concerned with making WSNs more reliable and
energy-efficient. In general, these can be classified into conten-
tion-based, reservation-based and hybrid schemes.

Contention-based methods are usually asynchronous pro-
tocols that can access the channel at arbitrary points in
time. Whenever a collision occurs or the channel is busy
during carrier sensing, they perform techniques to resolve the
contention, such as random back-off schemes. Due to their
low overhead, high flexibility and simplicity, they enjoy great
popularity. However, since channel access is uncoordinated,
contention-based approaches generally offer bad performance
for high traffic loads. A widely used contention-based proto-
col is CSMA.

In contrast, reservation-based protocols avoid collisions
by assigning nodes individual time slots to transmit. This
ensures that even high numbers of nodes can transmit their
data reliably and within a bounded delay. Nevertheless,
reservation-based protocols generally require synchronization,
which incurs in additional overhead and worsens the energy
efficiency, especially during low network load. Examples of
synchronous networks are TDMA and slotted Aloha [1].

Hybrid approaches try to combine the advantages of both
contention and reservation-based protocols. This can, for

example, be done by switching from CSMA to TDMA in
high traffic [9] or by leaving space in TDMA frames, where
nodes can transmit packets with CSMA [2]. However, both
methods require additional control messages for switching
modes or assigning TDMA slots. Since these messages can
also be lost, no real-time guarantees can be made. Further,
they impose an additional delay making these schemes react
only slowly to changes in traffic load.

Another contention-based approach, called Strawman, is
presented in [7]. Here, nodes actively contend after colli-
sions by sending a contention packet of random length. The
receiver then selects the node with the longest contention
packet and transmits an RTS-like decision message. After the
actual data is transmitted, the arbitration starts anew until
all collisions are resolved. In summary, Strawman allows
fast adaption to changing traffic, as well as a fast collision
resolution. However, its random nature makes it not suitable
for real-time applications.

Similar to Strawman [7], STAIRS [5] uses active contention
messages after every collision. However, instead of just pick-
ing the longest packet out of a number of contention packets,
the RSSI channel is used to determine the number of con-
tenders and, hence, create a schedule. This greatly reduces
the overhead, as contention packets have to be transmitted
only once in the best case. On the other hand, the use of
the RSSI channel is highly error-prone and works only for a
low number of contenders, as it quickly starts to saturate.

In order to manage higher number of contenders, for ex-
ample, in dense sensor networks, Carlson et al. propose
Flip-MAC [3]. Here, the receiver first reduces the number of
contenders by a series of probe-acknowledgment cycles. In
every cycle, each node randomly picks one of two possible
IDs and all nodes matching the ID of the probe message send
an acknowledgment while all others drop out. The receiver
repeats this cycle until no more ACKs are received indicating
that contenders have been reduced to a manageable level.
The remaining contenders then use CSMA to transmit data.

The previously mentioned contention-based approaches
were of random nature enabling fast collision resolution, but
making it impossible to guarantee any bounded delay. Since
some applications are delay sensitive and require determinis-
tic behavior, different MAC protocols are needed. To this
end, BIN-MAC [10] proposes a hybrid protocol that allows
a delay-bounded contention resolution. More precisely, ev-
ery node is assigned a unique ID and every time a collision
occurs, the receiver replies with a negative acknowledgment
(NAK) containing a range of IDs. Only nodes with an ID
within that range can retransmit, all others have to wait.
Similar to a binary tree search, this range is halved upon
every collision until data is successfully transmitted. This
results in a log2-complexity allowing fast collision resolutions
even for high number of contenders.

In this paper, we propose s2TDMA, a deterministic con-
tention resolution scheme similar to BIN-MAC [10]. However,
instead of using a binary tree search, we implement an in-
terval tree search in form of generating TDMA cycles upon
collisions. This does not only speed up the collision resolution,
but also allows multiple nodes to send consecutively within
a cycle. We later show that our approach greatly improves
the performance, such as latency, throughput, etc. of the
network, which makes it, together with its high scalability,
be better suited for larger networks.



3. MODELS AND ASSUMPTIONS
We consider a WSN consisting of multiple sensor nodes and

one or more sink nodes that are spatially distributed. Upon
activation, nodes do not transmit spontaneously, but wait
for the next query/probe message from their corresponding
sinks. This receiver-initiated topology, which is also used by
similar approaches from the literature [3] [5] [7] [10], offers
two main advantages: First, it allows the usually very re-
source constrained nodes to put most of the burden on the
receiving node. Second, it limits the number of contending
nodes as they can only participate in the communication
cycle after a receiver’s probe. This implicit sender syn-
chronization prevents nodes from joining during later MAC
phases, where they might interrupt the ongoing arbitration
process.

In order to avoid conflicts between multiple sink nodes,
we reduce contention by using multiple radio channels for
operation. Similar to A-MAC [4], the initial probe messages
are sent on a pre-determined channel to be receivable for
all nodes. Later data transfers are then performed on other
radio channels as defined in the probe message.

Transmitting a data packet takes a given amount of time,
which depends on the number of bits to be transmitted and
the bandwidth of the communication channel. We refer to
this time to as packet length and denote the length of any
packet of node i by li.

Since probe messages can wake up multiple nodes at once,
data transmissions may interfere with each other leading to
packet loss. As a result, to achieve reliability, the receiver
node acknowledges (ACK) a packet after successful reception.
We denote by lack the length of an acknowledgment packet.
If the data packet is corrupt — we assume that even the
slightest overlapping of two different data packets leads to
data loss — the sink node replies with a negative acknowl-
edgment (NAK). For simplicity, we set the length of NAK
packets to be equal to lnak = lack.

Every node in the system has a unique ID, which allows the
sink node to distinguish between different data transmissions
and to assign TDMA slots as described later. These IDs can
be either be hard-programmed into the nodes memory, or
be assigned dynamically by registering and de-registering in
the network. However, in this paper we focus on collision
resolution mechanisms and the assignment of IDs is out of
scope.

4. PROPOSED SCHEME
In this section, we introduce s2TDMA, a reliable and

energy-efficient collision resolution scheme for receiver-initiated
WSN. As already mentioned, this consists in generating
TDMA cycles upon collisions. Every TDMA slot is assigned
to a range of IDs, in which the corresponding nodes can
transmit. Whenever a collision occurs within a slot, it is
further divided into sub-slots to resolve that collision. This
allows fast collision resolution as well as multiple consecutive
data transmissions in a single arbitration cycle.

4.1 Working Principle
The communication cycle starts when a sink node broad-

casts a probe message. All sensor nodes — addressed in the
probe — may start transmitting their data after the probe
message. However, since this can potentially trigger multi-
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Figure 1: Different steps of the proposed contention reso-
lution scheme: A probe message triggers 2 nodes, whose
packets collide at first. After receiving a negative acknowl-
edgment (NAK), these two nodes participate in a TDMA
arbitration cycle and successfully transmit their data.

ple sensor nodes at once, there can be collisions of packets.
In this case, the proposed collision scheme is activated as
displayed in Fig.1.

If corrupt data is received, the sink node replies with
a negative acknowledgment (NAK) to inform the sensor
nodes that they have to retransmit. However, the receiver
does not know the number of contending nodes a priori. If
these retransmit directly and without any resolution scheme,
multiple collisions can occur again. To overcome this problem,
a TDMA arbitration cycle is started.

Each TDMA slot is assigned to a range of IDs in which
only nodes with an ID in that range are allowed to transmit.
Assuming we have a system with a set of N nodes each of
which has its unique ID, the initial TDMA arbitration cycle
equally splits those IDs upon ŝ slots. For example, if we have
a system of 100 nodes and therefore IDs 1 to 100, each slot
would contain |N |/ŝ = 100/4 = 25 IDs, with ŝ = 4 and |N |
being the number of nodes in N . The first slot contains the
lower IDs, in this case 1 to 25, the second contains IDs 26 to
50, the third 51 to 75 and the fourth 76 to 100. Note that
whenever |N |/ŝ produces a remainder, this is added to the
last slot.

This ID splitting reduces the number of contending nodes,
however, it does not yet guarantee successful transmission.
To this end, a TDMA slot is further divided into equal sub-
slots, whenever a collision occurred within that slot. In our
previous example, a collision within slot 1 would split this
slot into another ŝ = 4 sub-slots with the ID ranges of 1-
6, 7-12, 13-18 and 19-25. As a consequence, the number of
contending nodes is reduced from 100 to 6 after two collisions.
This greatly reduces the chance of further collisions, however,
it still cannot fully prevent them. In the worst case, this
splitting continues until each slot contains just one ID and
therefore guarantees successful communication. If, in that
case, the range of IDs to be divided is smaller than ŝ, the
resulting TDMA cycle will have as many slots as IDs. For
example, if a slot contains 3 IDs and ŝ = 4, this slot is divided
into k = 3 sub-slots with one ID each.

Fig 2 shows the working principle of the sub-slot creation
in more detail. Here, two nodes collided first and, hence, a
TDMA arbitration cycle is created. In this example, after
the first empty slot has finished, they both transmit in slot
2, in which their data packets collide again. The sink then
replies with a NAK indicating that a sub-cycle begins with
ŝ = 4 sub-slots. Now, due to the finer ID resolution, node i
can successfully transmit in slot 2 and node j in slot 3. After
the last slot of the sub-cycle has finished, another new cycle
is started containing the remaining IDs that have not been
resolved so far. Although there are no further nodes wanting
to transmit in this example, empty slots cannot be skipped
and the sink will go to sleep after slot 4 of cycle 2 has finished.
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Figure 2: Illustration of the sub-cycle splitting principle: A
collision within a TDMA cycle, here in slot 2, causes the
immediate creation of a sub-cycle with ŝ = 4. Once these
slots have been executed, the remaining IDs are processed in
another full cycle (cycle 2). Note that all slots, independent
of being empty or used, have the same length and have only
been shortened for better illustration.

Note that whenever a sub-cycle is completed, i.e., no more
collisions occurred in it, a new cycle is created to resolve
the remaining IDs. This is a simple and efficient solution,
since other methods such as going back the interval tree, i.e.,
stepwise increase the slot sizes again, would require many
ACK/NAK notifications. Recall that at this point of time,
the sink does not know the number of nodes participating
in the arbitration cycle, i.e., how many nodes have been
awakened by the initial probe message, but just the already
resolved IDs from previous (sub-)cycles. Therefore up to
|N | − x nodes can still be pending, where |N | is the total
number of IDs and x the number of already resolved IDs. In
summary, this process can be repeated until no IDs are left
to resolve, in which case the sink goes back to sleep.

All parameters needed for generating the arbitration cycle,
such as the ID ranges, number of slots per cycle ŝ, etc., are
specified and calculated by the sink. These are then broadcast
in every ACK/NAK message to inform the contending nodes.
This can be done in two possible ways: First, ACK/NAK
messages only contain the current ID range of the nodes
that are allowed to transmit in the next slot. This reduces
complexity at the nodes side, since they only need to check
whether their IDs match the given range. However, it also
requires more control bytes to be send within the ACK/NAK
messages as discussed later. Second, either no or only very
little information is broadcast and nodes use hard coded
parameters. The missing ID ranges are then calculated
depending on whether ACKs or NAKs are received. This
reduces the data overhead of control messages, but on the
other hand, also decreases the flexible of the system regarding
dynamic changes.

By assigning IDs to TDMA slots, nodes are prioritized ac-
cording to these IDs. This means that lower IDs are resolved
faster, whereas higher IDs can take a longer time to be re-
solved. This is useful in applications, where different types of
nodes have different requirements regarding their maximum
tolerable delay. For example, in a home automation system,
critical devices such as controllers or alarm systems need to
relay their data faster than lower priority devices such as
wireless light switches.

4.2 Timings and Data Structures
Every action performed by the transceiver requires time

and, hence, influences the total delay of the proposed scheme.
Fig. 3 depicts the timings of a successful packets transmission.

After a data packet is transmitted, both the transceivers
of the sink and the sensor node have to switch their oper-
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Figure 3: Timing of a successful transmission: After every
data packet of length li, td is needed to process the data
and to switch the operation modes of transceivers. Similarly,
ACK messages (of length lack) require a processing time td.

ation mode: The sensor node switches to receive mode in
order to be able to receive an ACK/NAK, whereas the sink
node switches to transmit mode to transmit the ACK/NAK.
However, the sink node has to safely detect the end of node
i’s data packet first. Although data packets include a length
code, as discussed later, this may corrupt in case of a collision
and, hence, the receiver has to sense the channel continu-
ously to detect the end of a packet. We denote this delay by
sensing and switching operation modes by td.

After reception/transmission of an ACK/NAK, again both
nodes have to switch their transceiver modes. Although
ACK/NAK messages are of constant length and, hence, sens-
ing the end of the packet is not necessary, we still assume
the same td for this delay. This does not only facilitate the
system analysis, but also adds the possibility to dynamically
change the payload of ACK/NAK messages, which might be
required for future extensions.

Similar to other approaches from the literature , e.g., Bin-
MAC [10], s2TDMA requires additional structure fields to
be sent within each packet. Besides the usual overhead,
such as preamble, start frame delimiter (SFD), etc., each
data packet contains a length code to define the number of
payload bytes and a cyclic redundancy check (CRC) field
to detect corrupt data. In case of ACK/NAK messages, we
do not need the length code, since we previously assumed
that both have the same length tnak = tack, which is already
known by sensor nodes. However, each NAK/ACK contains
a type field defining if it is either a NAK or an ACK and
an ID field for the ACK address. In addition, as discussed
previously, further bytes are required for informing sensor
nodes about the arbitration cycle. These can be two address
fields defining the upper and lower bound on IDs or either
no data or just the number of slots per cycle ŝ. In summary,
this means an overhead of 2 bytes for data packets and 3 to
7 bytes for ACK/NAK messages, when assuming a size of
1 byte for control fields and 2 bytes for address fields.

5. ANALYSIS OF COMMUNICATION
The proposed s2TDMA can be easily configured to meet

desired requirements. In particular, at the event of a collision
on the communication channel, we can adjust (i) the number
of slots per arbitration cycle and (ii) the number of (sender)
nodes in each slot. Clearly, this affects communication delay,
i.e., the time taken from a node’s activation to its packet
being successfully delivered.

There are different policies one can follow to select (i) and
(ii). For example, one slot can be dedicated to one node —
guaranteeing that this node sends alone on that slot — and



assign more nodes to other slots or one can also uniformly
assign nodes to slots. The more nodes are sending on the
same slot, the higher the probability of collision on that slot.
On the other hand, having less nodes per slot increases the
number of slots, since all nodes need to be accommodated in
one arbitration cycle.

The used policy for selecting (i) and (ii) has a direct
influence on communication delay and, hence, the analysis
in this section depends on the used policy. As explained
before, s2TDMA uses a uniform distribution of nodes to
slots. Note that other policies are also possible and can be
easily derived in a similar manner, for example, where nodes
may be unevenly distributed to slots.

5.1 Probability of Collision
As stated above, we consider a receiver-initiated WSN,

i.e., where the receiver wakes up a given number of (sender)
nodes and allows them to send. Let us denote by N the set
of these nodes. Further, pi denotes the probability that node
i in N sends after waking up. We assume that this follows a
random process and, hence, pi can obtained statistically by
observing the behavior of a large set of similar nodes over a
large period of time.

Now, if node i is stochastically independent of all other
nodes in N , the probability that it suffers no collision is given
by the following expression:

p̄i = pi
∏

j∈N,j 6=i

(1− pj), (1)

where 1− pj is the probability that a node j in N does not
send, i.e., (1) gives the probability that node i sends alone.
As a result, node i undergoes a collision with a probability
of 1 − p̄i, i.e., at least one of the other nodes in N sends
simultaneously.

In case of a collision, the receiver starts an arbitration
cycle with a given number of slots ŝ. We consider the case of
a uniform distribution of nodes to slots, where nodes in N are
sorted in order of decreasing priority, i.e., node i has a higher

priority than node j if i < j holds. Node 1 to node
⌊

|N|
ŝ

⌋
are

allocated to the first slot, where |N | is the number of nodes

in N . Next, node
⌊

|N|
ŝ

⌋
+ 1 to node 2 ·

⌊
|N|
ŝ

⌋
are allocated

to the second slot and so on. Finally, node (ŝ− 1) ·
⌊

|N|
ŝ

⌋
+ 1

to node |N | are assigned to slot ŝ.
If a collision occurs in one of these slots, the receiver

starts a second arbitration cycle, where the subset of nodes
in the corresponding slot are now split into ŝ slots — we
consider that the same number of slots is used at every such
cycle; however, s2TDMA can also be configured for a varying
number of slots. A node i may undergo a certain number
of arbitration cycles until it sends without collisions. Note
that, in the worst case, this may not happen until node i has
exclusive use of a slot.

Now, in a given arbitration cycle `, a node i’s probability of
sending without collisions is given by the following expression:

p̄i` = pi
∏

j∈N`s,j 6=i

(1− pj), (2)

where N`s is the subset of nodes assigned together with node
i to the same slot s being 1 ≤ s ≤ ŝ and 1 ≤ ` ≤ ˆ̀. Here,
ˆ̀ is the maximum number of arbitration cycles for given N

and ŝ. Similar to before, 1− p̄i` is the probability that node
i suffers a collision in the arbitration cycle `.

The maximum number of arbitration cycles ˆ̀ can be ob-
tained considering that nodes are divided into ŝ slots ev-
ery time there is a collision. In the first arbitration cycle,

this is
⌊

|N|
ŝ

⌋
≤ |N|

ŝ
. In the second arbitration cycle, this is⌊ ⌊

|N|
ŝ

⌋
ŝ

⌋
≤ |N|

ŝ2
, and so on. Since no collision can happen and,

hence, no further arbitration cycle will be started when there

is only one node per slot, we have that |N|
ŝ`

= 1 must hold.
We can apply logarithm to solve for ` and round up to ob-
tain an upper bound on the number of arbitration cycles as
shown below:

ˆ̀=

⌈
ln |N |
ln ŝ

⌉
. (3)

5.2 Communication Delay
A node i’s shortest communication delay is given by li +

lack + 2td, i.e., the time needed by node i to send its packet
plus the time needed by the receiver to send an acknowledg-
ment plus the time needed by the transceiver IC to process
both of them — see again Fig. 3. This happens when node i
needs to send and no other node in N has anything to send,
which again has a probability as per (1).

On the other hand, a node i’s longest communication
delay — denoted by ĉi — happens when it needs to send
data together with all nodes in N that (i) either have higher
priority or (ii) are allocated to the same slot. This is because
higher-priority nodes occupy the first slots in any arbitration
cycle and lower-priority nodes send their data on node i’s
slot producing additional collisions. Considering again that
nodes in N are sorted in order of decreasing priority, the
upper bound of ĉi can be computed in the following manner
for 1 ≤ i ≤ |N |:

ĉi ≤
i∑

j=1

Lack,j +

d i
2e∑

j=1

⌈
ln(|N | − 2j)

ln ŝ

⌉
× Lnak, (4)

where Lack,j = lj + lack + 2td and Lnak = lmax + lnak + 2td.
The first term in (4) is the sum of the transmission times

of packets of higher-priority nodes with their respective ac-
knowledgments. The second term requires more explanation.
As we already know, a collision is resolved when no more
collisions occur in the corresponding (sub-)cycle. Since that
sub-cycle can contain up to ŝ slots, this means that up to
ŝ nodes can finish their transmission. However, the num-
ber of slots may vary in each arbitration cycle, for example,
if the remaining IDs are less then ŝ, which typically hap-
pens after several ID splits. For the sake of simplification,
let us pessimistically assume that every such (sub-)cycle
has 2 slots. This means that only two IDs are resolved
each time. This way, considering node i in N , up to

⌈
i
2
e

sub-cycles will be generated. As previously discussed, each
of these require at most ˆ̀ NAK messages — see again (3)
with ŝ = 2. However, after every successful sub-cycle j,
the number of remaining nodes reduces to |N | − 2j. Since
NAK messages follow collided packets, their total duration
is (lmax + lnak + 2td), where lmax is the longest among all
collided packets.



Table 1: CC2420 radio and simulation parameters

Parameter Value

Bit rate 250 kbps
CCA Sampling time 128µs
RX/TX Switching time 192µs
Reception response delay td 420µs
CSMA slot length 320µs

In other words, whereas the first term in (4) results from
the transmission times by higher-priority nodes, the sec-
ond term accounts for protocol/arbitration overhead in the
worst case.

6. SIMULATION RESULTS
In this section, we present the results of a simulation

based on the OMNeT++ network simulation framework [12]
and an extension for mobile and wireless networks named
MiXiM [6]. This allows us to effectively simulate our network
with different physical parameters and to record statistical
values for very large numbers of transmissions.

The simulated network consists of one receiver and a se-
lectable number of n transmitters that can either be within
range of each other and, hence, interfere with each other, or
simulate hidden terminals. The receiver node is a simple data
sink, whereas transmitter nodes are data sources that trans-
mit packets with a certain pattern according to the compared
MACs as explained below. Note that our proposed MAC also
supports multihop communication. However, for simplicity, a
single hop and single sink setting is used, which also matches
the requirements of Strawman [7] and Bin-MAC [10].

Our simulation is based on a receiver-initiated protocol,
similar to RI-MAC [11], in which the sink periodically broad-
casts probe messages to wake up transmitting nodes and
trigger data communication. The number of nodes to wake
up can be specified, whereas the nodes themselves are picked
randomly to ensure that different possible combinations of
IDs are considered. All simulation data is recorded and pro-
cessed by the framework at runtime. In particular, the time
stamps of the different packets sent are compared to deter-
mine whether packets overlap and, hence, get lost. Each sim-
ulation was performed with different parameters, for which
at least 1,000 probe-cycles have been simulated each time.

We consider the following four MAC protocols and compare
them in the simulation:

• The s2TDMA scheme is our transmission scheme as
presented in Section 4.

• The BTCR scheme uses the deterministic binary tree
contention resolution from BIN-MAC [10].

• The Strawman scheme is a contention-based MAC of
random nature as presented in [7].

• The CSMA scheme is based on the non-persistent Car-
rier Sense Multiple Access (CSMA) method as defined
in IEEE 802.15.4.

The transmission rate was fixed to 250 kbps and the ra-
dio parameters were taken from the widely used transceiver
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Figure 4: Average transmission delay for successful data
transmission

0

50

100

150

200

250

300

350

2 10 20 30 40 50

M
ax

im
u

m
 d

e
la

y 
[m

s]

Number of contending nodes

s²TDMA BTCR Strawman CSMA

Figure 5: Maximum recorded transmission delay for success-
ful data transmission

CC2420, as displayed in Table 1. Similar to the IEEE 802.15.4
standard, each data frame consists of 4 bytes preamble, 1 byte
SFD (start frame delimiter), 1 byte length code, 1 byte CRC
(cyclic redundancy check) and a number bytes for data pay-
load, resulting in 7 bytes overhead. The control messages,
such as ACK, NAK, Strawman notification, etc., can omit
the length field, since they are of constant size and, hence,
have just 6 bytes overhead.

The Strawman and CSMA control messages both contain
a 1 byte type field, defining the type of control message, and a
2 bytes ACK address field. In addition, BTCR and s2TDMA
require further 4 bytes for address fields to specify the upper
and lower ID ranges. For simplicity, we again assume that
all control messages have the same length for a specific MAC,
for example, Strawman notification messages have the same
length as Strawman ACKs and NAKs.

Unless otherwise noted, the remaining parameters are set
as follows: The simulated system consists of 50 nodes, of
which 2 ≤ N ≤ 50 nodes contend each cycle. Data packets
have a fixed length of 8 bytes, hence, the payload is 1 byte.
In case of s2TDMA, we set the number of TDMA slots
per arbitration cycle to ŝ = 4. For Strawman, we use the
parameters as specified in [7] and [8], resulting in a maximum
contention length of 3.7ms and a maximum retransmission
number of 2. For more details about BTCR and Strawman,
see Section 2.
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Figure 6: Average energy consumption for successful data
transmission

6.1 Delay
Let us first analyze the average transmission delay, i.e.,

the time from waking up the node until successful reception
of its data, as depicted in Fig. 4.

Clearly, the delay rises for a greater N for all nodes, since
more contenting nodes imply more collisions and, hence, a
longer resolution time. In case of s2TDMA and BTCR, the
delays rise linearly for higher N , whereby the delay of the
BTCR scheme is generally higher, as its binary tree scheme
needs more retransmissions for collision resolution. Similarly,
CSMA also rises linearly with rising N , however, it rises at
a slower rate. This is because CSMA starts to loose data,
as we discuss later in more detail. Nodes, therefore, start to
drop out of the contention resulting in (little) less load for
the remaining contenders. However, for low N < 8, CSMA
has higher delays than the other schemes, as its back-off
mechanism produces relatively long delays for low N .

In contrast, Strawman has a relatively high delay compared
to s2TDMA and CSMA. This can be explained by the fact
that is uses pulses instead of full packets for contention
resolution, which is a much slower operation mode for most
transceiver ICs (including the CC2420). For example, one
CCA request with 128µs takes as much time as transmitting
4 bytes of data. Consequently, every Strawman contention
pulse, which we previously set to a maximum length of
3.7ms, can have a length equal to up to 115 bytes. This
effect, however, mitigates when considering larger packet
sizes, as discussed later. Similar to CSMA, the delay also
rises at a lower rate for higher N , as Strawman looses packets.

Fig. 5 shows the maximum delay that was recorded during
simulation of Fig. 4. As we can see, both probabilistic
approaches have a relatively high maximum delay compared
to BTCR and s2TDMA. This is because these are designed
for simplicity and good average performance, but not for
guaranteeing any QoS. During high network load these will
therefore produce high loss rates and high delays. In contrast,
BTCR now has a relatively low maximum delay, however,
s2TDMA results again in the lowest delay of all four schemes.

6.2 Energy Efficiency
Lets us now analyze the average energy consumption of the

different MAC protocols, as displayed in Fig. 6. Analogous
to the delay from Fig. 4, the energy consumption curves of
BTCR, Strawman and s2TDMA share a similar shape. This is
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Figure 8: Average delay for a varying packet size

because delay and energy consumption are directly connected
to each other, since these schemes are active during the whole
contention resolution and do not implement sleeping times
like CSMA. This means that higher contention levels require
the nodes to be active longer, resulting in a higher delay and
energy need. On the other hand, CSMA requires very little
energy, since retransmission numbers are much smaller and
nodes sleep during back-off times.

6.3 Reliability
Fig. 7 shows the reliability, i.e., the percentage of lost pack-

ets, for different levels of contention. As expected, both de-
terministic schemes result in 0 packet loss, as these are specif-
ically designed for reliable data transfer. On the other hand,
both random protocols incur in data loss, which strongly
increases for higher N . Since probabilistic approaches are
generally uncoordinated in channel access, a higher number
of contending nodes makes collisions more likely. As a conse-
quence, the maximum retransmission number as well as the
limited back-off retries of CSMA or contention packet sizes of
Strawman, start to not be sufficient anymore and data is lost.
This makes both CSMA and Strawman not applicable for
networks, where possibly high numbers of nodes can contend
simultaneously.

The reliability of CSMA and Strawman can be improved
by increasing contention packet sizes, back-off retries or
retransmission numbers. However, in return, both delay and
energy consumption will increase.



6.4 Packet Size vs Performance
Next, we discuss the effects of varying the data size with

respect to delay, energy consumption and data loss. To this
end, we simulated a network of N = 20 contending nodes
per probe-cycle and vary the data size from 7 bytes (empty
packet) to 64 bytes. The results regarding the average delay
are depicted in Fig. 8. Since the energy consumption again
shows similar behavior, we forgo to examine it separately.

Clearly, increasing the data size increases the delay and
energy consumption of all four MAC protocols. For BTCR,
this effect is the most dominant, since its contention resolu-
tion is triggered upon collisions of data packets. Increasing
the packet size therefore linearly increases the delay. Similar,
our s2TDMA scheme is also based on the same principle.
However, its generally faster convergence results in less colli-
sions, hence, bigger data sizes still increase the delay, but not
a strong as for BTCR. The delay of Strawman and CSMA
also rises linearly for increasing data sizes, but Strawman has
a higher starting (offset) value due to its arbitration process.

In contrast, changing the packet sizes does not affect the
loss rate of the BTCR and s2TDMA and it remains at 0 %.
Also for Strawman, no change can be observed, since its
arbitration process is independent of the packet size. For
CSMA, however, increasing the packet size slightly increases
the loss rate. This is because a longer transmission time will
increase the probability that nodes, which randomly want to
access the channel, sense the channel as busy and perform a
back-off.

7. CONCLUSION
In this paper, we proposed a MAC providing a determinis-

tic contention resolution mechanism in form of generating
spontaneous TDMA cycles upon collisions. This results in an
interval tree search featuring a fast conflict resolution with
logŝ-complexity, being ŝ the number of slots in each such
cycle.

The proposed scheme, called s2TDMA, is well suited for
receiver-initiated networks with high numbers of contenders,
which are expected in application in the area of in Internet
of Things, Cyber-Physical Systems, etc. Since s2TDMA is
only triggered on collisions and does not rely on periodic
synchronization, it offers both low overhead and good en-
ergy efficiency under low contention as well as fast collision
resolution under high contention.

In addition to analyzing the worst-case behavior, we per-
formed extensive simulations using OMNeT++. The pro-
posed technique never leads to packet losses (within the
network) and shows good scalability and quick adaption to
fast changing traffic load. Further, our experiments suggest
that the proposed s2TDMA is energy-efficient and signifi-
cantly outperforms other approaches from the literature.
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