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Abstract—Modern cyber-physical systems (CPS) often involve
distributed devices/components that closely interact with each
other and their environment. In this context, operation condi-
tions may constantly change and it is not always possible to
guarantee quality of service (QoS), particularly, if resources
degrade or stop being available. In addition, sometimes, one
would like QoS to scale up/down with operation conditions,
e.g., maximize efficiency, minimize energy consumption, etc.
without compromising safety. However, traditional design and
development techniques fail to capture the dynamics of modern
CPS, since they rather focus on individual components/devices,
and are unable to provide such QoS guarantees. To overcome
this problem, we propose a design methodology based on the
concept of ensemble, i.e., a dynamic grouping of components,
which allows for scalable QoS guaranties. We illustrate the
utility of our approach based on a case study consisting of an
intelligent production line and analyze the effect on performance
as communication between components degrades. Finally, our
methodology can be incorporated into existing ensemble-based
tools such as DEECo, Helena or jRESP to generate executable
code to be deployed onto distributed devices.

I. INTRODUCTION

We are concerned with the design and development of open-

ended cyber-physical systems (CPS), i.e., where components
may join/leave the system arbitrarily. Due to the high dynamics

and complexity of such systems, there is a need for suitable

programming abstractions that allow for a clean design while

meeting quality of service (QoS) and safety requirements.

Traditional design and development techniques from embed-

ded systems focus on individual components and largely fail to

describe (dynamic) interactions among them. As a result, they

are not really suitable for open-ended CPS. Recently, a number

of approaches have been proposed within the software engi-

neering community focusing on modeling interactions between

components rather than components in isolation: DEECo [1],

Helena [2], and jRESP[3]. However, these operate at a high

level of abstraction making it difficult to model/express QoS

on their basis.

On the other hand, usually, there are varying conditions in

dynamic CPS — e.g., resources may degrade or stop being

available, the number of components/devices may increase,

etc. As a result, there is a need for scalable QoS metrics that

can be evaluated at runtime and adapt to changing operation

conditions. The idea is that some level of functionality can

be provided in spite of degrading operation conditions and, in

particular, without comprising safety.

Contributions. We make use of the concept of ensemble, i.e.,

a dynamic/spontaneous grouping of components, to propose

a design methodology for scalable QoS. Our methodology

consists in identifying safety conditions that result from both

the used cyber platform, i.e., computation and communication

processes, and the physical world. Similarly, we derive QoS

requirements — translating into utility — that dynamically

scale up/down to adapt to changing operation conditions.

We illustrate our technique on the basis of a case study

consisting of an intelligent production line (IPL) where human

and robot workers collaborate towards a common goal. As

detailed later, safety conditions need to be derived to avoid

collisions between robots and humans. QoS is characterized

by the speed with which robots are allowed to move around.

Clearly, the more workers there are in a robot’s surroundings,

the more difficult it will be to guarantee a high speed.

Both safety conditions and QoS requirements are modeled

by components with well-defined roles and ensembles, i.e.,

rules that are evaluated at runtime, and can be incorporated

into available ensemble-based tools to obtain executable code

that can be deployed onto devices. In this paper, for the

sake of illustration, we make use of DEECo [1]; however,

our technique can also be used in combination with other

similar tools such as the aforementioned Helena [2] and

jRESP [3]. We further perform a number of simulations using

OMNeT++ to illustrate our IPL case study and to investigate

its performance with respect to degrading communication.

Structure of the Paper. The rest of this paper is structured

as follows. Related work is discussed in Section II. Next,

Section III introduces our IPL case study. Our proposed

method is introduced in Section IV , whereas Section V shows

our evaluation results and Section VI wraps up the paper.

II. RELATED WORK

There is a clear trend to use component models for the

design and development of complex systems, since they pro-

vide a comfortable level of abstraction. There exist numerous

such models with different properties and application domains

[4][5]. However, not all of them support dynamic architectures

and open-endedness (i.e., allowing adaptivity and reconfig-

uration) and real-time behavior (i.e., providing deterministic

running times) as required by highly dynamic CPS.

AUTOSAR [6], BlueArx [7] by Bosch, Koala [8] by Philips,

and IEC 61499 [9] are component-based frameworks used in
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industry. However, they do not really allow for open-endedness

as they were conceived for static components with reduced

support for dynamic architectures and/or self-organization.

Looking into models that do not specifically target em-

bedded systems, the BIP (Behavior, Interaction, Priority)

framework [10] enables timing analysis at the model level.

BIP supports real-time aspects by using timed components,

which allow for timing properties being specified using timed
variables and transitions. These are accounted for during

validation, however, composition in BIP is static not providing

any support for open-ended systems.

Finally, there are a number of tools such as DEECo [1], He-

lena [2], and jRESP [3] that build on the concept of autonomic

component ensembles. Ensembles are groups of components

described by rules that form dynamically at runtime and are

the basis of the proposed methodology. To the best of our

knowledge, this is the first attempt towards achieving scalable

QoS guarantees in the context of open-ended CPS.

III. CASE STUDY

We consider a case study in the context of Industry 4.0,

which consists of an intelligent production line (IPL) aiming

to increase the level of automation and, thereby, optimizing

efficiency and energy consumption. Currently, although robots

already play a key role in production lines, they perform

well-defined tasks and usually are mounted/installed at fixed

positions. In future, however, robots are expected to gain more

autonomy and potentially be able to perform a larger set of

tasks among which they can spontaneously switch.

Whereas robots lift weights, manipulate dangerous ob-

jects/chemicals, among others, they usually lack versatility

and ability to take common-sense decisions. Hence, modern

production lines, rely on human workers for these tasks. Since

humans and robots are expected to increasingly share the same

physical space, it is important to guarantee safety and prevent

collisions.

To this end, humans wear sensors that report their current

positions. The system then dynamically computes a robot’s

trajectory depending on the positions (and speeds) of human

beings and of other robots. Different QoS — translated into

the speed with which robots move around to perform their

assignments — can be guaranteed depending on the number

of humans and robots in the surroundings and the quality of

communication.

Mode of Operation. There are different regions of interest

as depicted in Fig. 1. A robot is first confined to its home
zone, where it can move freely. Each robot has its own home

zone, however, home zones can overlap. In contrast to robots,

humans are not restricted to any zone.

Whenever human or robot workers enter the home zone of

a certain robot, this starts processing their status information

(in particular, its current position) with a period phome. The

robot stops processing other workers’ data whenever these

latter leave its home zone.

A second region of interest is a robot’s proximity zone
defined in a radius of rprox meters around the robot. In

proximity
zonehomezone

outer zone

rprox

rprox

rhome

Fig. 1. Intelligent production line: home, proximity, and outer zones

contrast to the home zone, the proximity zone changes with the

position of the robot. Status information from any human/robot

worker — the guest — entering another robot’s — the host —

proximity zone is updated with a higher frequency of pprox.

An outer zone is an extension of the home zone by rprox
meters. From Fig. 1, it follows that workers in the outer zone

can be in the robot’s proximity zone. In this case, the robot

needs to process the corresponding status information also

with a period of pprox.

Finally, note that workers always broadcast their status

information every pprox time and that a host (robot) only

processes this data when workers are in its regions of interest.

IV. PROPOSED APPROACH

While safety needs to be guaranteed under all circum-

stances, QoS can be scaled up/down to maximize utility under

changing operation conditions. Our proposed design method-

ology consists in identifying safety conditions and scalable

QoS requirements, which depend on the target application, and

then formulating them as processes executed by components

and ensembles that are dynamically evaluated at runtime.

In the context of the above IPL, safety is defined as the

collision-free circulation of robots along the production line,

whereas utility refers to the speed with which robots move to

reach their desired destinations to perform their tasks.

A. Safety conditions

We now derive safety conditions which translate into proper

values of phome and pprox. To this end, we need to consider

characteristics of (i) the underlying cyber platform, i.e., com-

munication and computation delay, and (ii) the physical world,

i.e., speed and position of human and robot workers, etc.

Cyber platform. Let us consider that the 802.11b wireless

standard [11] is used, which is well-established communica-

tion protocol with support for ad-hoc operation, i.e., without

needing to synchronize nodes, and a bandwidth of 11 Mbps.

Further, 32B (i.e., bytes) are considered to encode a

worker’s current position. As a result, the time necessary to
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Fig. 2. End-to-end delays between host and guest workers. Delay for guests
is Dhome in the home zone and Dprox in the proximity zone.

deliver a data packet — denoted by tcom — can be computed

as follows [12]:

tcom = Tdata + TSIFS + TACK + TDIFS + TBO

= 240μs+ 10μs+ 304μs+ 50μs+ 310μs ≈ 1ms

where Tdata = 192μs+ (34+32)8bits

11 bits
μs

= 240μs is the transmis-

sion time for 32B of data under 802.11b with a 192μs header

and 34B overhead, TSIFS is the inter-frame space, TACK is

the acknowledgment time, TDIFS is distributed inter-frame

space, and TBO is back-off time.

In addition, there will a delay at the host robot denoted by

thost which accounts for the computation time of processes

regulating speed and stopping the robot if necessary — taking

actuators’ reaction time into consideration. The processes

computing the robot’s trajectory are not included in thost, since

these are not relevant for safety.1 We assume: thost = 5ms.

We consider that processes at the host robot are executed

periodically but in an asynchronous manner with respect to the

environment, i.e., other workers. This allows for full flexibility

and simplifies the design, since we do not need to synchronize

with other events, e.g., no need to perform hand-shaking before

transmitting data, etc. On the other hand, additional delay may

be incurred by the system as shown in Fig. 2.

Particularly, a change in the status of one guest worker can

reach the robot tcom+pprox time later . If something changes

after data has just been propagated, this incurs additional pprox
waiting time until next propagation. At the host robot, the data

might arrive after the robot has finished its processing and

needs to wait until the next time processing is started. This

might be a time phome, if data is sent by guest in the home

zone, or a time pprox later, if data is sent by a guest in the

proximity zone. Finally, thost also needs to be considered.

This results in two possible end-to-end delays for guests,

i.e., Dhome in the home zone and Dprox in the proximity

zone:

Dhome = tcom + pprox + phome + thost, (1)

Dprox = tcom + 2pprox + thost. (2)

1In contrast, for safety, we are only concerned with stopping the robot to
avoid collisions regardless of its trajectory, which can be computed separately.

Physical world. Wheeled robots with a maximum speed of

5m/s are considered. In addition, a human worker is assumed

to move at a maximum speed of 1m/s. A robot is considered

to stop completely within 0.5m and the radius of the proximity

zone is fixed to rprox = 5m.

Regarding this setup, the worst case happens when two

robots, with overlapping home zones, move towards each other

at full speed. In such case the relative speed equals 10m/s.

In the home zone, for the sake of safety, a guest is not

allowed to cover a distance larger than 3m without sending a

position update. Thus, the host needs to receive and process

position updates in:

t3m =
3m

10m
s

= 300ms.

As a result, in the worst case, the host robot detects a guest

robot in the proximity zone when it is only 2m apart. It is

necessary to guarantee that each robot can start breaking when

it is at least 0.5m from another one to avoid collisions. This

leaves time needed to cover 1.5m at 10m/s for taking the

decision on breaking:

t1.5m =
1.5m

10m
s

= 150ms.

Obtaining pprox and phome. It is easy to see that these two

robots will collide if Dprox is greater than t1.5m. As a result,

we need to choose pprox to be small enough such that robots

have time to react in this case. From (2) we have the following:

pprox ≤ t1.5m − tcom − thost
2

= 72ms.

The above value guarantees no collisions assuming reliable

communication. However it does not leave any margin for

packet losses. Lowering the value provides some resilience

to this, but it also increases the communication overhead. To

account for this, we select pprox = 30ms.

With this value of pprox we can compute a value for phome

using (2). For this, we know that Dhome should not be more

than t3m, which leads to the following upper bound on phome:

phome ≤ t3m − tcom − pprox − thost = 264.1ms.

This again is a upper bound on phome, which leaves no

margin for communication loss. Similar as before, we select

phome = 200ms to balance resilience against packet losses

and communication overhead.

B. Scalable QoS

A robot — the host — must be always able to stop before

any obstacle represented by another robot or a human — a

guest. To this end, the host’s speed denoted by vi needs to be

adjusted accordingly. First the worst-case distance dij between

the host i and a guest j in its proximity zone is computed by

dij = |dist(pi, pj)− tij · v̂j |, where pi is the current position

of the host, pj the latest known position of the guest, tij is the

age of the guest position, and v̂j is the maximum speed of the

guest. Here dist(pi, pj) returns the shortest distance between

pi and pj .
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Now, to compute vi, the distance di from the host to the

closest guest is used. Assuming G is set of all guest in the

host’s proximity zone, di equals: di = minj∈G{dij}.
Since, in the worst case, a guest moves on a linear trajectory

towards the host, vi can be computed by vi =
√
2|ai|di, where

di is a remaining distance to the closest guest, and |ai| is

deceleration rate of the host [13].

The closer vi is to v̂i, the higher the QoS/utility of the

system. This depends on the operation conditions, in particular,

on the number of guests and their positions which influence

the value of di, and hence dynamically scales with them.

C. Ensemble-Based Component Models

As already mentioned, the DEECo [1] is used to model

the system and formulate ensembles for safety conditions and

scalable QoS. In DEECo, components are runnable packages

containing public data referred to as knowledge and processes

that use that data. Processes are usually responsible for sens-

ing, actuating, and running the control logic.

An ensemble is a dynamic group of components determined

by a membership condition used to share parts of compo-

nents’ knowledge. The membership condition describes who

should join the ensemble based on well-defined roles. Once

components join an ensemble, they share knowledge using the

ensemble knowledge exchange strategy.

In our IPL scenario, there are components representing

humans and robots. With respect to ensembles, let us consider

that (i) it is necessary to ensure coordination between a robot

and other workers in its home zone, (ii) it is necessary to

coordinate a robot with other workers in its proximity zone.

This leads to ensembles Home and Proximity.

Listing 1 shows the Robot component — the Human com-

ponent is omitted for the sake of brevity. A component is

defined by its role using the keyword features in DEECo. In

line 2, initial values of the knowledge fields are given. The rest

of component consists of process definitions. A process can

read and write knowledge fields as well as execute arbitrary

code required to access sensors and actuators. The scheduling

of the process can be either periodic with a fixed period or

triggered by a knowledge change.

The process UpdateTime, at line 6 exemplify a sensor

reading. The processes EvaluateSafety and EvaluateQoS, at

lines 9 and 19, are responsible for evaluating safety and QoS.

The EvaluateSafety process periodically assesses safety and

stores the result in the worstCaseDistances knowledge field.

In case of emergency the whole system can be stopped by

setting the emergencyStop knowledge field. A change in the

worstCaseDistances field triggers process EvaluateQoS, which

computes the current QoS value, i.e., maxSpeed.

1 component Robot features RobotWorker
2 knowledge:
3 position, homeArea, speed, emergencyStop, guests,
4 workersInHomeArea, worstCaseDistances, maxSpeed
5

6 process UpdateTime:
7 function: time = System.getTime()
8

9 process EvaluateSafety:

10 function:
11 for worker in workersInHomeArea:
12 if now − worker.timestamp > SAFETY TIME THRESHOLD:
13 emergencyStop = True
14 worstCaseDistances = predictWorstCaseDistances(
15 union(guests, workersInHomeArea), position,
16 acceleration, deceleration)
17 scheduling: periodic(30 ms = pprox)
18

19 process EvaluateQoS:
20 function:
21 maxSpeed = 5 ms−1

22 for distance in worstCaseDistances:
23 maxSpeed = min(maxSpeed, getMaxSpeed(distance))
24 scheduling: triggered(knowledgeChange(worstCaseDistances))

Listing 1. Robot component

The Home ensemble contains only workers in the home

zone of a particular robot. Each instance of this ensemble

contains one robot and all the workers in its home area.

Finally, the Proximity ensemble defined in Listing 2 is eval-

uated among the components, i.e., robot or human workers,

which are in the home zone of the corresponding robot. Note

that the period with which Proximity is evaluated is the one

computed in Section IV.

1 ensemble Proximity in Home:
2 members: @exclusive Robot robot, @shared Worker worker
3 membership:
4 robot.position.distanceTo(worker.position) < PROXIMITY DISTANCE
5 knowledge exchange:
6 robot.guests.put(worker)
7 scheduling: periodic(30 ms = pprox)

Listing 2. Proximity ensemble

V. EVALUATION

In order to evaluate our approach, a simulation of the IPL

case study was conducted. The focus was on analyzing the

system behavior under loss of communication for which we

have used OMNeT++ 5.02 framework and 802.11b network

model provided by the INET 3.4 plugin. The source code of

our simulation is available on GitHub.3

The simulated system encompasses all human and robot

workers moving randomly without restrictions in a host robot’s

home zone. This represents the worst-case situation with

all robots having fully overlapped home zones and human

workers being present at the host robot’s home robot.

Setup of the experiment. The simulated host robot’s home

zone has 25-meter radius and is filled with OMNeT++ nodes
representing humans and robots. Each node is equipped with

an 802.11b radio interface tuned to the same frequency and

configured to form an ad-hoc network.

In total, four simulation runs were performed: (i) 3 humans,

7 robots, 300 seconds; (ii) 6 humans, 14 robots, 75 seconds;

(iii) 12 humans, 28 robots, 20 seconds; and (iv) 24 humans,

56 robots, 5 seconds. The time interval simulated was adjusted

to keep the simulation computation manageable.

Results. Figure 3 and Figure 4 show the results of simulation

run (ii). In Figure 3, box-plots illustrate the communication

delay as the distance between sender to receiver increases. This

2https://omnetpp.org
3https://github.com/d3scomp/scalable-reliability
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Fig. 3. Communication latency, 6 humans, 14 robots

delay becomes greater with the number of packets lost, which

depend on the number of robots and humans transmitting data.

The horizontal red line, stretching across the full width of

the plot, represents the upper bound of pprox as computed

in Section IV-A, i.e., 72ms. As it can be observed, in some

situations pprox’s upper bound is exceeded, which translates

in a speed reduction for the corresponding robot.

Figure 4 shows histograms of the maximum speeds reached

by robots in this simulation. A big number of robots and

humans in the factory reduces the speed of robots in two

ways. First, more radio traffic produces more data lost at the

communication channel and, hence, robots need to slow down

in order to deal with latency. Second, more robots and humans

in the same area simply means shorter physical distances to

obstacles resulting also in a speed reduction. On the other

hand, on average, robots are able to achieve the maximum

speed of 5m/s for about 63% of the overall simulated time.

For brevity the remaining simulation runs are summarized

using system performance. Simulation runs (i) and (ii) rep-

resent slightly loaded systems with robots moving at their

maximum speed 71% and 63% of the time. Simulation run (iii)

is an inflexion point where operation at the maximum speed is

reduced to only 30% of the time. Finally the simulation run (iv)

represents a congested system where speeds close to zero

dominate, however, our technique always allows guaranteeing

safety, i.e., that no collisions occur between workers.

VI. CONCLUDING REMARKS

In this paper, we presented a design methodology for scal-

able QoS in the context of highly dynamic CPS. In this kind of

systems, since it is not possible to guarantee a bound on QoS

requirements, these are dynamically degraded or upgraded

with changing operation conditions, e.g., new devices/com-

ponents join arbitrarily, communication delay increases, etc.

To this end, we build upon the concept of ensemble, i.e., a

dynamic grouping of components that is evaluated based on

the current state of the system. We illustrated our technique on

the basis of a case study consisting of an intelligent production

line and simulated it to demonstrate the utility of the proposed

technique under different configuration settings.
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