
Component-Based Design of Cyber-Physical Applications
with Safety-Critical Requirements

Alejandro Masrura, Michał Kitb, Vladimı́r Matěnab, Tomáš Burešb, Wolfram Hardta

aDepartment of Computer Science, TU Chemnitz, Germany
bFaculty of Mathematics and Physics, Charles University, Czech Republic

Abstract

Cyber-physical systems typically involve large numbers of mobile autonomous devices that
closely interact with each other and their environment. Standard design and development tech-
niques often fail to effectively manage the complexity and dynamics of such systems. As a result,
there is a strong need for new programming models and abstractions. Towards this, component-
based design methods are a promising solution. However, existing such approaches either do
not accurately model transitory interactions between components – which are typical of cyber-
physical systems – or do not provide guarantees for real-time behavior which is essential in
safety-critical applications. To overcome this problem, we present a component-based design
technique based on DEECo (Dependable Emergent Ensembles of Components). The DEECo
framework allows modeling large-scale dynamic systems by a set of interacting components and,
in contrast to approaches from the literature, it provides mechanisms to describe transitory inter-
actions between them. To allow reasoning about timing behavior at the component-description
level, we characterize DEECo’s closed-loop delay in the worst case, i.e., the maximum time
needed to react to a change in the environment. Based on this, we incorporate real-time analysis
into DEECo’s design flow. This further allows us to analyze the system’s robustness under un-
reliable communication and to design decentralized safety-preserving mechanisms. To illustrate
the simplicity and usefulness of our approach, we present a case study consisting of an intelligent
crossroad system.

Keywords: Cyber-physical systems, component-based design, safety-critical applications,
real-time and timing analysis, unreliable communication, reliability-aware design

1. Introduction

Cyber-physical systems (CPS) are characterized by close interactions with their environment
and can be found in different upcoming domains such as smart traffic and transportation, intelli-
gent buildings, smart grid, etc. CPS are inherently distributed, i.e., they rely on a large number
of autonomous, typically mobile, embedded devices that form an ecosystem. The joint opera-
tion of devices within this ecosystem provides functionality, which is otherwise unattainable by
individual devices in isolation.

On the other hand, CPS are highly adaptive, i.e., they constantly react to changes in their
environment by modifying their structure and/or behavior accordingly. The collaborative as-
pect between parts or components of such systems, as well as the necessity for them to function

Preprint submitted to Microprocessors and Microsystems December 19, 2015

autonomously (in case that, for example, the connection to other parts or components gets inter-
rupted), poses an entire new dimension of challenges for designers. Typically, these challenges
are regarded as separate problems of communication networks, distributed control, etc. As such,
they have been addressed separately in the respective research fields. However, a significant
aspect of modern CPS is that they often are software intensive [1], which still remains widely
overlooked in the literature.

This means that most of their functionality is embodied in the software, which in turn be-
comes the most complex and critical constituent. Due to the fact of being distributed and adap-
tive, software becomes even more complicated and the system starts exhibiting so-called emer-
gent behavior. This is the situation where the system’s behavior cannot be inferred any longer
from its individual parts or components, but their interplay and their joint influence on the envi-
ronment have to be taken into account.

As a result, there is a strong need for holistic design and development methods that rather
focus on the whole ecosystem and its overall behavior than on individual constituents. Especially,
these methods have to provide systematic software engineering practices that allow managing the
increasing complexity of such systems and help controlling emergent behavior. By systematic
software engineering, we envision the following four aspects:

i) high-level (requirements-oriented) design with special focus on autonomous behavior, adap-
tivity and distributed collaboration,

ii) architectural design where a system is modeled by distributed components with clear re-
sponsibilities and well-defined interaction patterns,

iii) framework for implementation of components that allows for a straightforward traceability
w.r.t. (i) and (ii), and

iv) methods for design-time and runtime analysis (e.g., functional verification, timing analysis)
that predict and control the adaptivity and related emergent behavior of these systems.

The basic prerequisite for such systematic software engineering is the existence of software
models providing an appropriate level of abstraction. In this respect, classical existing software
models (e.g., component-based models such as AUTOSAR [2] or formal process models such as
Petri Nets [3]) largely fail to address the needs of distributed adaptive systems. This is mostly
because they rely on a static structure and thus are unable to model an open-ended system, which
adapts its architecture to the current state of its environment.

On the other hand, new software models (such as DEECo [4], Helena [5]) appear gradually.
They have been specifically developed to capture the nature of distributed adaptive systems and
are more suitable for the design and development of CPS. However, by focusing on the coopera-
tive aspects and dynamics of components, they operate at a high level of abstraction and do not
provide sufficient means to model real-time behavior – which is particularly relevant to safety-
critical applications.

Contributions. In this paper, continuing and extending our previous work [6], we bridge the
gap between a (high-level) component-based description of the system and the analysis of its
real-time behavior. In particular, we make use of DEECo (Dependable Emergent Ensembles of
Components) in the context of a safety-critical cyber-physical application, viz., an intelligent
crossroad system (ICS).

2

Feedback
(Requirements Feasibility)

IRM

Requirements
Engineering

High-level Application
Requirements

IRM Invariants DEECo

Architecture
Modeling

System Architecture
Definition

Components and
Ensembles Specification

Contribution

Real-Time Analysis

Real-Time Parameters
Periods of Component Process and

Ensemble Evaluations

Implementation

System Implementation
Components and Ensembles

Implementation

Component and Ensemble
Implementation

Real-life
Deployment

Simulated Environment
Deployment

jDEECoSim CDEECo

Feedback
(WCET Refinement)

Figure 1: DEECo’s design flow. A sharp rectangle represents a single step of the process. A rounded rectangle depicts
outcome of a previous step. While, gray shapes correspond to the general design flow, the green ones are their concrete
reifications into the DEECo framework.

DEECo allows for a component-based design of highly dynamic systems and provides deter-
ministic semantics supporting real-time behavior. DEECo is a comprehensive solution as shown
in Figure 1, which covers i) requirements engineering with IRM (Invariant Refinement Method)
[7], ii) design and development based on DEECo constructs (i.e., components, ensembles, etc.)
[4], iii) implementation and deployment with CDEECo (a C++ runtime environment) [8], and
iv) simulation and test with the jDEECoSim simulator [9].

We characterize DEECo’s closed-loop delay in the worst case, i.e., the maximum delay that
it takes to react to a change in the environment. This builds the foundation for our real-time
analysis of DEECo-based systems, which we illustrate in the context of our ICS. The results of
this analysis are fed back to the component-description level which then capture the application’s
timing requirements. To this end, we extend DEECo’s design flow as shown in Figure 1, where
the proposed real-time analysis connects the high-level description with a concrete implementa-
tion of the system.

In contrast to [6], in this paper, we provide a more detailed treatment of DEECo’s worst-case
closed-loop delay and of the ICS case study. In addition, we analyze the system’s robustness
under unreliable communication and determine an upper bound on the number of packets that
can be lost at the communication channel without compromising safety in our case study. Further,
we discuss how to implement decentralized safety-preserving mechanisms, which are triggered
when something goes wrong, e.g., communication is completely lost, etc. Finally, we validate
our analysis by an extensive OMNeT++ simulation considering a varying number of packet
losses at the communication channel.

The paper is structured as follows. Section 2 presents our case-study used as the running ex-
ample, whereas Section 3 discusses related work. In Section 4, we give an overview of DEECo’s
basic concepts and illustrate them on our case study. Section 5 deals with DEECo’s closed-loop
delay in the worst case. This is then used to set up our real-time analysis as proposed in Sec-
tion 6. In Section 7, we study the case of packet losses at the communication channel and discuss
how to implement decentralized safety-preserving mechanisms for open-ended CPS. Following,
in Section 8, we evaluate our approach by comparing it with results obtained by an OMNet++

simulation and, in Section 9, we present some conclusions.

3

ICS

Figure 2: Intelligent crossroad system (ICS)

2. Case-Study

We consider an application scenario in the context of Vehicular Ad-hoc Networks (VANets)
[10] and autonomous vehicles, where an ICS optimizes the car throughput at a road crossing.
This is illustrated in Figure 2, where cars approach a two-lane crossing managed by the ICS.

The idea is to replace traffic lights to a great extent by using car-to-infrastructure (C2I) com-
munication and synchronizing in what order cars cross the intersection for an uninterrupted flow
in all directions. Note that there are different ways of implementing this case study. In particular,
one can design the ICS to take full control over cars adjusting their speed and steering as con-
sidered in [6]. However, this concentrates almost all computation workload at the ICS – making
more expensive hardware necessary – and requires cars to be enabled for remote operation.

In this paper, we follow an alternative approach, where the ICS computes – taking traffic
conditions and regulations into account – and assigns a speed to an approaching car at the in-
tersection. The car will then have to keep this speed constant to cross the intersection without
stopping. This solution is more viable to implement the proposed case study, since it does not
require cars to be modified for a remote operation. On the contrary, each (autonomous) car is
responsible for driving along its own trajectory and maintaining its speed as assigned to it. If
necessary, however, a car may stop to avoid a crash or accident.

The ICS assigns speeds to cars and these report their current speeds back to the ICS via C2I
communication. As discussed later, the ICS needs to keep track of cars’ speeds in order to detect
potential hazards and trigger safety mechanisms. To this end, we foresee two operation modes:

i) Automatic mode: This is the default mode where all cars at the crossing behave as expected,
i.e., they maintain their corresponding speeds as computed by the ICS. Here, the highest
possible throughput is reached provided that speed limit regulations are observed and safety
of all traffic participants can be guaranteed.

ii) Manual mode: This is the exception mode where one or more cars do not maintain their
computed speeds and/or there is no communication between a car and the ICS, e.g., conven-
tional cars with a human driver. In this mode, the ICS works as standard traffic lights.

We define the region of influence by the area in which the ICS controls/monitors all approach-
ing cars. We assume that this area consists of a 50 m radius around the intersection. In this region,

4

vehicles are prioritized such that their priorities increase as they get closer to the center of the
intersection and drop when they move away of it. Some of the vehicles at the ICS might also be
privileged such as, for example, ambulances or police cars in an emergency situation, etc.

The ICS can detect when a car enters the region of influence, e.g., by radar, pressure sensors,
etc. If no communication is received from one car after it has entered the region of influence (in
particular, a car’s intended direction, its current speed, etc. are needed), the ICS assumes that
either there has been an error or it is a conventional car with no I2C communication and switches
to manual mode. The same happens if communication is lost to one or more cars; a more detailed
analysis of this is given in Section 7.

Pedestrians can be easily handled in the manual mode. In the automatic mode, the ICS can
detect when pedestrians stand at the crossing for some time, e.g., by pressure sensors, request
buttons, etc., and stop the traffic to let them cross in a safe manner. Again, each car is responsible
for itself and should be able to react to unpredicted situations, e.g., performing an emergency
break, according to valid traffic regulations.

This scenario exhibits different challenges that need to be faced when designing dynamic
distributed systems. One of those challenges is the description of architectural changes that
occur during runtime. In our case study, cars/vehicles arrive to and leave the system at different
points in time, their priorities vary according to their distances to the crossing, etc. Such details
need to be properly reflected in the system design.

Furthermore, this scenario exhibits real-time requirements imposed to the system. In partic-
ular, it is required that the reaction time between a car and the ICS is kept below a certain upper
bound in order to ensure an appropriate responsiveness of the overall system, where unreliable
communication needs to be considered. In turn, meeting those real-time requirements allows us
to guarantee safety, which translates into a collision-free crossing in our case study.

Lastly, since it is not possible to guarantee a fully reliable communication, the system has
to be designed to be self-adaptive. This way, the system switches to manual mode when it
realizes that real-time requirements cannot be met. To this end, as discussed later, we configure
a watchdog timer at all components (cars and ICS) that triggers a switch to manual mode.

3. Related Work

There exist numerous component models with different properties and application domains
[11][12]. In this section, we position our contribution with respect to the most relevant such
models used in embedded systems. In particular, we discuss their support for dynamic architec-
tures and open-endedness (i.e., allowing adaptivity and reconfiguration), real-time behavior (i.e.,
providing deterministic running times), and real-time analysis (i.e., providing techniques or tools
for timing analysis and guarantees) as required by our ICS setting.

Closest to DEECo [4] in its ability to deal with open-ended and dynamic systems are Helena
[5] and jRESP [13]. They both build on the same concept of autonomic component ensembles.
However, neither of them provide low footprint and real-time properties needed for embedded
systems. By excluding any real-time properties, they also naturally miss any methods for real-
time analysis.

The most prominent example of component models targeting embedded systems is certainly
AUTOSAR [2], which is of common use in the automotive industry. AUTOSAR serves as a
specification for different layers – i.e., application software, runtime environment (RTE) and ba-
sic software (BSW) – and inherently accounts for distribution (the RTE provides location trans-
parency to application components). However, in AUTOSAR components are statically linked

5

with BSW and the RTE, which does not support open-endedness and dynamic architectures.
AUTOSAR itself does not provide timing analysis, but it has been enriched by TIMing MOdel
(TIMMO) [14], which builds on the Timing Augmented Description Language (TADL).

BlueArx [15] is a component framework backed by Bosch targeting especially the automotive
domain. Similar to AUTOSAR, it offers component-based architecture with internal variability
(achieved by modes) and connects real-time specification to it. It allows using existing tools for
timing analysis (e.g., AbsInt aiT for WCET estimation). Components are assembled at compile
time which makes BlueArx neither open-ended nor truly dynamic (the dynamism is restricted to
switching among pre-defined modes).

Koala [16] together with its de facto successor ROBOCOP [17] constitutes an approach to
component-based design of software for consumer electronics by Philips. Their primary pur-
pose is facilitating the product-line engineering of the software. They do not specifically target
real-time attributes or analysis. Contrary to Koala, ROBOCOP allows for component binding
at runtime, which theoretically creates a basis for open-ended systems. However, it lacks the
features for system self-organization as provided, for instance, by DEECo concept of ensembles.

IEC 61499 is a standard developed by IEC (International Electrotechnical Commission) for
development of automation and control systems [18]. It provides function blocks and their in-
terconnections via defined ports - basically featuring the component-based concepts. IEC 61499
has a static architecture and does not provide any means to specify and analyze real-time prop-
erties. Extensions, however, have been made (e.g., in [19]), which already permits modeling
real-time attributes, but is still static.

Think [20, 21] and MIND [22] are C-based implementation of Fractal [23] targeted for em-
bedded and real-time systems. As they rely on Fractals API for runtime architecture introspec-
tion and binding, they provide the basic infrastructure for dynamic and open-ended architectures.
However, similar to ROBOCOP, they lack the features for automated system self-organization as
provided by DEECos concept of ensembles. They do not address real-time properties or analysis.

SOFA-HI [24] is an extension of the SOFA component model [25] to embedded and real-
time systems. It features passive and active components – the active component are associated
with real-time properties that drive their scheduling; however, no particular real-time analysis
technique has been elaborated for SOFA-HI so far. The architecture of SOFA-HI is further static
(limited only to switching among pre-defined modes).

OpenCOM [26] is a component model that features reflective capabilities providing the basic
means for dynamic architectures. However, this component model does neither target real-time
systems, nor does it allow any related analysis. Another component model named PIN [27] de-
scribes static architectures supporting real-time attributes and the related analysis – in particular,
prediction of average latency and formal verification of temporal safety.

The design-level approaches (not necessarily bound to a particular runtime framework) are
represented by AADL and UML-based approaches – most notably UML and SysML together
with MARTE. AADL (Architecture Analysis and Design language) [28] is a widely used model
for describing the software and hardware architecture of an embedded system. In supporting
timing analysis, it relies on Real-Time Calculus (RTC) [29], which is a formalism that allows for
system-level performance analysis of stream-processing systems constrained by hard real-time
requirements. Essentially RTC models are extracted from AADL and subsequently the RTC
tools can be employed. The architecture, however, is assumed to be static.

UML [30] represents a typical approach for modeling architecture. Though not exactly tai-
lored towards real-time embedded systems, its ability to capture structures and behavior applies
even in this context. For real-time properties, it is typically connected with MARTE – a UML

6

profile for real-time systems. MARTE comes with a number of approaches and tools that allow
estimating a system’s timing behavior (e.g., [31]).

In the course of bringing UML to the embedded community, OMG defined SysML [32],
which is a close sibling of UML, generally adopting most of its diagrams and extending them
with the ability to model physical structures. SysML again integrates with MARTE [33] to enable
modeling non-functional properties such as power consumption, performance and timing and
their estimation [34]. Though rather mature, they again assume static component architectures,
which effectively hinders their direct application in open-ended system.

Other component models such as PECOS [35], COMDES-II [36], Rubus[37], SaveCCM
[38], ProCom [39], MyCCM-HI [40], and PCM[41] support real-time properties and analysis,
but do not account for dynamic architectures nor open-ended systems and, hence, are not suitable
for our ICS case study. On the other hand, CIAO [42] supports dynamic architectures and real-
time properties. However, it does not provide any support for open-endedness nor for real-time
analysis.

Looking into models that do not specifically target embedded systems, timing analysis en-
abled at the model level is also supported by the BIP (Behavior, Interaction, Priority) frame-
work [43]. BIP supports real-time aspects by using timed components, which allow for timing
properties being specified using timed variables and transitions. Those are accounted for during
the validation within the real-time engine implementing the operational semantics of BIP models.
The composition is, however, static not providing any support for open-ended systems.

An interesting (not component-based) approach is proposed by Etzien et al. in [44][45]. The
authors describe a modeling method for evolutionary distributed systems using the concept of
System of Systems (SoS). In order to capture both static and dynamic properties of the devel-
oped system, they use the contract paradigm for specifying legal configurations of a SoS and
to describe architectural changes during runtime. In [46], the authors extend their work by pro-
viding a method for schedulability analysis. They based their technique on both analytical and
model checking methods, which combined with the SoS contracts provide for a compositional
and scalable solution. However, in order to perform the analysis of [46], one needs to deal with
a full-fledged implementation of the system, from which necessary parameters are extracted to
construct a state machine for analysis. Such method is rather suitable for verification and valida-
tion of an existing implementation. In our case, the proposed analysis is intended to be used at an
early design phase where mostly system requirements are known (see Figure 1). Moreover, our
analysis addresses CPS with a strong connection to the environment – see Section 6, whereas
[46] focuses on more general-purpose systems.

Table 1 presents a summary comparing the component models/approaches mentioned above
with respect to the three key features required for implementing our ICS case study.

4. Modeling with DEECo

As stated above, we make use of the DEECo component model [4]. DEECo describes the
architecture of a CPS by means of components (i.e., encapsulated well-defined active entities,
which perform sensing, computation and actuation) and so called ensembles, which are dynam-
ically established groups of components that cooperate to achieve a particular goal. DEECo
further provides a special requirements engineering method and traceability of requirements to
components and ensembles – for further details, we refer to [7].

7

Component Model/Approach Dynamic Architectures/ Real-Time Real-Time
Open-Endedness Behavior Analysis

DEECo [4] 33 3 3

Helena [5] 33 7 7

jRESP [13] 33 7 7

AUTOSAR/TIMMO [2][14] 7 3 3

BlueArx [15] 7 3 3

Koala [16] 7 7 7

ROBOCOP [17] 3 7 7

IEC 61499 [18][19] 7 3 3

Think/MIND [21][22] 3 7 7

SOFA-HI [24] 7 3 7

OpenCOM [26] 3 7 7

PIN [27] 7 3 3

AADL [28] 7 3 3

UML/SysML with MARTE [31][33] 7 3 3

PECOS [35] 7 3 3

COMDES-II [36] 7 3 3

Rubus/SaveCCM [37][38] 7 3 3

ProCom [39] 7 3 3

MyCCM-HI [40] 7 3 3

PCM [41] 7 3 3

CIAO [42] 3 3 7

BIP [43] 7 3 3

Etzien et al. [44][45][46] 3 3 3

Table 1: Support for dynamic architectures/open-endedness (two check marks mean that special constructs are provided
to describe how a system should self-organize in open-ended settings), real-time behavior, and real-time analysis

4.1. Architecture Modeling
Components. To illustrate the principles behind DEECo, Listing 1 depicts a component us-
ing a DSL (Domain-Specific Language) description.1 In DEECo, each component consists of
knowledge – see lines 8-16 – reflecting its current state. Knowledge is expressed by attributes
organized into hierarchical data structures. Access to one or more such attributes of a component
is performed through interfaces – see lines 1-5 – that are featured by the component.

In addition, each component has a set of processes (essentially real-time tasks) that manipu-
late its knowledge. A process is characterized by a function (e.g., lines 20-22), whose parameter
list consists of knowledge attributes. DEECo’s runtime environment manages the release of pro-
cesses and takes care of knowledge retrieval before a process is executed and knowledge update
– also referred to as knowledge exchange – when a process finishes executing. Each of the com-
ponent’s processes is executed in isolation meaning that it is not supposed to communicate with
other processes (either from the same or a different component) in any other way than via the
component’s knowledge.

1Note that this DSL specification serves for demonstration only. Later we discuss how to derive a C++ implementa-
tion from this specification, which can then be used on embedded devices.

8

1 interface MovingUnit:
2 id, time, crossingId, crossingDistance, crossingDirection, speed, privileged, mode
3

4 interface MovingUnitAggregator:
5 id, time, vehicles, speeds, mode
6

7 component Vehicle features MovingUnit
8 knowledge:
9 id: 42,

10 time: 1440691842456 ms,
11 crossingId: 12
12 crossingDistance: 35 m,
13 crossingDirection: South−West,
14 speed: 50 Km/h,
15 privileged: FALSE,
16 mode: AUTOMATIC,
17 ...
18 process UpdateSpeed:
19 in speed
20 function:
21 Actuators.setSpeed(speed);
22 scheduling: periodic(5 ms)
23 ...
24

25 component ICS features MovingUnitAggregator
26 knowledge:
27 id: 12,
28 time: 1440691842458 ms,
29 vehicles: [...],
30 speeds [...]
31 privileged: [...],
32 mode: AUTOMATIC,
33 ...
34 process findPrivilegedVehicles:
35 in vehicles, inout privileged
36 function:
37 for (v : vehicles)
38 if (v.privileged)
39 privileged.add(v)
40 scheduling: triggered(changed(movingUnits))
41 ...

Listing 1: DEECo component definitions based on a DSL

A process can be executed in response to a timer event (i.e., periodic execution) or as a reac-
tion to a change in one of its attributes. In our example, the Vehicle component has a process that
sets/updates the speed of the car or vehicle. This is repeated periodically every 5 ms (see line 22).
As another example the ICS process, shown in Listing 1, determines whether there are privileged
vehicles in its region of influence (lines 34-40) and is executed whenever the number of vehicles
changes (line 40). Once processes are released (by DEECo’s runtime environment), these are
handed over to the platform’s operating system (OS), which is responsible for scheduling them
according to a desired policy – see Section 4.2.

1 ensemble UpdateMovingUnitInformation:
2 coordinator: MovingUnitAggregator
3 member: MovingUnit
4 membership:
5 coordinator.id = member.crossingId, member.crossingDistance < 50 m
6 knowledge exchange:
7 coordinator.movingUnits.add({member})
8 scheduling: periodic(pens,i)

Listing 2: A DSL example of an ensemble definition.

Ensembles. An ensemble in DEECo defines a semantic connector between components and
constitutes their composition. The composition in DEECo is flat and occurs implicitly by com-

9

ponents dynamically joining an ensemble at runtime. When specifying an ensemble, prospective
components are described by roles. One component in the ensemble has a coordinator’s role,
whereas the remaining components are members of the ensemble.

The roles are defined by the interfaces – in our example, MovingUnit and MovingUnitAg-
gregator – which are matched at runtime to the actual components (i.e., their knowledge) for a
structural coincidence. Later, those components with matching interfaces are considered for the
ensemble evaluation process, which is composed of two steps. The first step involves checking
the membership condition, which is expressed as a logic predicate formulated upon coordina-
tor’s and member’s attributes. This determines whether two components (a coordinator and a
member component) should form an ensemble. The second step depends on the results of the
membership condition check and consists of exchanging attribute values between coordinator
and member according to the description given in the knowledge exchange specification.

In the example in Listing 2, the coordinator role is determined by the interface definition
MovingUnitAggregator and the member role by MovingUnit. This way, during the ensemble
evaluation, only components featuring appropriate interfaces will be considered. The member-
ship condition further constraints the number of ensemble members to those, which are located
no more than 50 m from the coordinator’s location. Then, according to the knowledge exchange
description, the coordinator’s movingUnits attribute is updated with information about all com-
ponents that fulfill the membership condition (which is checked every pens,i time units – see line
8 – with i being an index representing the component). This way, the ICS is aware only of those
vehicles, which are currently in its close proximity.

1 namespace VehicleComponent {
2 struct Knowledge: CDEECO::Knowledge {
3 VehicleId id;
4 Time time;
5 CrossingId crossingId;
6 Distance crossingDistance;
7 Direction crossingDirection;
8 Speed speed;
9 bool privileged;

10 Mode mode;
11 ...
12 };
13

14 class UpdateDistance: public
15 CDEECO::PeriodicTask<Knowledge, Distance> {
16 UpdateDistance(auto &component);
17 Distance run(const Knowledge in);
18 };
19

20 class SetSpeed: public CDEECO::PeriodicTask<Knowledge, void> {
21 SetSpeed(auto &component);
22 void run(const Knowledge in);
23 };
24

25 class Component: public CDEECO::Component<Knowledge> {
26 static const CDEECO::Type Type = 0x00000001;
27

28 UpdateDistance updateDistance = updateDistance(∗this);
29 SetSpeed setSpeed = SetSpeed(∗this);
30 ...
31

32 Component(CDEECO::Broadcaster &broadcaster,
33 const CDEECO::Id id,
34 bool remotelyOperable);
35 };
36 }

Listing 3: A C++ example of Vehicle component.

10

DEECo’s deterministic semantics. DEECo components are autonomous and rely only on data
that is present in their knowledge. As mentioned before, any interaction of a component with
other components is realized by ensembles, which is externalized from the component itself.
This property of DEECo’s component model suits very well to both the design and the imple-
mentation of distributed adaptive systems, since all technical aspects related to communication
between remote components are abstracted away from the design phase and left for the runtime
environment to deal with them.

Technically, the runtime environment periodically propagates ensemble-relevant knowledge
to all other components or nodes in the system – note that gossip-based algorithms [47] might
be used for this purpose. In our case study, ensemble-relevant data are the car’s distance to the
crossing, its speed, and its intended direction, etc. This is used to evaluate whether cars are
heading in the direction of the crossing or not.

Each node then keeps relevant reference knowledge from all other nodes from which it has
received data. In other words, components or nodes join (and leave) the system in an implicit
manner without performing any handshaking. Since ensemble-relevant information is present at
all nodes, DEECo’s runtime environment performs a local evaluation of an ensemble membership
condition. If this holds true, the local reference knowledge of the remote components involved
is used for the knowledge exchange process.

In this way, DEECo’s semantics separates decision taking (i.e., ensemble evaluation and its
eventual knowledge exchange) from information sharing (i.e., knowledge propagation) at the
components. Since a DEECo component takes decisions based on locally available data, it does
not need to synchronize with other components in the system. On the one hand, this has the
advantage of high flexibility and adaptability. On the other hand, clearly, local data might get
outdated at the different nodes, which needs to be analyzed carefully as illustrated in Section 5.

Components Ensembles

DEECo Runtime

Periodic
Invocation

Basic Software
(OS, drivers)

Data
Propagation

Figure 3: DEECo distributed deployment.

4.2. Implementation and deployment

The implementation and distributed deployment of DEECo systems are supported by the
CDEECo framework. This framework maps DEECo concepts to C++ and constitutes our run-
time environment (taking care of periodically propagating knowledge, performing ensemble
evaluations, performing knowledge exchange if applicable, etc.). As depicted in Figure 3, CDEECo

11

relies on an OS providing hardware abstraction and other services. Clearly, this OS needs to sup-
port real-time behavior, i.e., real-time scheduling, interrupt handling, etc., to be used in safety-
critical applications.

With respect to CDEECo’s implementation in C++, components and processes are handled
as classes, while knowledge is treated as a static data structure (with a fixed size in bytes). Thus
it is possible to operate on knowledge within bounded time. Moreover, it is easy to fragment
knowledge to fit into network packets, also within bounded time.

1 namespace VehicleInfoAndSpeedExchange {
2 typedef CDEECO::Ensemble< ICS::Knowledge, Vehicle::Knowledge∗,
3 Vehicle::Knowledge, Speed> EnsembleType;
4

5 class Ensemble: EnsembleType {
6 Ensemble(CDEECO::Component<ICS::Knowledge> &coord,
7 CDEECO::KnowledgeLibrary<Vehicle::Knowledge> &lib);
8

9 Ensemble(CDEECO::Component<Vehicle::Knowledge> &mbr,
10 CDEECO::KnowledgeLibrary<ICS::Knowledge> &lib);
11

12 bool isMember(const CDEECO::Id coordId,
13 const ICS::Knowledge coordKnowledge,
14 const CDEECO::Id memberId,
15 const Vehicle::Knowledge memberKnowledge);
16

17 Vehicle::Knowledge∗ memberToCoordMap(
18 const ICS::Knowledge coord,
19 const CDEECO::Id memberId,
20 const Vehicle::Knowledge memberKnowledge);
21

22 Speed coordToMemberMap(
23 const Vehicle::Knowledge member,
24 const CDEECO::Id coordId,
25 const ICS::Knowledge coordKnowledge);
26 };
27 }

Listing 4: A C++ example of vehicle-crossroad ensemble

A component is represented by a class which inherits basic behavior from a template with
knowledge as an argument. Similarly, processes are represented by classes inheriting basic be-
havior from a template, depending on the process type, while accepting input and output types
as template arguments. The process’s code is contained in a virtual method in the base class.
The component class, process classes, and the knowledge data structure can be wrapped in a
namespace to improve code readability as shown in Listing 3.

Similarly to components, ensembles are also implemented using classes inheriting basic be-
havior from a template. The membership method and a pair of knowledge mapping methods
are realized as virtual methods in the base class. In case of ensembles, template arguments are
more complex, since the data type have to capture the coordinator’s and the member’s input/out-
put knowledge types. In order to simplify the code, the complex type of the ensemble can be
defined using typedef and wrapped together with ensemble class in a namespace as displayed in
Listing 4.

CDEECo’s sources are located on GitHub2. So far, we have been using FreeRTOS3 as an
OS to schedule DEECo processes on the corresponding nodes. As mentioned above, CDEECo
periodically propagates knowledge over available communication channels, in our case study, a

2https://github.com/d3scomp/CDEECo
3http://freertos.org/

12

VANet. To this end, it periodically broadcasts binary patches covering the whole corresponding
component’s knowledge. These are bulks of binary data with offset, size and source component
ID (i.e., an identification code). Patches are then used to update knowledge on the receiver
component when no packet is lost. Otherwise the knowledge can be just partially updated.

This solution was chosen to maximize knowledge propagation, while the consistency can be
achieved by storing dependent data in single packets. Knowledge that has been successfully re-
ceived from remote components is stored in a so-called knowledge library. A knowledge library
is a data structure holding predefined number of remote knowledge data sets; when an ensemble
is evaluated true, a knowledge exchange is triggered copying (locally available) data from the
knowledge library to the local component’s memory space.

5. DEECo’s Closed-Loop Reaction Time

In this section, we analyze DEECo’s closed-loop reaction time in the worst case. This is
defined as the maximum delay that it takes a DEECo-based system to react to changes in the
environment. The term closed-loop reflects the fact that DEECo components interact with one
another.

For example, if a component A experiences a change in its internal states, e.g., due to one
or more physical variables measured by its sensors, this will take some time to reach another
component B – connected by ensembles – in the system. Similarly, component B’s reaction to
the change in component A will take some additional time to reach back component A. The sum
of these two times is the closed-loop delay between A to B. In other words, component A and B
form a loop.

For ease of exposition, we first make use of our case study and then generalize our results to
make them independent of the application. In our case study, knowledge needs to be exchanged
from a car to the ICS and from the ICS back to the car for the system to work as expected.
However, knowledge exchange happens based on local data when the corresponding ensemble
condition is evaluated to true at both the ICS and the car nodes separately.

As discussed above, knowledge is propagated (from the car to the ICS and vice versa) and
the ensemble membership check is performed (at the car and at the ICS) on a periodic basis. Let
us denote by p̂pro the maximum period with which knowledge is propagated by any node in the
system. Similarly, let p̂ens be the maximum period with which ensembles are evaluated at any
node in the system. That is:

p̂pro = max
∀i

(
ppro,i

)
,

p̂ens = max
∀i

(
pens,i

)
,

where ppro,i and pens,i are the knowledge propagation and the ensemble evaluation period of a
node i, respectively, with i being an index that identifies the corresponding component/node.

In order to eliminate the need for synchronization and handshaking between components,
these two processes in DEECo are not synchronized with one another and, hence, we have the
following conditions in the worst case:

i) A car propagates its knowledge to the ICS immediately after a membership evaluation has
been performed at the ICS. As a result, data is received p̂ens time later at the ICS, when the
next membership evaluation is performed.

13

ii) In a similar manner, the ICS propagates its knowledge to the corresponding car just after a
membership evaluation has been performed at the car. As a result, data is received p̂ens time
later at the car too.

iii) The knowledge of the car changes immediately after knowledge has been propagated to the
ICS. As a result, the current knowledge is propagated with a delay p̂pro from the car to the
ICS, when a new propagation is performed.

iv) The ICS’s knowledge changes immediately after knowledge has been propagated to the car.
Hence, the current knowledge is not propagated until a new propagation is started p̂pro time
later.

As a result, in the worst case, we have a delay due to the asynchronous nature of the DEECo
framework which is given by the following expression:

2 × p̂pro + 2 × p̂ens. (1)

In addition, there is also a process running at the ICS which computes the speed for the car
that guarantees no collisions at the current traffic situation. This process is triggered when a
knowledge exchange is executed at the ICS (i.e., when the ensemble is evaluated to true between
the car and the ICS). We denote by rICS the worst-case response time (WCRT) of this process.
Analogously, there is a process running at the car, which applies the new speed values to the
physical car. This process is also triggered when a knowledge exchange happens at the car and
its WCRT is rcar.

As a result, the worst-case delay Dmax for a closed-loop reaction in DEECo, i.e., a reaction
of a car to an input from the ICS computed based on the car’s current knowledge, is given by the
following equation also illustrated in Figure 4:

Dmax = 2 × p̂pro + 2 × p̂ens + cICS + ccar + rICS + rcar, (2)

where ccar is the communication delay from the car to the ICS and cICS is the communication
delay from the ICS to the car.

Since there is interference by other messages (from other cars), ccar is the maximum possible
communication delay in the network. However, from the ICS to the car, there is no interference
– assuming a full-duplex communication channel – and the communication delay cICS is equal
to the transmission time, since the ICS does not compete for accessing the network.

The term 2× p̂pro +2× p̂ens in Equation (2) is clearly intrinsic to DEECo and does not depend
on the application, but rather on how components are configured. In addition, cICS + ccar is the
total communication delay between the ICS and a car, whereas rICS + rcar is the delay due to
computation at the ICS and at the car. As a result, DEECo’s closed-loop delay in the worst-case
can be generalized, i.e., made independent of the application under consideration, as follows:

D̄max = 2 × p̂pro + 2 × p̂ens + Cmax + Rmax, (3)

where Cmax is the sum of the worst-case communication delay between any two DEECo compo-
nents and Rmax is the sum of the WCRTs of computation processes involved at the corresponding
components or nodes.

14

ppro

ppro

pens

pens

ccar cICS

rcar

rICS pens

ppro

pens

ppro

Data

propagation

Ensemble

evaluation

Data

propagation

Ensemble

evaluation

A
t

th
e

 I
C

S

A
t

th
e

 c
a

r

Communication

Dmax

Figure 4: Composition of DEECo’s closed-loop delay Dmax: In the worst case, data may change immediately after
knowledge has been propagated at the car. This data may also arrive after an ensemble evaluation has been performed at
the ICS. In addition, computation at the ICS may finish immediately after knowledge propagation and the resulting data
then reaches the car just after the end of an ensemble evaluation.

6. Real-Time Analysis

The purpose of performing a real-time analysis is to guarantee that timing constraints can be
met by the system, which is required in safety-critical applications. In the case of DEECo, this
boils down to checking that D̄max as per Equation (3) is below a given time upper bound, which
stems from physical processes involved and needs to be known to or obtained by the designer.
In turn, D̄max depends on Cmax and Rmax, i.e., on the delays incurred by communication and
computation processes involved – which are closely related to the technologies and techniques
used for implementing the system.

All in all, our real-time analysis consists of the following steps that we illustrate next in
the context of our case study: i) obtaining the worst-case computation delay, ii) obtaining the
worst-case communication delay, iii) determining system constraints, and iv) obtaining a feasible
DEECo configuration.

6.1. Obtaining the worst-case computation delay

As discussed previously, CDEECo – DEECo’s runtime environment – is executed on top of
an OS at each node in the system. Among others, CDEECo is in charge of releasing component’s
processes as specified in the component description. Clearly, to be used in safety-critical appli-
cations, CDEECo relies on specific technologies that make real-time scheduling and real-time
communication possible. In particular, the OS needs to support real-time scheduling; otherwise,
it will not be possible to guarantee real-time behavior.

The techniques for schedulability analysis, i.e., testing whether processes meet their dead-
lines at the different nodes, strongly depend on the scheduling algorithm used. As mentioned
above, CDEECo makes use of FreeRTOS, which supports fixed-priority scheduling and allows
for the rate monotonic policy [48]. That is, processes are given fixed priorities according to the
following rule: The shorter a process’s period is, the higher the priority assigned to it.

Let us denote by T the set of processes on a given node. Further, τi is a process that belongs to
T where ei denotes its worst-case execution time (WCET) and pi denotes its period of repetition.
For T to be schedulable, the following has to hold for each τi and 1 ≤ i ≤ |T|:

15

∑
∀τ j∈T̂

⌈
pi

p j

⌉
e j ≤ pi, (4)

where |T| is the number of elements in T and T̂ denotes the subset of processes from T which
have a higher priority than the corresponding τi.

This expression means that for each process τi to be schedulable (and, hence, for T to be
schedulable), the sum of all executions of higher-priority processes in a time interval equal to pi

plus its own execution ei should be less than its deadline pi. Note that Equation (4) is sufficient
but not necessary. A sufficient and necessary test can be achieved by response time analysis [49];
however, the sufficient test of Equation (4) is enough for the purpose of this paper. Now, since
the following holds: ∑

∀τ j∈T̂

⌈
pi

p j

⌉
e j ≤

∑
∀τ j∈T̂

(
pi

p j
+ 1

)
e j,

we can reshape Equation (4) to:

∑
∀τ j∈T̂

e j

p j
+

∑
∀τ j∈T̂(e j)

pi
≤ 1. (5)

Clearly, if Equation (5) holds, Equation (4) will also hold. However, Equation (5) is easier to
compute and operate with.

In our case study, to obtain Rmax = rICS + rcar, let us denote by TICS the set of computation
processes at the ICS. Further, we assume that a process τi is the one involved in the closed-loop
delay, i.e., the one computing the new speed for a given car. Considering that T̂ICS is the subset
with higher- or equal priority processes than τi at the ICS, we can compute rICS as follows:

rICS =

 ∑
∀τ j∈T̂ICS

e j

p j

 pi +
∑

∀τ j∈T̂ICS

e j. (6)

Analogously, at the car, we can obtain rcar as follows:

rcar =

 ∑
∀τ j∈T̂car

e j

p j

 pi +
∑
∀τ j∈T̂car

e j. (7)

6.2. Obtaining the worst-case communication delay
Similar to computation delay, communication delay strongly depends on the underlying tech-

nologies and techniques used. Since VANets are usually based on wireless communication [50],
we assume that Ethernet IEEE 802.1Q is the underlying protocol, which provides mechanisms
to prioritize messages [51]. In general, we will normally have a number of access points (AP)
which are connected to a full-duplex switch via Ethernet.

In this section, we consider that communication to the AP is collision-free as per some VANet
scheme – later we remove this assumption to analyze the effect of packet loss. For example, space
division multiple access (SDMA) has been proposed [52, 53], which guarantees a collision-free

16

ICS

Sector I Sector II Sector III

Figure 5: Priorities are given according to the proximity to the intersection

communication in busy intersections by dividing a road into sectors and assigning different time
slots to each such sector. Other solutions combine special antennas with also a TDMA (time
division multiple access) scheme to reduce packet loss [54, 55].

Now, assuming that wireless network provides 100 Mbps and that messages are at most 1
Kbit (1024 bits), then the transmission time cW on the wireless network is at most – considering
a 144-bit protocol overhead:

cW =
1024 + 144
100 Mbps

= 11.68 µs.

However, the switch then sends messages to the ICS according to their priorities. Let us
consider that the ICS’s region of influence is divided into sectors with different priorities – see
Figure 5. Cars that are in the first sector (e.g., within 10 m from the intersection) have higher
priority than cars in the second sector (e.g., from 10 m to 20 m) and so on. At a given point in
time, if a car is in more than one sector simultaneously, it will be assigned the highest priority
among those sectors. The switch then sends messages to the ICS according to these priorities.

Let us now analyze the communication segment between the switch and the ICS. To this end,
let M denote the set of all messages being sent to the ICS over the switch. Further, mi denotes
one such message in M where ci is its transmission time – note that ci is constant for a given i
which results from the amount of bits to be sent and the bandwidth of the communication channel
– and zi denotes the minimum inter-arrival time between two consecutive such messages. The
deadline of a message is also given by zi.

Generally, for all messages in M to meet their deadlines, the following has to hold for 1 ≤
i ≤ |M|, where |M| is the number of elements in M:

bi +
∑
∀m j∈M̂

⌈
zi

z j

⌉
c j ≤ zi, (8)

where M̂ is the subset of M with higher- or equal priority messages than mi and bi denotes
blocking time on the communication channel. That is, whenever a message needs to be sent, a
lower-priority message might eventually be using the communication channel. Since this lower-
priority message cannot be interrupted, there is a blocking time on the bus. Clearly, in worst
case, bi is given by the maximum transmission time among all lower-priority messages:

17

bi =
|M|

max
l=i

(cl). (9)

Considering that
∑
∀m j∈M̂

⌈
zi
z j

⌉
≤

∑
∀m j∈M̂

(
zi
z j

+ 1
)

holds, we can remove the ceiling function
and approximate Equation (8) as shown below:

∑
∀m j∈M̂

c j

z j
+

bi +
∑
∀m j∈M̂(c j)

zi
≤ 1. (10)

To demonstrate this in our case study, let us assume that the Ethernet link between the switch
and the ICS has a bandwidth of 1 Gbps. If messages have a length of at most 1 Kbit (1024 bits),
and the protocol overhead is of 144 bits, we have that the transmission time ci of a message mi is
given by čE :

čE =
1024 + 144

1 Gbits
= 1.168 µs.

Further, with help of Equation (10), we can compute the transmission time on the Ethernet
link taking contention by higher- and equal priority messages into account, which we denote by
ĉE :

ĉE =

 ∑
∀m j∈M̂

c j

z j

 zi + bi +
∑
∀m j∈M̂

c j. (11)

In addition to the transmission time, there is always a delay at the AP and at switches in
Ethernet – denoted by eAP and eS W respectively, which accounts for buffering and routing tasks.
This is typically in the order of 2 µs.

Cmax = cICS + ccar can now be obtained. To this end, recall that we have two Ethernet links:
one from the AP to the switch and another from the switch to the ICS. The ICS does not suffer
from contention at the communication channel, since the connection from and to the APs is
assumed to be full duplex. As a result, cICS is given by:

cICS = 2 × čE + cW + eS W + eAP. (12)

On the other hand, cars share the communication channel and, hence, they may have con-
tention at the communication channel leading to a ccar as follows:

ccar = 2 × ĉE + cW + eS W + eAP. (13)

6.3. Determining system constraints
Timing constraints are clearly derived from the application. In our case, we consider that

a car needs to be provided with new speed values at every single meter of its trajectory (taking
vehicle dynamics into account such inertia, braking distance, etc.). If a car’s speed is at maximum
50 Km/h (assuming an urban scenario), we need to compute the time t1m that it needs to cover
1 m of its trajectory:

t1m =
1 m × 3600 s/h

50 · 103 m/h
= 72 ms. (14)

On the other hand, the computation and communication overhead depend on the number of
components, in particular, cars/vehicles in the system, which is the second constraint from the

18

application. Clearly, the more cars enter the ICS’s region of influence, the more computation and
communication overhead there will be. To compute the maximum possible number of cars at
the crossing, let us assume that a car is at least 2 m long and that there is a least a 1 m distance
between any two cars. As a result of this, in the worst possible case, the number of cars n
approaching the intersection from all directions is given by the following equation:

n = 4 ×
⌈
50 m
3 m

⌉
= 68. (15)

We can use Equation (15) to configure p̂ens and p̂pro in the next section and the timing con-
straint as per Equation (14) to perform a feasibility analysis as discussed later.

6.4. Obtaining a feasible DEECo configuration

There will be at most 68 different ensemble instances (between the ICS and each of the
cars) at the ICS – see Equation (15). In addition, there will be 68 processes to compute new
speed values for each car. Since the ensemble membership check triggers a knowledge exchange
– recall that knowledge exchange is based on locally available data and that knowledge/data
propagation (from the ICS to the cars and vice versa) is a separate and asynchronous process –
when evaluated true, we can assume that in the worst case all 68 ensemble processes trigger their
corresponding computation processes simultaneously. In addition, there will be one knowledge
propagation process for the ICS4.

Assuming that all processes have a WCET ei = 25µ s (note that most these processes consist
in checking logic conditions, assigning pointers to given memory spaces, etc., or are simple
computations), we can use Equation (5) applied to the ICS as follows:

0.025 ms
p̌pro

+ 68 ·
2 × 0.025 ms

p̌ens
+

(0.025 ms + 68 · (2 × 0.025 ms)
p̌ens

≤ 1, (16)

where p̌pro and p̌ens are the minimum periods with which knowledge is propagated and with
which ensembles are evaluated in the system. That is:

p̌pro = min
∀i

(
ppro,i

)
,

p̌ens = min
∀i

(
pens,i

)
.

Note that if Equation (16) holds for p̌pro and p̌ens, it will also hold for any ppro,i and pens,i.
We obtain the following value for p̌ens assuming 2× p̌pro = p̌ens, i.e., that knowledge propagation
is done twice as frequently as any ensemble membership check5:

p̌ens ≥ 6.88 ms,

and, hence, p̌pro has to be greater or equal to 3.44ms. Note that there cannot be a pens,i that is
less than p̌ens. Similarly, ppro,i is bounded from below by p̌pro. Otherwise, Equation (16) will not
hold.

4Note that the knowledge propagation from cars does not produce any overhead at the ICS, but at the respective cars.
5This is a design decision that needs to be taken. In general, since ensemble membership checks rely on local

knowledge, it is meaningful that knowledge be updated as often as necessary to guarantee desired functionality.

19

On the other hand, the upper bounds p̂ens and p̂pro,i need to fulfill the system’s feasibility
condition. That is, DEECo’s closed-loop delay must be at most equal to the timing constraint
t1m:

Dmax ≤ t1m. (17)

Dmax is DEECo’s closed-loop delay for our case study as per Equation (2), i.e., where Rmax =

rICS + rcar and Cmax = cICS + ccar in general expression D̄max as given in Equation (3).
We choose p̂ens = 14 ms – twice as much as p̌ens – and hence p̂pro = 7 ms, i.e., we again have

2 × p̂pro = p̂ens. With these values of p̂ens and p̂pro, we verify next whether Equation (17) can be
met. If not, new values of p̂ens and p̂pro need to be chosen – clearly, these should be greater than
or equal to their lower bounds p̌ens and p̌pro respectively.

To test whether Equation (17) holds for the chosen p̂ens and p̂pro, we need to compute the
corresponding rICS , rcar, cICS , and ccar. We can compute rICS using Equation (6) and assuming
that all processes are respectively released either at a p̂ens or a p̂pro rate6.

rICS = 14 ms ×
(

0.025 ms
7 ms

+ 68 ·
2 × 0.025 ms

14 ms

)
+ 0.025 ms + 68 · (2 × 0.025 ms) ≈ 7 ms. (18)

Similarly, we can compute rcar using Equation (7). In the car, there are only one ensemble
process, one process to update the speed with the new one assigned by the ICS, and a knowledge
propagation process. Again, we assume the ensemble process triggers the knowledge exchange
process at cars. Assuming again ei = 25 µs, we obtain:

rcar = 14 ms ×
(

0.025 ms
7 ms

+ ·
2 × 0.025 ms

14 ms

)
+ (0.025 ms + 2 × 0.025 ms = 0.18 ms.

Now we need compute ĉE , i.e., the transmission time on the Ethernet link taking contention
into account, using Equation (11):

ĉE = p̂pro × 68 ×
1.168 µs

p̂pro
+ 68 × 1.168 µs = 158.85 µs,

where ci and zi have been replaced by cE and p̂pro respectively. Further, bi is zero according to
Equation (9), since we consider the lowest priority message for ĉE , i.e., the one suffering the most
contention by other messages. The communication delay from and to the ICS, can be computed
using Equation (12) and Equation (13):

cICS = 18.02 µs, ccar = 333.38 µs.

Finally, from Equation (2), we have that:

Dmax = 2 × 7 ms + 2 × 14 ms + 0.3334 ms + 0.0181 ms + 7 ms + 0.18 ms ≈ 50 ms,

which is less than t1m = 72ms – see Equation (14). That is, our ICS is able to meet all deadlines
in the worst case.

6Note that processes with different rates are also possible; however, this is not meaningful in the context of our case
study, where each process stands for an approaching car at the intersection.

20

7. Robustness under Unreliable Communication

In general, if many consecutive packets are lost on the communication channel, the system
will experience malfunction putting safety into risk. In this section, we will determine the number
of consecutive packets that can be lost at maximum without compromising safety. In other words,
we quantify the system’s robustness under unreliable communication.

As discussed above, Equation (2) states the worst-case delay incurred by our DEECo-based
ICS in case of a fully reliable communication. This is obtained considering that data at a car
can be updated immediately after knowledge has been propagated – for the reason that processes
updating and propagating data are not synchronized with each other. As a result, this data will be
sent the next time a knowledge propagation is performed, i.e., p̂pro time later. If now this packet
is lost on the communication channel, data will incur an additional delay equal to p̂pro. Further,
if kcar denotes the number of consecutive packets that are lost, then data from the car to the ICS
incurs the following delay:

p̂pro + kcar × p̂pro + ccar, (19)

where again ccar denotes the delay on the communication channel from the car to the ICS.
In a similar manner, if kICS denotes the number of consecutive packets that are lost from the

ICS to the car, then data from the ICS incurs following delay to reach the car:

p̂pro + kICS × p̂pro + cICS , (20)

where, as discussed above, cICS is delay on the communication channel from the ICS to the car.
Let us denote by k = kcar + kICS the total number of packets lost between the ICS and the car.

We can now combine Equation (19) and Equation (20) to determine the closed-loop delay of the
system in case of unreliable communication:

D̂max = (2 + k) × p̂pro + 2 × p̂ens + cICS + ccar + rICS + rcar, (21)

where again rICS and rcar denote the maximum delay to finish computation at the ICS and the
car respectively. Note that Equation (21) reduces to Equation (2) for k = 0, i.e., when no packets
are lost on the communication channel.

Using the values of p̂pro, p̂ens, ccar, cICS , rcar, and rICS computed in the previous section,
we can now determine the maximum k that can be tolerated without affecting the system’s func-
tionality and safety. That is the maximum k that makes D̂max be at most equal to t1m as per
Equation (14). We denote this maximum k by kmax:

kmax =

⌊
t1m − Dmax

p̂pro

⌋
= 3. (22)

Equation (22) indicates that the sum of kcar and kICS , each of which represents the number of
consecutive packets being lost in one or the other direction, cannot be more than 3 for the system
to operate correctly.

Safety Mechanisms. Note that we can use the previous results to implement safety mechanisms
at the ICS and at cars. In particular, whenever communication is lost for longer than t1m time
between the ICS and any car in the system or vice versa, both the ICS and the car switch to
manual mode, i.e., the ICS starts working as standard traffic lights.

21

Priority levels 7
Message length 1024 bits
Packet send interval 7 ms (p̂pro from the analysis)
ICS response delay p̂pro + p̂ens + rICS = 28 ms
A car response delay p̂pro + p̂ens + rcar = 21.18 ms
Bandwidth (Car to AP) 100 Mbps
Bandwidth (ICS to AP) 1 Gbps

Table 2: Simulation parameters

This can be implemented by DEECo processes that run at the different cars and at the ICS and
trigger the manual mode in a decentralized manner. In other words, these processes behave as
watchdog timers at the different nodes. They force a switch to manual mode at the corresponding
node, if no packets have been received for longer than t1m time. Note that here, for ease of
exposition, we neglect the time which is necessary to process data at cars, i.e., p̂ens + rcar, and at
the ICS, i.e., p̂ens + rICS . Whereas there is only one such watchdog processes at a car, there are
multiple ones at the ICS; one for each car in the system.

It should be noticed that the ICS does not need to notify cars whenever it switches to manual
mode; it suffices if it stops assigning speeds to them and cars themselves will automatically
switch to manual mode. In the same way, if a car first switches to manual mode, the ICS will
detect this on its own without need for notification from the car.

In the worst case, since we do not know which packets may be lost, we may have up to 3× t1m
delay for the whole system, i.e., all cars and the ICS, to switch to manual mode in a decentralized
manner. This results from considering the following conditions:

i) A packet from ICS is sent to arrive exactly t1m time after its last packet at a given car.

ii) This packet from the ICS is lost at the communication channel such that the car (locally)
switches to manual mode.

iii) All packets from the car to the ICS also get lost such that the ICS realizes that the car is in
manual mode – and triggers itself a switch to manual mode – not until t1m time later.

iv) All packets from the ICS to the remaining cars get lost such that, in the worst case, all other
cars switch to manual mode t1m time after the ICS.

As discussed above, this delay corresponds to 3 m in the trajectory of a car in our case study.
Hence the ICS has to assign speeds to cars – in the automatic mode – such that there is sufficient
distance between them taking vehicle dynamics into account (e.g., if a car suddenly breaks, it
will not stop immediately due to its inertia, etc.).

Finally, only the ICS can decide to go back to the automatic mode whenever communication
to all cars has normalized. To this end, the ICS needs to notify or start assigning speeds to all
cars in the system. Note that the delay for switching to the automatic mode is given by t1m since
we assume a normal communication.

8. Experimental Evaluation

In this section, we validate the analysis presented in Section 6 by means of simulation. To
this end, we created an OMNet++ simulation [56] using INET hardware models.

22

We have set up an OMNet++ simulation by manually implementing DEECo components as
OMNet++ modules. In particular, we have implemented an OMNet++ module for each vehicle
at the intersection and for the ICS. While the ICS is stationary, vehicles and their correspond-
ing modules in OMNet++ move with given speeds. The modules generate network traffic that
emulates the communication of vehicles entering and exiting the ICS’s region of influence. This
reflects the knowledge/data propagation for our DEECo-based ICS, from which we collect end-
to-end communication latencies for a large set of simulated packet transmissions.

Our network topology consists of one ICS host connected by a full-duplex switch to three
AP – see Figure 6. Vehicles connect dynamically to the AP adjusting message priorities as they
get closer to the intersection. The communication from the switch to the ICS host is performed
under message prioritization according to the Ethernet 802.1Q standard. Our simulation scenario
spans different numbers of vehicles (20, 50 and 70 correspondingly) exchanging packets with the
ICS. Table2 summarizes the most important simulation parameters considered in our evaluation.

Figure 7 and Table 3 show the results of our simulation with respect to closed-loop reaction
time – i.e., the Car-ICS-Car delay – and for an increasing number of consecutive packet losses
at the communication channel. In the case that no packets are lost, this figure shows that our
Dmax = 50 ms – computed at the end of Section 6 – is safe. That is, in this case, all delay values
in the system are always less than 50 ms even for 70 cars, i.e., two more cars than what it is
considered and allowed by the analysis presented in the above sections.

Evaluation under Unreliable Communication. Now, we discuss our simulation results for a
varying number of consecutive packet losses either from the car to the ICS or from the ICS to
the car. As it can be observed in Figure 7, the system operates properly – i.e., the Car-ICS-Car
delay is below below t1m = 72 ms – for up to 3 consecutive packet losses, which validates our
analysis in Section 7. Clearly, the more packets are lost, the higher the Car-ICS-Car delay is;
however, this is always less than the computed threshold t1m and, hence, the system can remain
in automatic mode.

For the case of 4 packets lost, also depicted in Figure 7, the Car-ICS-Car delay starts ex-
ceeding the threshold t1m = 72 ms – even when considering only 20 cars at the intersection. As
a result, the system cannot tolerate more than 3 consecutive packet losses without switching to
manual mode. This again is in accordance with the computed upper bound on packet losses given
in Equation (22).

AP1 AP2 AP3

ICS

Switch

Figure 6: Simulated network consisting of three access points (APs) and a switch

23

49
.2

49
.3

49
.4

0

0.
2

0.
4

0.
6

0.
81

1.
2

1.
4

1.
6
·1

05

N
o

pa
ck

et
lo

st

Messagecount

56
.2

56
.3

56
.4

1
pa

ck
et

lo
st

63
.2

63
.3

63
.4

2
pa

ck
et

s
lo

st

70
.2

70
.3

70
.4

3
pa

ck
et

s
lo

st
72

T
hr

es
ho

ld
g

77
.2

77
.3

77
.4

77
.5

4
pa

ck
et

s
lo

st

70
ca

rs
50

ca
rs

20
ca

rs
t 1

m

Fi
gu

re
7:

C
ar

-I
C

S-
C

ar
cl

os
ed

-l
oo

p
re

ac
tio

n
tim

es
in

m
ill

is
ec

on
ds

24

No packet lost 20 vehicles 50 vehicles 70 vehicles
Mean 49.2245 49.2507 49.2694

Std. Dev. 0,0157 0.00298 0.03723
Median 49.2182 49.2449 49.2582

Max 49.3117 49.4453 49.5121
1 packet lost

Mean 56.2245 56.2507 56.2692
Std. Dev. 0,0155 0.00299 0.0371

Median 56.2182 56.2449 56.2582
Max 56.3117 56.4319 56.4987

2 packets lost
Mean 63.2246 63.2508 63.2694

Std. Dev. 0,0156 0.00298 0.0372
Median 63.2182 63.2449 63.2582

Max 63.3117 63.4453 63.5121
3 packets lost

Mean 70.2246 70.2509 70.2693
Std. Dev. 0,0156 0.00298 0.0371

Median 70.2182 70.2449 70.2582
Max 70.3117 70.4453 70.4987

4 packets lost
Mean 77.2245 77.2507 77.2694

Std. Dev. 0,0156 0.00298 0.0372
Median 77.2182 77.2449 77.2582

Max 77.3117 77.4319 77.5388

Table 3: Reaction time statistics (values given in milliseconds)

Realism of the Evaluation. The presented results are based on a simulation and, thus, they may
differ in reality. In particular, we have made a number of assumptions which may not hold and,
hence, have an impact on our evaluation. In the following, we discuss this in more detail.

• The computed t1m may not hold. This is based on the assumption that cars/vehicles can
have speeds of up to 50 Km/h – see (14). However, in reality, it may happen that one or
more cars exceed this speed limit by some amount. A solution to this is to consider a
safety margin and, for example, compute a new t1m for 60 Km/h instead. However, it now
may happen that the ICS cannot meet this deadline anymore. To overcome this problem,
the number of cars at the intersection can be restricted to a safe value. If more cars than
safe enter the ICS’s region of influence, it will switch to manual mode. Clearly, this higher
speed limit can also be exceeded. In this case, the ICS can directly switch to manual mode.

• The computed maximum number of cars at the intersection n may also not hold. This
is based on assumptions on the minimum length of cars and on the maximum possible
distance between any two cars at the intersection – see (15). If these assumptions do not
hold in practice, the maximum number of cars at the intersection may potentially increase.
This has impact on the WCRT of the ICS rICS and on the worst-case communication delay
from a car to the ICS ccar. As a result, the ICS may probably not be able to meet deadlines

25

any longer and, hence, it will have to switch to manual mode to guarantee safety, if more
cars than the maximum expected enter its region of influence.

• The WCET of processes at the cars and at the ICS may be greater than the assumed ei =

50 µs. This will have direct impact on the WCRT at the car rcar and at the ICS rICS . As a
consequence, the ICS may not be able to meet deadlines anymore and, again, it will have
to switch to manual mode, if a given number of cars is exceeded at the intersection.

• The bandwidths assumed for the different segments (either from the car to the AP or from
the AP to the ICS) are less than those assumed in Table 2. This leads to increased com-
munication delays in both directions from the car to the ICS and vice versa. The ICS may
stop being able to meet deadlines and, thus, it will have to restrict the number of cars at
the intersection in the automatic mode.

From the above discussion, it should be clear that we can account for discrepancies between
our simulated and a real-life ICS by taking a conservative estimate on the maximum number of
cars that the ICS can simultaneously handle. If, in practice, this number is exceed, the ICS will
switch to manual mode preserving safety at the cost of restricting service.

9. Concluding Remarks

In this paper, we have presented DEECo as a special-purpose, component-based, design and
development framework for open-ended CPS. DEECo specifically targets at dynamic distributed
systems and, thus, provides systematic software engineering mechanisms to describe and analyze
such complex application scenarios. These mechanisms mainly consist in modeling transitory
interactions between one or more components in the system.

We extended DEECo’s design flow by a technique to estimate worst-case, closed-loop, re-
sponse times between DEECo components. This effectively allows guaranteeing real-time re-
quirements from high-level DEECo-based designs provided that the underlying platform sup-
ports real-time, e.g., real-time OS, priority-based communication protocols, etc. Clearly, if the
underlying technologies are nondeterministic, then it is not possible to provide any timing guar-
antees and, as a consequence, no safety-critical applications can be implemented on their basis.

We illustrated our proposed technique based on an intelligent crossroad scenario. Towards
this, we derived the worst-case delay Dmax of a DEECo-based system – see Equation (2). This
analysis is general enough and can be used for other applications. Note that the term 2 × p̂pro +

2× p̂ens is the overhead by DEECo, whereas cICS + ccar and rICS + rcar stand for the communica-
tion and the computation overhead respectively. DEECo’s overhead is configurable by properly
choosing p̂pro and p̂ens which again need to be in accordance with the application requirements.
The communication and computation overhead will depend on the used technologies such as
communication protocols, scheduling algorithms, etc.

Based on our analysis, we evaluated the robustness of a DEECo-based design against packet
losses at the communication channel. Towards this, we analytically obtained a upper bound on
the number of packets that can be lost without affecting the system’s safety. We further validated
this bound by means of extensive experiments based on an OMNet++ simulation. In addition,
we proposed and discussed safety mechanisms that can be integrated into a DEECo design in
order to adapt to unpredicted communication loss between components.

26

We envision integrating the proposed technique into the existing ensemble development life
cycle [57], which provides a systematic approach (i.e., methodology) towards engineering open-
ended CPS. The presented work fits into the modeling part of that cycle, which is followed by
verification performed on the basis of simulation techniques – similar to the procedure shown in
this paper. An important aspect is also the requirements engineering part, which should besides
functional properties also account for extra-functional, in particular, real-time aspects.

Overall, the technique presented in this paper allows reasoning about real-time requirements
at the component level and constitutes a necessary step towards holistic software engineering
methods for modern cyber-physical systems.

Acknowledgments

This work was partially supported by Charles University institutional funding SVV-2014-
260100. The research leading to these results has received funding from the European Union
Seventh Framework Programme FP7-PEOPLE-2010-ITN under grant agreement n◦264840.

Appendix A. DEECo-based ICS implementation

In the following, we discuss the implementation of our ICS case study. This is based on the
CDEECo library (C++ version of DEECo). The sources of the case study draft and network
traffic simulation (in OMNet++) are placed on the GitHub.7 We refer to the README.md file
in the root directory of the repository for more details.

Appendix A.1. DEECo to C++ mapping
We discuss how DEECo concepts – such as component, ensemble, knowledge and process –

are mapped to C++. Thereby, type safety and real-time operation need to be guaranteed.

Components. A component is mapped to a C++ class that inherits from CDEECO::Component
template parametrized by knowledge type. The base class is responsible for knowledge access
and distribution, including the fragmentation of knowledge into packets. However, the base class
does not perform any broadcasting of packets, which is done by another class inheriting from
CDEECO::Broadcaster. A component class specifies the type of component and identification
number.

Some extra methods and fields (not related to DEECo) can be added into the component
class. This is the ideal place to store component-related external data.

1 class Component: public CDEECO::Component<Knowledge> {
2 public:
3 static const CDEECO::Type type = 1 ;
4 private:
5 // Process handles here
6 // User data here
7 Component (CDEECO::Broadcaster &broadcaster , const CDEECO::Id id) :
8 CDEECO::Component<Knowledge>(id , type , broadcaster) {
9 // Knowledge initialization here

10 }

11 };

Listing 5: Component example

7https://github.com/d3scomp/ICS-CDEECo

27

Knowledge type. Knowledge is a plain C++ structure. This approach has some limitations com-
pared to wrapping knowledge parts into a richer class structure, but it simplifies the user-defined
code, gives guarantees on complexity and speeds up execution.

1 struct Knowledge: CDEECO::Knowledge {
2 uint32 t foo;
3 uint32 t bar;
4 };

Listing 6: Knowledge example

1 class ExampleProcess:
2 public CDEECO::PeriodicTask<ExampleKnowledge, int> {
3 public:
4 ExampleProcess (auto &component):
5 PeriodicTask(2400 , component , component.knowledge.value) {
6 // User initialization here
7 }

8 private:
9 // User data here

10 // User task code, executed every 2400ms
11 int run (const ExampleKnowledge in) {
12 return in.value + 42;
13 }

14 };

Listing 7: Process example

1 // Typedef base ensemble type
2 typedef CDEECO::Ensemble<Coord::Knowledge, Coord::Knowledge::Id, Member::Knowledge,
3 Member::Knowledge::Id> EnsembleType ;
4 // Id exchange ensemble
5 class Ensemble: EnsembleType {
6 public:
7 // Define ensemble period
8 static const auto PERIOD MS = 42;
9 Ensemble (CDEECO::Component<Coord::Knowledge> &coordinator, auto &library): EnsembleType(&coordinator,

10 &coordinator.knowledge.id, &library, PERIOD MS) {}
11 Ensemble (CDEECO::Component<Member::Knowledge> &member, auto &library): EnsembleType(&member ,
12 &member.knowledge.id , &library, PERIOD MS) {}
13 protected:
14 // Membership condition
15 bool isMember (const CDEECO::Id coordId, const Coord::Knowledge coordKnowledge, const CDEECO::Id memberId,
16 const Member::Knowledge memberKnowledge) {
17 // When coordinator has lower id the membership success
18 return coordId < memberId ;
19 }

20

21 // Map member id to coordinator
22 Coord::Knowledge::Id memberToCoordMap(const Coord::Knowledge coord, const CDEECO::Id memberId,
23 const Member::Knowledge memberKnowledge) {
24 return memberId ;
25 }

26

27 // Map coordinatorId to member
28 Member::Knowledge::Id coordToMemberMap(const Member::Knowledge member, const CDEECO::Id coordId,
29 const Coord::Knowledge coordKnowledge) {
30 return coordId ;
31 }

32 }

Listing 8: Ensemble example

Process and ensemble. A process is defined by a class inheriting from descendants of the class
template CDEECO::Task – either CDEECO::PeriodicTask or CDEECO::TriggeredTask class
templates. Inputs and outputs of the process are defined by template arguments, thus, type safety

28

needs to be ensured in the user code. Similar to the component class, the user-defined process
class can hold unrelated data not managed by CDEECo.

Ensembles are handled in a very similar way as processes. That is, an ensemble is just a pro-
cess which is using knowledge data of two components. Technically, an ensemble inherits from
CDEECO::Ensemble class template. The only major difference is that an ensemble condition
together with a knowledge mapping method needs to be defined. The ensemble definition further
needs to establish the ensemble type based on the knowledge of the components involved.

Parameter passing. In order to provide type safety, templates are used for processes and ensem-
ble mapping functions. Component and ensemble classes have their input and output knowledge
types as their template arguments. Thus the user-defined functions can receive their inputs and
return their outputs directly as members of the knowledge structure. There is no need to cast
from generic types.

1 Mode SampleProcess::run(const Knowledge in) {
2 if(in.foo == in.bar) {
3 return Mode::Manual;
4 else
5 return Mode::Automatic;
6 }

Listing 9: Process parameter access

Appendix A.2. Runtime environment
CDEECo provides a runtime environment for DEECo applications. As mentioned before, it

is internally using FreeRTOS for scheduling processes and ensembles. In fact, C++ wrappers
are implemented, which allow for a straightforward portability to another real-time OS. FreeR-
TOS has the advantage of supporting many relevant microcontrollers/boards used in embedded
systems.

Another property critical in real-time systems is memory management. In general, it is diffi-
cult to provide a time bound for allocating and deallocating memory from the heap. As a result,
in CDEECo, all data structures are either fully static or allocated on the heap at the initialization
phase.

The whole CDEECo runtime environment relies on C++ class templates. These are generally
used to provide a clean and typed API to the designer. Moreover, using C++ templates allows
for a more predictable running time since they are generally resolved at compile time.

Appendix A.3. Deployment
Our implementation of the ICS case study can be deployed on the STM32F4 board8 extended

with the IEEE802.15.4 interface. The application together with some board specific source files
is statically linked with the CDEECo library. Particularly, the library expects the application to
define the symbol cdeecoSetup. The resulting binary representing either the ICS or a vehicle
node is then flashed onto the board.

Compiling and linking sources is straightforward. Since CDEECo requires some of the recent
C++14 features, it is necessary to use recent compiler and libc versions. For development, a
custom toolchain compiled from sources was used. The toolchain was created on the Gentoo9

system using the crossdev utility.

8http://st.com/stm32f4
9http://gentoo.org

29

$ crossdev --target armv7m-hardfloat-eabi --ex-gcc --ex-gdb

These software versions have been used:

• binutils: 2.24-r3 with C++ support

• gcc: 4.9.0 with C++ support

• gdb: 7.7.1 with XML support

• newlib: 2.1.0

• openocd: 0.9.0

Build instructions. It might be necessary to adapt makefiles in case that the toolchain and openocd
are located in a different place. Once the tools are located, compilation requires just one com-
mand to be executed from the project’s root directory:

$ make

Note that the makefiles currently do not support a parallel build. If no errors are encountered,
two application binaries will be created. The binaries are automatically dumped as ḣex files that
can be flashed onto the development board using openocd. The ICS and vehicle applications can
be flashed with following commands executed from repository’s root directory.

$ make flash-ics

$ make flash-vehicle

Appendix A.4. Modeling with DEECo

Next, we show an example of a DEECo model for the ICS case study.

Vehicle Component

id: Long
time: Long
mode: {AUTOMATIC, MANUAL}
crossingDistance:Long
crossingId: Long
crossingDirect: {S-E, S-W, N-E, N-W, …}
speed: Double
speedTime: Long
priviledged: Boolean

Knowledge

Processes

monitor(in speedTime, out mode)

Figure A.1: Vehicle component specification

DEECo components. Figure A.1 specifies the vehicle component that is characterized by the set
of attributes (together with their types) listed in the figure and the following process:

30

ICS Component

id: Long
time: Long
mode: {AUTOMATIC, MANUAL}
vehicles: [{id, distance, direction}]
speeds: [{id, speed}]

Knowledge

Processes

schedule(in/out vehicles, out speeds, out mode)

Figure A.2: ICS component specification

• monitor(in speedTime, out mode)
The process is responsible for monitoring whether input data is obsolete or not (i.e., the
time of the last speed update must be less than a threshold given by our real-time analysis in
Section 6). If so, i.e., if the value from ICS is obsolete, then mode is set to the MANUAL.
As input parameter, it takes the ICS identifier, whereas it returns the vehicle’s mode.

Figure A.2 specifies the ICS component that is characterized by the set of attributes (together
with their types) listed in the figure and the following process:

• schedule(in/out vehicles, out arrivals, out mode)
This process is responsible for computing and monitoring the speeds of approaching ve-
hicles/cars depending on the current traffic situation. Towards this, given cars’ current
speeds and directions, it computes the time at which they reach the intersection. Taking
cars’ lengths and widths into account, it adjusts their speeds to avoid conflicts. Which car
is allowed to cross first depends on the order in which they arrive at ICS’s region of influ-
ence and on whether they are privileged or not. If the ICS detects that a car or vehicle does
not maintain the assigned speed, it changes the value of mode to MANUAL, i.e., it starts
working as standard traffic lights. The same happens, if communication is lost to one or
more cars. As input parameters, this process takes vehicles, i.e., a collection of the most
recent states of cars/vehicles at the crossing. As output parameters, it returns vehicles,
where the speed attribute of each vehicle is updated, and mode.

Figure A.3 and Figure A.4 show the specification of ensembles, i.e., interactions or relations,
between the ICS and Vehicle components. The attributes of the coordinator in these ensembles
match the attributes of the ICS component, while the member’s attributes match the vehicle
component. Note that, in the end, this is the same interaction/relation but specified from the
perspective of the member – see Figure A.3 – and of the coordinator – see Figure A.4.

[1] K. Beetz, W. Böhm, Challenges in engineering for software-intensive embedded systems, in: Model-Based Engi-
neering of Embedded Systems: The SPES 2020 Methodology, Springer, 2012.

[2] AUTOSAR: Layered software architecture, http://autosar.org/download/R4.0/AUTOSAR_EXP_

LayeredSoftwareArchitecture.pdf.
[3] W. Reisig, Understanding Petri Nets: Modeling Techniques, Analysis Methods, Case Studies, Springer, 2013.
[4] T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, F. Plasil, DEECo: An ensemble-based component

system, in: Proceedings of the International ACM Sigsoft Symposium on Component-based Software Engineering
(CBSE), 2013.

[5] R. Hennicker, A. Klarl, Foundations for ensemble modeling – the Helena approach, in: Specification, Algebra, and
Software, Springer, 2014.

[6] A. Masrur, M. Kit, T. Bures, W. Hardt, Towards component-based design of safety-critical cyber-physical applica-
tions, in: Proceedings of the Euromicro Conference on Digital Systems Design (DSD), 2014.

31

Coordinator

id: Long
speeds: [...]
mode: {AUTOMATIC, MANUAL}

Member

id: Long
crossingId: Long
speed: Double
mode: {AUTOMATIC MANUAL}

Membership Condition

mbr.distance < 50 && mbr.crossingId = coord.id

Knowledge Exchange

mbr.speed ← coord.speeds[mbr.id]
mbr.mode ← coord.mode

ICS2Vehicle

Figure A.3: ICS2VehicleEnsemble specification

Coordinator

id: Long
vehicles: [{id, speed, direction}]

Member

id: Long
direction: {S-E, S-W, N-E, …}
distance: Double
mode: {AUTOMATIC, MANUAL}

Membership Condition

mbr.distance < 50 && mbr.crossingId = coord.id

Knowledge Exchange

coord.vehicles[mbr.id].direction ← mbr.direction
coord.vehicles[mbr.id].distance ← mbr.distance
coord.mode ← mbr.mode

Vehicle2ICS

Figure A.4: Vehicle2ICSEnsemble specification

[7] J. Keznikl, T. Bures, F. Plasil, I. Gerostathopoulos, P. Hnetynka, N. Hoch, Design of ensemble-based component
systems by invariant refinement, in: Proceedings of the International ACM Sigsoft Symposium on Component-
based Software Engineering (CBSE), 2013.

[8] C++ implementation of the DEECo runtime environment, https://github.com/d3scomp/CDEECo.
[9] M. Kit, I. Gerostathopoulos, T. Bures, P. Hnetynka, F. Plasil, An architecture framework for experimentations with

self-adaptive cyber-physical systems, in: Proceedings of the International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS), 2015.

[10] S. Zeadally, R. Hunt, Y.-S. Chen, A. Irwin, A. Hassan, Vehicular ad hoc networks (VANETS): status, results, and
challenges, Telecommunication Systems 50 (4).

[11] J. Feljan, L. Lednicki, J. Maras, A. Petricic, I. Crnkovic, Classification and survey of component models, Tech.
rep., Project DICES (Feb. 2009).

[12] T. Pop, P. Hnetynka, P. Hosek, M. Malohlava, T. Bures, Comparison of component frameworks for real-time
embedded systems, Knowledge and Information Systems 40 (1).

[13] jRESP – runtime environment for SCEL programs, http://www.ascens-ist.eu/jresp/.
[14] K. Klobedanz, C. Kuznik, A. Thuy, W. Mueller, Timing modeling and analysis for AUTOSAR-based software

development - a case study, in: Proceedings of Conference on Design, Automation, and Test in Europe (DATE),
2010.

32

[15] J. E. Kim, O. Rogalla, S. Kramer, A. Hamann, Extracting, specifying and predicting software system properties in
component based real-time embedded software development, in: Proceedings of the International Conference on
Software Engineering (ICSE), 2009.

[16] R. Ommering, F. Linden, J. Kramer, J. Magee, The Koala component model for consumer electronics software,
Computer 33 (3).

[17] H. Maaskant, A robust component model for consumer electronic products, in: Dynamic and Robust Streaming in
and between Connected Consumer-Electronic Devices, Springer, 2005.

[18] C. Sunder, A. Zoitl, J. Christensen, H. Steininger, J. Rritsche, Considering IEC 61131-3 and IEC 61499 in the
context of component frameworks, in: Proceedings of the IEEE International Conference on Industrial Informatics
(INDIN), 2008.

[19] L. Lednicki, J. Carlson, K. Sandström, Model level worst-case execution time analysis for IEC 61499, in: Proceed-
ings of the International ACM Sigsoft Symposium on Component-based Software Engineering (CBSE), 2013.

[20] J.-P. Fassino, J.-B. Stefani, J. Lawall, G. Muller, Think: A software framework for component-based operating
system kernels, in: Proceedings of the USENIX Annual Technical Conference, 2002.

[21] M. Anne, R. He, T. Jarboui, M. Lacoste, O. Lobry, G. Lorant, M. Louvel, J. Navas, V. Olive, J. Polakovic, M. Poul-
hies, J. Pulou, S. Seyvoz, J. Tous, T. Watteyne, Think: View-based support of non-functional properties in embed-
ded systems, in: Proceedings of International Conference on Embedded Software and Systems (ICESS), 2009.

[22] The MIND project, http://mind.ow2.org/.
[23] The Fractal Component Model specification, http://fractal.ow2.org/specification/.
[24] M. Prochazka, R. Ward, P. Tuma, P. Hnetynka, J. Adamek, A component-oriented framework for spacecraft on-

board software, in: Proceedings of Data Systems in Aerospace (DASIA), 2008.
[25] T. Bures, P. Hnetynka, F. Plasil, SOFA 2.0: Balancing advanced features in a hierarchical component model,

in: Proceedings of International Conference on Software Engineering Research, Management and Applications
(SERA), 2006.

[26] G. Coulson, G. Blair, P. Grace, F. Taiani, A. Joolia, K. Lee, J. Ueyama, T. Sivaharan, A generic component model
for building systems software, ACM Transactions on Computer Systems 26 (1).

[27] S. Hissam, J. Ivers, D. Plakosh, K. C. Wallnau, PIN component technology (v1.0) and its C interface, Tech. rep.,
CMU SEI (Apr. 2005).

[28] O. Sokolsky, A. Chernoguzov, Performance analysis of AADL models using real-time calculus, in: Foundations of
Computer Software: Future Trends and Techniques for Development, Springer, 2010.

[29] L. Thiele, S. Chakraborty, M. Naedele, Real-time calculus for scheduling hard real-time systems, in: Proceedings
of the IEEE International Symposium on Circuits and Systems (ISCAS), 2000.

[30] OMG unified modeling language, version 2.5, http://omg.org/spec/UML/2.5/.
[31] A. Louati, K. Barkaoui, C. Jerad, Temporal properties verification of real-time systems using UML/MARTE/OCL-

RT, in: Formalisms for Reuse and Systems Integration, Springer, 2015.
[32] OMG systems modeling language, version 1.3, http://omg.org/spec/SysML/1.3/.
[33] H. Espinoza, D. Cancila, B. Selic, S. Gerard, Challenges in combining SysML and MARTE for model-based design

of embedded systems, in: Model Driven Architecture - Foundations and Applications, Springer, 2009.
[34] E. Andrade, P. Maciel, G. Callou, B. Nogueira, A methodology for mapping SysML activity diagram to time

petri net for requirement validation of embedded real-time systems with energy constraints, in: Proceedings of the
International Conference on Digital Society (ICDS), 2009.

[35] O. Nierstrasz, G. Arévalo, S. Ducasse, R. Wuyts, A. P. Black, P. O. Müller, C. Zeidler, T. Genssler, R. Born, A
component model for field devices, in: Component Deployment, Springer, 2002.

[36] X. Ke, K. Sierszecki, C. Angelov, COMDES-II: A component-based framework for generative development of
distributed real-time control systems, in: Proceedings of the IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA), 2007.

[37] K. Hänninen, J. Mäki-Turja, M. Nolin, M. Lindberg, J. Lundbäck, K. Lundbäck, The Rubus component model
for resource constrained real-time systems, in: Proceedings of the IEEE International Symposium on Industrial
Embedded Systems (SIES), 2008.

[38] H. Hansson, M. Åkerholm, I. Crnkovic, M. Törngren, SaveCCM – a component model for safety-critical real-time
systems, in: Proceedings of EUROMICRO Conference, 2004.

[39] T. Bures, J. Carlson, I. Crnkovic, S. Sentilles, A. Vulgarakis, ProCom – the progress component model reference
manual, version 1.0, Tech. rep., Mälardalen University (Jun. 2008).

[40] MyCCM high integrity, https://srcdev.lip6.fr/trac/research/flex-eware/wiki/MyCCM.
[41] S. Becker, H. Koziolek, R. Reussner, The palladio component model for model-driven performance prediction,

Systems and Software 82 (1).
[42] N. Wang, D. C. Schmidt, A. Gokhale, C. D. Gill, B. Natarajan, C. Rodrigues, J. P. Loyall, R. E. Schantz, Total

quality of service provisioning in middleware and applications, Microprocessors and Microsystems 27 (9–10).
[43] A. Basu, M. Bozga, J. Sifakis, Modeling heterogeneous real-time components in BIP, in: Proceedings of the IEEE

33

International Conference on Software Engineering and Formal Methods (SEFM), 2006.
[44] C. Etzien, T. Gezgin, S. Froschle, S. Henkler, A. Rettberg, Contracts for evolving systems, in: Proceedings

of the IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing
(ISORC), 2013.

[45] T. Gezgin, C. Etzien, Correct by prognosis: Methodology for a contract-based refinement of evolution models, in:
Complex Systems Design & Management (CSD&M), 2014.

[46] T. Gezgin, S. Henkler, A. Rettberg, I. Stierand, Contract-based compositional scheduling analysis for evolving
systems, in: Embedded Systems: Design, Analysis and Verification, Springer, 2013.

[47] T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, F. Plasil, Gossiping components for cyber-physical
systems, in: Software Architecture, Springer, 2014.

[48] C. Liu, J. Layland, Scheduling algorithms for multiprogramming in hard real-time environments, Journal of the
Association for Computing Machinery 20 (1).

[49] N. Audsley, A. Burns, M. Richardson, K. Tindell, A. Wellings, Applying new scheduling theory to static priority
pre-emptive scheduling, Software Engineering Journal 8 (5).

[50] IEEE 802.11p standard: Wireless LAN MAC and PHY specifications amendment 6: Wireless access in vehicular
environments, http://standards.ieee.org/findstds/standard/802.11p-2010.html.

[51] IEEE 802.1Q standard: LANs and WANs – MAC bridges and virtual bridged LANs, http://standards.ieee.
org/findstds/standard/802.1Q-2011.html.

[52] N. Shah, F. Bastani, S. Kumar, I.-L. Yen, Real-time car-to-car communication protocol for intersecting roads, in:
Proceedings of the International Conference on ITS Telecommunications (ITST), 2008.

[53] N. Shah, S. Kumar, F. Bastani, I.-L. Yen, Optimization models for assessing the peak capacity utilization of intelli-
gent transportation systems, European Journal of Operational Research 216 (1).

[54] S.-Y. Pyun, H. Widiarti, Y.-J. Kwon, D.-H. Cho, J.-W. Son, TDMA-based channel access scheme for V2I commu-
nication system using smart antenna, in: Proceedings of the IEEE Conference on Vehicular Networking (VNC),
2010.

[55] S.-Y. Pyun, H. Widiarti, Y.-J. Kwon, J.-W. Son, D.-H. Cho, Group-based channel access scheme for a V2I commu-
nication system using smart antenna, IEEE Communications Letters 15 (8).

[56] A. Varga, R. Hornig, An overview of the OMNeT++ simulation environment, in: Proceedings of the International
Conference on Simulation Tools and Techniques for Communications, Networks and Systems (SIMUTOOLS),
2008.

[57] T. Bures, R. D. Nicola, I. Gerostathopoulos, N. Hoch, M. Kit, N. Koch, G. V. Monreale, U. Montanari, R. Pugliese,
N. Serbedzija, M. Wirsing, F. Zambonelli, A life cycle for the development of autonomic systems: The e-mobility
showcase, in: Proceedings of the Workshop on Challenges for Achieving Self-Awareness in Autonomic Systems
(AWARENESS), 2013.

34

