
Bi-Level Deadline Scaling for Admission Control
in Mixed-Criticality Systems

Alejandro Masrur, Dirk Müller, and Matthias Werner
Department of Computer Science

TU Chemnitz, Germany

Abstract—In some cases, tasks may be allowed to migrate from
one processor to another, e.g., due to hardware failures or for
workload balancing. If a mixed-criticality setting is considered, it
is necessary to decide whether new tasks with different levels of
criticality may be accepted by a processor without compromising
the already running tasks. Since this decision has to be taken
on-line, there is a need for fast but yet accurate schedulability
tests for mixed-criticality systems. In this paper, we consider that
the EDF-VD algorithm is used to schedule tasks on the different
processors. EDF-VD assigns virtual deadlines to high-criticality
tasks, i.e., it uniformly downscales their real deadlines, to account
for a potential increase in their execution demand. A deadline
scaling factor is hence computed for the whole processor. However,
in the case where the increase in computation demand strongly
differs from one task to another, scaling deadlines uniformly
makes EDF-VD incur pessimism. Of course, a scaling factor
can be computed for every single task; however, this leads to
a considerably more complex algorithm which cannot be used
in an on-line setting. As a result, we propose an intermediate
solution by introducing a bi-level deadline scaling. This way, high-
criticality tasks that experience a small increase of workload are
assigned one scaling factor, whereas tasks with a large increase of
workload are assigned a separate scaling factor. Our experiments
show that the proposed approach dominates the original EDF-
VD algorithm while it does not increase complexity allowing for
constant-time admission control in mixed-criticality systems.

I. INTRODUCTION

With the aim of reducing complexity and costs, in many
industrial domains such as automotive systems, there is a trend
towards consolidating software functions onto fewer ECUs
(electronic control units) or processors. Hence applications
with different levels of criticality start being executed on the
same processors. As a result, there is a need for techniques
that allow designing such mixed-criticality (MC) systems and
also complying with today’s certification requirements.

In this paper, we study the problem of admission control
in MC settings. We consider that a task may migrate from
its source to a target processor, for example, in response to
hardware failures or for workload balancing in an adaptive
system. Clearly, in order not to affect the already running tasks,
it needs to be decided whether the new task can be accepted (or
not) on the target processor. This decision process is referred
to as admission control. An admission control algorithm has an
on-line nature and should ideally have a constant running time
to accept/reject a new task. In other words, it should allow for
fast decisions independent of the number of tasks currently in
the system.

We assume that earliest deadline first with virtual deadlines
(EDF-VD) is used to schedule a mix of high-criticality (HI)
and low-criticality (LO) tasks on each processor [1] [2]. In
principle, EDF-VD is based on the following two observations.
First, techniques for worst-case execution time (WCET) com-

putation are very conservative leading to a large overestimation
of the real WCET [3] [4]. Moreover, a slight underestimation
referred to as optimistic WCET, e.g., obtained by probabilistic
or statistical methods [5] [6], is often sufficient to guarantee a
correct operation in most of the cases. Second, in MC settings,
the LO tasks do not require any guarantees and might be
discarded in overload situations.

EDF-VD distinguishes between two operation modes: HI
and LO mode. In LO mode, HI tasks require executing for no
longer than their optimistic WCETs and are scheduled together
with the LO tasks. The system enters the HI mode when one or
more HI tasks require executing for their conservative WCETs
(i.e., for longer than their optimistic WCETs). Here, EDF-VD
discards all LO tasks in order to accommodate the increase in
HI execution demand.

In HI mode, HI tasks need to be scheduled within their real
deadlines, while these are assigned virtual deadlines in LO
mode. Virtual deadlines are obtained by uniformly downscal-
ing their real deadlines by a factor x ∈ (0, 1). In practice, how-
ever, it is oftentimes the case that HI tasks strongly differ from
one another. Some HI tasks might have conservative WCETs
which are close to their optimistic WCETs. Some other HI
tasks might have conservative WCETs which are many times
greater than their optimistic WCETs [7]. When such HI tasks
need to be jointly scheduled, uniformly downscaling deadlines
leads to pessimism.

Alternatively, we can compute a deadline scaling factor
for each individual HI task [8]. However, whereas the original
EDF-VD allows for a linear-complexity schedulability test in
the number of tasks (i.e., a constant complexity in accept-
ing/rejecting a new task), the latter method results at best in
an algorithm with pseudo-polynomial complexity [8]. Since
it is difficult to precisely determine the running time of a
pseudo-polynomial-time algorithm, this is of limited utility for
admission control.

To overcome this problem, we propose an intermediate
solution consisting of a bi-level deadline scaling. HI tasks with
a small increase from optimistic to conservative WCET are
assigned a scaling factor x, whereas tasks with a big increase in
their execution demand are treated with a special scaling factor
y. The proposed scheme significantly outperforms the original
EDF-VD algorithm, while it does not increase complexity
allowing for a more accurate constant-time admission control1.

A. Contributions

The contributions of this paper are fourfold:

1Note that our approach can further be extended to more than two scaling
factors. This does not affect the complexity, but it increases the effective
running time of the admission control algorithm by a non-negligible time
constant depending on the number of scaling factors.

2015 IEEE 21st International Conference on Embedded and Real-Time Computing Systems and Applications

978-1-4673-7855-0/15 $31.00 © 2015 IEEE

DOI 10.1109/RTCSA.2015.35

100

Authorized licensed use limited to: UNIVERSITAETSBIBLIOTHEK CHEMNITZ. Downloaded on April 13,2022 at 15:13:17 UTC from IEEE Xplore. Restrictions apply.

• We present a new schedulability test for EDF-VD.
This schedulability test is equivalent to the one in
[2]; however, in contrast to it, our test can be easily
extended to more than one deadline scaling factor.

• To better accommodate large and small execution time
variations in HI mode, we propose a bi-level deadline
scaling consisting of two scaling factors and derive
schedulability conditions.

• We present two variants of the proposed technique
allowing for more accurate constant-time admission
control than approaches from the literature. The first
variant computes two independent scaling factors; the
second variant computes two related scaling factors.

• We analyze the admission control problem in the
context of MC systems and derive a number of re-
quirements that need to be met in order that new tasks
can be accepted without affecting the schedulability of
already running tasks.

B. Structure of the Paper

The rest of this paper is structured as follows. Related
work is discussed in Section II. Next, Section III explains
the task model and assumptions used. We shortly revisit the
algorithm wost-case reservations (WCR) in Section IV, which
can also be used for constant-time admission control in MC
settings. Section V discusses EDF-VD in detail and Section VI
presents our alternative schedulability test for EDF-VD, which
we extend for bi-level deadline scaling in Section VII. The
admission control problem in the context of MC systems is
discussed in Section VIII. Section IX presents experimental
results and Section X concludes the paper.

II. RELATED WORK

MC scheduling was first proposed under this name by
Vestal [9]. Baruah et al. later analyzed per-task priority as-
signments and the resulting response times [10]. In [1], Baruah
et al. proposed the EDF-VD algorithm to schedule a mix of
HI and LO tasks. As stated above, EDF-VD introduces two
operation modes and uses a priority-promotion scheme by
scaling deadlines of HI tasks. A speed-up factor for EDF-VD
was first obtained in [1] as (

√
5 + 1)/2. Later this speed-up

factor was improved to 4/3 [2].

For multiprocessors, a partitioned and a global scheduling
approach both based on EDF-VD were proposed in [11].
According to this work, partitioned behaves better than global
scheduling in the context of MC systems. Further, in [12],
Pathan studies global MC scheduling with task-level fixed
priorities and gives a schedulability test based on response
time analysis for more than two criticality levels.

A more flexible approach with per-task deadline scaling
was presented by Ekberg and Yi [8] [13]. However, this
algorithm has exponential complexity in its original form
and pseudo-polynomial complexity when approximated by a
heuristic. Therefore, it cannot be used in on-line settings where
scaling factors might need to be recomputed.

Recently, other improvements to EDF-VD were proposed.
In [14], Su and Zhu used an elastic task model [15] [16] to
improve resource utilization in MC systems. In [17], Zhao et
al. applied preemption thresholds [18] in MC scheduling in

order to better utilize the processing unit. Although [14] and
[18] improve resource-awareness in MC scheduling, they can-
not efficiently manage task sets with small and large variations
of execution demand in HI mode. A complete overview of
mixed-criticality systems is given in [19].

The approach presented in this paper aims to improve MC
scheduling for precisely that case. Note that the concepts in
this paper may also be combined with those in [14] and [18].

III. MODELS AND ASSUMPTIONS

We consider a multi-processor system where a set of MC
tasks are scheduled in a partitioned manner. That is, tasks
are assigned to specific processors. In normal operation, they
cannot be preempted and resumed on different processors.
However, tasks may be explicitly migrated/re-assigned to an-
other processor, e.g., in response to hardware failures or for
workload balancing.

We basically adopt the task model originally proposed in
[1]. We denote by τ the set of n independent sporadic tasks τi
that run on a given processor under preemptive uniprocessor
scheduling – to simplify we omit indexes identifying different
processors. The minimum separation between any two jobs or
instances of a τi is denoted by Ti and we assume implicit dead-
lines, i.e., ∀i : Di = Ti where Di is a task’s relative deadline.
There is no self-suspension, and context-switch overheads are
assumed to be negligible on the different processors.

In this paper, we are concerned with dual-criticality sys-
tems with two levels of criticality, namely LO and HI. The
criticality of a task τi is denoted by χi ∈ {LO,HI}. A
LO task is associated with its WCET CLO

i . Opposed to this,
a HI task is characterized by its optimistic WCET estimate
CLO

i and its conservative WCET estimate CHI
i , clearly being

CLO
i < CHI

i . We define Δui as the increase in utilization
from LO to HI mode by an individual HI task:

Δui =
CHI

i − CLO
i

Ti
. (1)

Basically, the system operates in two modes denoted by m:
LO and HI mode. In LO mode, HI tasks execute for no longer
than CLO

i , whereas these might require executing for up to
CHI

i in HI mode. Initially, we assume the system to be in LO
mode where all LO and HI tasks need to meet their deadlines.
As soon as a job of a HI task executes for longer than its CLO

i ,
the system switches to HI mode where only the HI tasks are
allowed to execute.

In the following, we define utilization parameters Um
χ :=

∑
χi=χ

Cm
i

Ti
where again χ,m ∈ {LO,HI}. Note that, among

the four potential criticality-to-mode combinations, only ULO
LO ,

ULO
HI and UHI

HI are defined. U
HI
LO does not exist since LO tasks

are dropped and, hence, do not run in HI mode.

IV. WORST-CASE RESERVATIONS

WCR is the most intuitive approach to schedule MC sys-
tems, which can be used for constant-time admission control.
However, it is also the most pessimistic. Under WCR, the
optimistic CLO

i of HI tasks is replaced by the conservative
CHI

i . If this simplified system is schedulable under EDF, the
original MC system is also schedulable. Hence WCR allows
successfully scheduling a set of MC tasks if (2) holds [20]:

ULO
LO + UHI

HI ≤ 1. (2)

101

Authorized licensed use limited to: UNIVERSITAETSBIBLIOTHEK CHEMNITZ. Downloaded on April 13,2022 at 15:13:17 UTC from IEEE Xplore. Restrictions apply.

The WCR approach assumes that HI tasks always require
executing for CHI

i . This is pessimistic since, in LO mode, HI
tasks only require CLO

i amount of execution.

V. THE EDF-VD ALGORITHM

EDF-VD [1] is an extension of the EDF algorithm [20]
to MC systems. Based on EDF-VD, we can also implement
constant-time admission control. Its basic idea is to promote
HI jobs in LO mode by shortening their deadlines so as to
reserve processor capacity for the HI mode. That is, D′

i = xTi

with x ∈ (0, 1) for all i where χi = HI . D′
i is referred to as

virtual deadline and is used instead of Di – the real deadline
– to schedule HI tasks in LO mode. The parameter x is the
so-called deadline scaling factor. There is no deadline scaling
for LO tasks such that they are scheduled using their Di. In
HI mode, HI tasks start being scheduled according to their real
deadlines Di whereas LO tasks are discarded. In both LO and
HI mode, tasks are scheduled under the EDF algorithm.

From the above description, in order that EDF-VD be
schedulable, the LO and HI tasks need to be schedulable with
their corresponding CLO

i under EDF in LO mode. Similarly,
in HI mode, the HI tasks also need to be schedulable with their
corresponding CHI

i under EDF. As a result, the following two
schedulability conditions are necessary:

ULO
LO + ULO

HI ≤ 1, (3)

UHI
HI ≤ 1. (4)

In [2], Baruah et al. also obtained a sufficient schedulabil-
ity condition for EDF-VD in the form of a utilization bound:
max

(
ULO

LO + ULO
HI , U

HI
HI

) ≤ 3/4. They also proposed a more
accurate schedulability test based on whether a scaling factor
x can be obtained or not [2]. To this end, a lower and an upper
bound on x are computed:

ULO
HI

1− ULO
LO

≤ x, (5)

x ≤ 1− UHI
HI

ULO
LO

. (6)

If the value of x obtained with (5) is less than or equal to
the value obtained with (6), then it is possible to find a valid
x for the considered system and EDF-VD is schedulable.

VI. NEW SCHEDULABILITY TEST FOR EDF-VD

In this section, we discuss a new schedulability test for
EDF-VD. This consists of an alternative upper bound on
x, which was previously presented in [21] and which we
formalize in Theorem 1. In contrast to [2], the proposed test
can be easily extended to more than one deadline scaling factor
and constitutes the basis of our bi-level deadline scaling.

Theorem 1: A set τ of MC tasks as defined in Section III
is schedulable under EDF-VD, if – apart from (3), (4), and
(5) – the following condition holds for 0 < x < 1:

ΔU

1− x
≤ 1, (7)

where ΔU is given by
∑

χi=HI

Δui and Δui is defined in (1).

Proof: Since (5) holds for 0 < x < 1, we obtain the
following expression:

ULO
LO +

ULO
HI

x
≤ 1, (8)

which means that all LO and all HI tasks can be scheduled
in LO mode, where HI tasks are scheduled within their virtual
deadlines.

Let us now consider that the system switches to HI mode at
time t′. Note that (4) guarantees schedulability from the point
in time t′′ onwards, at which the processor first idles after t′.
As a result, if a deadline is missed, this can only happen in
the interval [t′, t′′].

If all jobs would run for at most CLO
i in [t′, t′′], note

that (8) guarantees that they finish executing at latest by their
corresponding virtual deadlines and, hence, no deadline would
be missed in [t′, t′′]. Recall that only jobs of HI tasks run from
t′ onwards.

Let us consider an arbitrary job of an arbitrary task τj in
[t′, t′′]. Further, let this job be released at time tj with t′ ≤ tj ≤
t′′. As stated above, if all jobs run for at most CLO

i in [t′, t′′],
this τj’s job will finish executing at latest by tj + xTj . This
implies that all higher-priority jobs, i.e., jobs whose (absolute)
real deadlines are less than or equal to tj + Tj , must have
finished executing prior to tj + xTj .

In the worst case, any increase in execution demand by
τj’s or its higher-priority jobs will have to be scheduled in
[tj + xTj , tj + Tj], i.e., within an interval of length Tj − xTj

starting from tj+xTj . Again, all jobs with higher priority than
this τj’s job will have finished executing prior to tj + xTj , if
they run for at most CLO

i . As a consequence, the problem of
guaranteeing schedulability in [t′, t′′] reduces to proving that
the worst-case increase in execution demand by each job in
[t′, t′′] of each τj can be accommodated within an interval
of length Tj − xTj starting from the corresponding absolute
virtual deadline.

Towards this, we can model the worst-case increase in
execution demand by any τi in [t′, t′′] as a task τ̃i with
execution demand C̃i = CHI

i − CLO
i , period T̃i = Ti, a

relative deadline D̃i = Ti − xTi, and initial phase or release
time φ̃i ∈ [0, Ti] – clearly, at time t′, not necessarily all φ̃i
are zero. We can use the concept of demand bound function
[22] to compute the worst-case increase in execution demand
in an interval of length t− t′. We can guarantee schedulability
in [t′, t′′], if the demand bound function for all τ̃i is always
less than or equal to the length of the interval t − t′ with
t′ ≤ t ≤ t′′:

∑
χi=HI

max

(
0,

⌊
t− t′ − D̃i − φ̃i

T̃i

⌋
+ 1

)
· C̃i ≤ t− t′. (9)

However, since we cannot know the exact values of φ̃i, we
opt for a safe approximation of (9). This consists in applying
the density test [23] on the task set of all τ̃i:

∑
χi=HI

C̃i

D̃i

=
ΔU

1− x
≤ 1. (10)

Note that, if (10) holds, (9) also holds for any t−t′ and any
values of φ̃i. This implies that we can always accommodate the
worst-case increase in execution demand by any τi’s job and
its higher-priority jobs within an interval of length Ti − xTi.
The theorem follows.

The following lemma proves that the schedulability test
given in Theorem 1 is equivalent to that of Baruah et al. [2].

102

Authorized licensed use limited to: UNIVERSITAETSBIBLIOTHEK CHEMNITZ. Downloaded on April 13,2022 at 15:13:17 UTC from IEEE Xplore. Restrictions apply.

Lemma 1: If a set τ of MC tasks as defined in Section III
is schedulable by the schedulability test of Baruah et al. [2],
it is also schedulable by Theorem 1 and vice versa.

Proof: For τ to be schedulable by Baruah et al., the value
of x obtained with (5) has to be less than or equal to the value
obtained with (6). Similarly, if the system is schedulable by
Theorem 1, the value of x obtained with (5) has to be less
than or equal to the value obtained with (7).

The proof of equivalence consists in showing that (5) is
always less than or equal to (7), if it is also less than or equal
to (6) and vice versa:

ULO
HI

1− ULO
LO

≤ 1− UHI
HI + ULO

HI

⇔ ULO
HI − ULO

HI (1− ULO
LO)

1− ULO
LO

≤ 1− UHI
HI

⇔ ULO
HI U

LO
LO

1− ULO
LO

≤ 1− UHI
HI

⇔ ULO
HI

1− ULO
LO

≤ 1− UHI
HI

ULO
LO

.

As a result, both these schedulability tests are proven to be
equivalent to one another and the lemma follows.

VII. BI-LEVEL DEADLINE SCALING

EDF-VD outperforms the WCR approach. However, it does
not consider the case where HI tasks with small and large
variations of execution demand need to be jointly scheduled.
In this section, to overcome this problem, we propose a bi-
level deadline scaling scheme. We introduce an additional
independent scaling factor y to EDF-VD and then consider
the case of two related scaling factors. For both these cases,
we derived schedulability tests that allow for a constant-time
admission control as discussed in Section VIII.

A. Two Scaling Factors

We divide the set of HI tasks into two disjoint subsets τ̌ and
τ̂ on the considered processor such that the following holds
for all τi ∈ τ̌ and all τj ∈ τ̂ :

Δui < Δuj . (11)

In other words, the increase in utilization produced by
tasks in τ̂ is greater than that of tasks in τ̌ . For classifying
tasks either into τ̌ or τ̂ , a threshold has to be defined such that
(11) always holds. Later we perform a set of experiments to
evaluate how to properly choose this threshold.

We rewrite (3) and (4) to consider the new notation
resulting from these two subsets of HI tasks:

ULO
LO + ǓLO

HI + ÛLO
HI ≤ 1, (12)

ǓHI
HI + ÛHI

HI ≤ 1, (13)

where ǓLO
HI and ÛLO

HI denote the utilization in LO mode of

respectively τ̌ and τ̂ . Similarly, ǓHI
HI and ÛHI

HI denote τ̌ ’s and
τ̂ ’s utilization in HI mode.

When switching from LO to HI mode, tasks in τ̂ have a
higher computation demand than tasks in τ̌ . Hence we propose
reserving more computation capacity in LO mode for τ̂ than
for τ̌ . This is achieved by introducing a second scaling factor
such that virtual deadlines in τ̂ are given by yTi and in τ̌ by
xTi, where y and x are the scaling factors. Note that 0 < y ≤

x < 1 must hold. Analogous to (8), in LO mode, we have the
following condition:

ULO
LO +

ǓLO
HI

x
+
ÛLO

HI

y
≤ 1. (14)

If (14) holds, it can be guaranteed that all HI tasks execute
for CLO

i time within their corresponding virtual deadlines. We
reshape (14) to get a lower bound on y depending on x:

ÛLO
HI

1− ULO
LO −

ǓLO
HI
x

≤ y. (15)

Now, to obtain an upper bound on y, we first need to extend
Theorem 1 to the case of two deadline scaling factors.

Theorem 2: Consider a set τ of MC tasks as defined in
Section III, whose HI tasks are classified into two disjoint
subsets τ̌ and τ̂ , for which (12) and (13) hold. The set τ is
schedulable under EDF-VD, if x and y can be found such that
(14) and the following condition hold:

ΔǓ

1− x
+
ΔÛ

1− y
≤ 1, (16)

where 0 < y ≤ x < 1, ΔǓ is equal to
∑

i∈τ̌ Δui, ΔÛ is
given by

∑
i∈τ̂ Δui, and Δui is defined as per (1).

Proof: If (14) holds for given values of x and y where
0 < y ≤ x < 1, all LO tasks and all HI tasks can be scheduled
in LO mode. The HI tasks are scheduled within their virtual
deadlines.

Let us now consider that the system switches to HI mode at
time t′. Note that (13) guarantees schedulability from the point
in time t′′ onwards, at which the processor first idles after t′.
As a result, if a deadline is missed, this can only happen in
the interval [t′, t′′].

If all jobs would run for at most CLO
i in [t′, t′′], note that

(14) guarantees that they finish executing at latest by their
corresponding virtual deadlines and, hence, no deadline would
be missed in [t′, t′′]. Recall again that only jobs of HI tasks
run from t′ onwards.

Similar as for Theorem 1’s proof, let us consider an
arbitrary job of an arbitrary task τj released at time tj with
t′ ≤ tj ≤ t′′. Further let τj belong to τ̌ . If all jobs run for
at most CLO

i in [t′, t′′], this τj’s job will finish executing at
latest by tj + xTj . This implies that all higher-priority jobs,
i.e., jobs whose (absolute) real deadlines are less than or equal
to tj + Tj , must have finished executing prior to tj + xTj .

In the worst case, any increase in execution demand by
τj’s or its higher-priority jobs will have to be scheduled in
[tj + xTj , tj + Tj], i.e., within an interval of length Tj − xTj

starting from tj+xTj . Again, all jobs with higher priority than
this τj’s job will have finished executing prior to tj + xTj ,
if they run for at most CLO

i . Note that the above analysis
also holds true, if τj belongs to τ̂ . In the latter case, clearly,
x needs to be replaced by y. The problem of guaranteeing
schedulability in [t′, t′′] reduces to proving that the worst-case
increase in execution demand by each job in [t′, t′′] of each τj
can be accommodated within an interval of length Tj − xTj

if τj ∈ τ̌ or an interval of length Tj − yTj if τj ∈ τ̂ , starting
from the corresponding absolute virtual deadline.

We can model the worst-case increase in execution demand
by any τi in [t′, t′′] as a task τ̃i with execution demand C̃i =

103

Authorized licensed use limited to: UNIVERSITAETSBIBLIOTHEK CHEMNITZ. Downloaded on April 13,2022 at 15:13:17 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Algorithm twoFactors

Require: τ , τ̂ , τ̌ , and step
1: if ULO

LO + ÛLO
HI + ǓLO

HI > 1 then
2: Return (“not schedulable”)
3: else if ÛHI

HI + ǓHI
HI > 1 then

4: Return (“not schedulable”)
5: end if
6: x = step
7: while x < 1 do
8: Compute ymin by (15)
9: Compute ymax by (18)
10: if ymin ≤ ymax and ymin > 0 and ymax < 1 then
11: Return (“schedulable”)
12: end if
13: x = x + step
14: end while
15: Return (“not schedulable”)

CHI
i −CLO

i , period T̃i = Ti, a relative deadline D̃i = Ti−xTi

or D̃i = Ti − yTi depending on whether τi belongs to τ̌ or
τ̂ , and initial phase or release time φ̃i ∈ [0, Ti]. We can again
use the concept of demand bound function [22] to compute
the worst-case increase in execution demand in an interval of
length t− t′. We can guarantee schedulability in [t′, t′′], if the
demand bound function for all τ̃i is always less than or equal
to the length of the interval t− t′ with t′ ≤ t ≤ t′′ – see again
(9). Since we cannot know the exact values of φ̃i, we again
apply the density test [23] on the task set of all τ̃i:
∑

χi=HI

C̃i

D̃i

=
∑
i∈τ̌

Δui

1− x
+
∑
i∈τ̂

Δui

1− y
=
ΔǓ

1− x
+
ΔÛ

1− y
≤ 1. (17)

Note that, if (17) holds, we can always accommodate the
worst-case increase in execution demand by any τi’s job and
its higher-priority jobs within an interval of length Ti−xTi if
τi ∈ τ̌ or an interval of length Ti − yTi if τi ∈ τ̂ . As a result,
the theorem follows.

We can now reshape (16) to obtain an upper bound on y
as a function of x:

1− ΔǓ
1−x

−ΔÛ
1− ΔǓ

1−x

≥ y. (18)

The fact that 0 < x < 1 holds can be used to test
schedulability of the system with two scaling factors. To this
end, we propose algorithm twoFactors – see Alg. 1. This
algorithm increases x in discrete steps from a value close to
0 towards 1. For each step, ymin is computed using (15) and
ymax is computed using (18). If ymin is less than or equal
to ymax, then the task set is schedulable – x, ymin and ymax

have valid values.

On the other hand, if x is increased up to 1 and ymin ≤
ymax does not hold for any of the steps, the task set is deemed
unschedulable. Although Alg. 1 systematically searches the
entire parameter space, note that its accuracy depends on the
choice of step. For a given application, if the task set is
schedulable with two scaling factors, a wrong choice of step
may lead to a false negative result.

Finally, note that we can proceed as for Theorem 2 and add
a third or even more additional scaling factors up to n, i.e., one
per task. Even though the resulting schedulability test is safe,

Fig. 1. Bounds (15) and (18) for the task set of Table I

we will still only have one equation and three or n unknowns,
depending on whether three or n scaling factors are used. This
does not increase the complexity, but the time constant of the
resulting algorithm in an non-negligible manner.

Task χi Ti (ms) CLO
i (ms) CHI

i (ms)

τ1 LO 10 1 -

τ2 HI 20 2 13

τ3 HI 40 13 14

TABLE I. TASK PARAMETERS

An illustrative example. We consider a set of MC tasks con-
sisting of one LO task τ1 and two HI tasks τ2 and τ3 as shown
in Table I. To test the schedulability under the original EDF-
VD, we first obtain ULO

LO = 0.1, ULO
HI = 0.425 and UHI

HI = 1.
Then, the lower bound on x becomes 0.425/(1−0.1) ≈ 0.472
as per (5). Similarly, the upper bound on x is (1− 1)/0.1 = 0
according to (6) and 1− 1 + 0.425 = 0.425 according to (7).
Independently of whether (6) or (7) is used, the upper bound
on x is below its lower bound rendering the set of solutions
for x empty and, hence, the task set of Table I unschedulable.

Fig. 1 shows the outcome of twoFactors applied to this
example. More precisely, lower (15) and upper (18) bounds
on y are plotted as a function of x. The algorithm twoFactors
returns schedulable as soon it finds a point between these two
bounds, i.e., a valid combination of the two scaling factors x
and y. Note that the line y = x does not cross the solution
space between ymin and ymax in Fig. 1. This illustrates the
fact that a uniform deadline scaling – as originally proposed
for EDF-VD – is unable to schedule task sets such as the one
of Table I. Here, assigning τ3 and τ2 virtual deadlines equal to
28 and 7, for example, makes the above task set schedulable.
This corresponds to x = 0.7 and y = 0.35 as indicated by the
marker inside the solution space in Fig. 1.

Clearly, the above example could have been solved using
the schedulability test of Ekberg and Yi [8] [13]. However,
as mentioned above, this latter schedulability test has at best
pseudo-polynomial complexity and is, hence, not suitable for
admission control.

Comparison with the original EDF-VD. For step → 0,
we demonstrate that twoFactors strictly dominates the original
EDF-VD algorithm [2], i.e., the case of uniform deadline
scaling. Later, in Section IX-B, we show that step = 0.01 is
a sufficiently good approximation of the limit case step→ 0.

Intuitively, the proposed deadline scaling based on two
independent scaling factors is a more general case of the

104

Authorized licensed use limited to: UNIVERSITAETSBIBLIOTHEK CHEMNITZ. Downloaded on April 13,2022 at 15:13:17 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 Algorithm relFactors

Require: τ , τ̂ , τ̌ , and α
1: if ULO

LO + ÛLO
HI + ǓLO

HI > 1 then
2: Return (“not schedulable”)
3: else if ÛHI

HI + ǓHI
HI > 1 then

4: Return (“not schedulable”)
5: end if
6: Compute xmin by (20)
7: Compute xmax by greatest positive real root < 1 of (22)
8: if xmin ≤ xmax and xmin > 0 and xmax < 1 then
9: Return (“schedulable”)
10: else
11: Return (“not schedulable”)
12: end if

uniform deadline scaling by the original EDF-VD algorithm.
The following lemma formalizes this statement.

Lemma 2: Eq. (15) and (18) reduce to (5) and (7) respec-
tively for the case y = x.

Proof: We prove that Eq. (15) reduces to (5) for y = x:

ÛLO
HI

1− ULO
LO −

ǓLO
HI
x

≤ x,

⇔ ÛLO
HI ≤ (1− ULO

LO)x− ǓLO
HI

⇔ ÛLO
HI + ǓLO

HI

1− ULO
LO

≤ x.

Since ÛLO
HI + ǓLO

HI is the sum of the LO utilizations of τ̌
and τ̂ , which are two disjoint subsets containing all HI tasks in
τ , ÛLO

HI +ǓLO
HI = ULO

HI holds. Similarly, we have that Eq. (18)
reduces to (7) for y = x:

1− ΔǓ
1−x

−ΔÛ
1− ΔǓ

1−x

≥ x

⇔ 1− ΔǓ

1− x
−ΔÛ ≥

(
1− ΔǓ

1− x

)
x

⇔ − ΔǓ

1− x
+ x

ΔǓ

1− x
−ΔÛ ≥ x− 1

⇔ −(x− 1)ΔǓ +ΔÛ
1− x

≥ x− 1

⇔ ΔǓ +ΔÛ

1− x
≤ 1.

Since ΔǓ = ǓHI
HI − ǓLO

HI , and ΔÛ = ÛHI
HI − ÛLO

HI ,

ΔU = ΔǓ + ΔÛ holds and we finally obtain ΔU
1−x ≤ 1.

The above lemma shows that the algorithm twoFactors
reduces to computing (5) and (7) for the special case y = x.
By Lemma 1 and Theorem 1, we know that this is equivalent
to the original schedulability test of [2]. This evidences that
twoFactors is more general than and, hence, strictly dominates
the original EDF-VD algorithm.

B. Related Scaling Factors

Although the technique presented above is safe, it requires
iterating over x until valid values of y are obtained or the task
set is rendered unschedulable. Clearly, the performance of the
resulting twoFactors depends on the parameter step by which
x is incremented at every iteration – see Alg. 1.

In this section, we analyze a variant of this approach which
does not require iterating over x. This consists in making y =
αx where α is a real constant value and 0 < α ≤ 1 holds. As
a consequence, (14) becomes:

ULO
LO +

ǓLO
HI

x
+
ÛLO

HI

αx
≤ 1, (19)

which can be reshaped to obtain a lower bound for x:

ǓLO
HI

x
+
ÛLO

HI

αx
≤ 1− ULO

LO

⇔ αǓLO
HI + ÛLO

HI

αx
≤ 1− ULO

LO

⇔ αǓLO
HI + ÛLO

HI

α(1− ULO
LO)

≤ x. (20)

In a similar manner, replacing y by αx in (16) yields:

ΔǓ

1− x
+

ΔÛ

1− αx
≤ 1, (21)

which again can be solved for x as follows:

(1− αx)ΔǓ + (1− x)ΔÛ

(1− x)(1− αx)
≤ 1,

⇔ (1− αx)ΔǓ + (1− x)ΔÛ ≤ (1− x)(1− αx)

⇔ ΔǓ − αxΔǓ +ΔÛ − xΔÛ ≤ 1− x− αx+ αx2

⇔ −αx2+(α− αΔǓ−ΔÛ + 1)x ≤ 1−ΔǓ−ΔÛ . (22)
Note that, for any schedulable task set, ΔǓ + ΔÛ ≤ 1

must hold, i.e., the increase in utilization by HI tasks can never
be more than 1 for the task set to be schedulable. (Note that
if the latter does not hold, (13) will neither hold). In addition,
since 0 < α ≤ 1 holds, the factor α−αΔǓ −ΔÛ +1 in (22)
is positive and greater than α. As a result, the closer x gets to
1, the greater |αx2| and, hence, the harder it is to fulfill (22).
For this reason, the greatest, positive, real root of (22) that is
less than 1 constitutes an upper bound on x. If this root is also
greater than the value given by (20), the set of MC tasks is
schedulable.

Based on the previous analysis, we propose a second algo-
rithm called relFactors – see Alg. 2. This algorithm computes
xmin using (20) and xmax obtaining the greatest, positive, real
root of (22). If xmin is less than or equal to xmax, then the
task set is schedulable – xmin and xmax can be returned at
this stage. If xmin is equal to or less than 0 or xmax is equal to
or greater than 1, then the task set is rendered unschedulable.

Comparison with the original EDF-VD. The proposed
relFactors is also more general than uniformly scaling dead-
lines as in the original EDF-VD. The following lemma for-
malizes the latter statement.

Lemma 3: Eq. (20) and (22) reduce to (5) and (7) respec-
tively for the case α = 1.

Proof: Considering that ULO
HI = ǓLO

HI + ÛLO
HI , it can

be easily seen that (20) leads to (5) when replacing α = 1.
We now prove that (22) leads to (7) when replacing α = 1.
Towards this, let us further consider that UHI

HI = ǓHI
HI + ÛHI

HI .
So, (22) can be reshaped to:

−x2 + (1−ΔǓ −ΔÛ + 1)x ≤ 1−ΔǓ −ΔÛ ,
which has two roots: 1−ΔǓ −ΔÛ and 1. As stated above,
we have to take the greatest positive root that is less than 1.

105

Authorized licensed use limited to: UNIVERSITAETSBIBLIOTHEK CHEMNITZ. Downloaded on April 13,2022 at 15:13:17 UTC from IEEE Xplore. Restrictions apply.

In this case, this is clearly 1−ΔǓ −ΔÛ, which results in (7)

considering that ΔU = ΔǓ + ΔÛ holds.

C. Complexity Analysis

Since ULO
LO , Ǔ

LO
HI , Ǔ

HI
HI , Û

LO
HI and ÛHI

HI
need to be com-

puted for a set τ of nMC tasks, both twoFactors and relFactors
– see Alg. 1 and Alg. 2 respectively – have linear complexity

O(n). For twoFactors, note that the number of iterations of the

while-loop is upper bounded by �1/step	 which is a constant
for a fixed value of step. How to choose this parameter is

discussed later in the experimental evaluation.

Finally, note that twoFactors can be rewritten such that its

while-loop has an O(log n) instead of an O(n) complexity,

e.g., applying binary search. The overall complexity is still
O(n) due to the need of computing the utilization parameters,
but its time-constant will be reduced in a considerable manner.

VIII. THE ADMISSION CONTROL PROBLEM

For a new task τnew
to be accepted or rejected in an

already running MC system, a schedulability test needs to
be performed. If the task passes the test, this results in a
new deadline scaling factor – or two such factors. As a
consequence, virtual deadlines of the HI tasks in the system
will change, thus, altering scheduling conditions, which needs

to be analyzed carefully.

In this section, we discuss a number of conditions to
implement a constant-time admission control algorithm and

guarantee a safe transition from τ to τ ∪ {τnew}, i.e., the set
of MC tasks including τnew.

Constant-time implementation. The state-of-the-art ap-
proaches, i.e., WCR and the original EDF-VD [2], as well
as the proposed twoFactors and relFactors require computing
utilization parameters. Note again that the algorithm of [8] and
[13] cannot be used for constant-time admission control since

it incurs pseudo-polynomial complexity.

WCR computes ULO
LO and UHI

HI
, whereas the original EDF-

VD additionally computes ULO
HI
. The proposed twoFactors and

relFactors compute ǓLO
HI , Ǔ

HI
HI , Û

LO
HI and ÛHI

HI
instead of just

ULO
HI and U

HI
HI . Clearly, this requires a linear complexity; how-

ever, the admission control algorithm can keep the cumulated
utilization values in memory. When a new task τnew is added
to the system, it just needs to update these values depending
on χnew – the criticality of the new task – which requires a
constant instead of linear time.

If χnew = HI and either the proposed twoFactors or
relFactors are used, the admission control algorithm further

computes Δunew =
CHI

new−CLO
new

Tnew
. If Δunew is less than a pre-

configured threshold – we discuss how to choose this threshold
in our experimental evaluation, the admission control algorithm
updates ǓLO

HI and ǓHI
HI ; otherwise it updates Û

LO
HI and ÛHI

HI .

To allow for constant complexity, the EDF-VD scheduler
should be implemented such that two conditions are met.
First the deadline scaling factor x is kept in memory – for
twoFactors x and y should be stored in memory. Second, the
virtual deadline for any HI task in LO mode xTi should be
computed at its jobs’ release times. In the case of twoFactors
or relFactors, xTi, yTi or αxTi should be computed at release

time depending on whether the HI task belongs to τ̌ or τ̂ .
This way, when a new task is accepted in the system, it
suffices to update the scaling factors – no need to update virtual
deadlines – leading to a constant-time complexity.

Safe admission control. In contrast to WCR, an admission
control algorithm based on deadline scaling needs to be
analyzed carefully. To the best of our knowledge, this is the
first work dealing with this problem. In the following, due
to space limitation, we consider the case of uniform deadline
scaling. Note that the presented analysis extends to bi-level
deadline scaling in a straightforward manner – as Theorem 2
easily extends to more than two scaling factors.

If a τnew can be accepted in the system, a new deadline
scaling factor xnew could be found for which τ ∪ {τnew} is
schedulable. We also know that τ is schedulable with the old
scaling factor xold. However, also the transition between τ and
τ ∪ {τnew} needs to be guaranteed schedulable. For this, all
possible cases should be considered: (i) the system is stable in
HI mode and the χnew = LO, (ii) the system is stable in HI
mode and the χnew = HI , (iii) the system is in stable in LO
mode and the χnew = LO, (iv) the system is in stable in LO
mode and χnew = HI , and (v) the system is at a transition
between LO and HI mode.

In case (i), τnew will not be able to run until the system
returns to LO mode, while τnew can start executing without
delay after being accepted in case (ii). The schedulability
in case (ii) is guaranteed by (4). In case (i) and (ii), when
the system returns to LO mode, xnew will further guarantee
schedulability.

In case (iii), we know from (5) that the following condition
holds, i.e., the system with xold is feasible:

ULO
LO +

ULO
HI

xold
≤ 1, (23)

and since τnew can be accepted, ULO
LO +

CLO
new

Tnew
+

ULO
HI

xnew
≤ 1

must also hold leading to:

ULO
LO +

ULO
HI

xnew
≤ 1. (24)

From the discussion above, note that once xnew has been
computed, all new job releases of HI tasks will be updated
with virtual deadlines xnewTi. Hence, for some time, some
of the HI tasks have old and some new virtual deadlines. We
denote by τ̄ the set of HI tasks with xoldTi deadlines and by
τ̆ the set of HI tasks with xnewTi deadlines where τ̄ and τ̆
are disjoint subsets containing the totality of the HI tasks in
τ . Eqs. (23) and (24) can be rewritten as follows:

ULO
LO +

ŪLO
HI + ŬLO

HI

xold
≤ 1, (25)

ULO
LO +

ŪLO
HI + ŬLO

HI

xnew
≤ 1, (26)

where ŪLO
HI and ŬLO

HI are the LO utilizations of τ̄ and τ̆

respectively. Since both (25) and (26) hold, ULO
LO +

ŪLO
HI

xold
+

ŬLO
HI

xnew
≤ 1 also holds. As a result, tasks in τ will be schedulable

with a combination of xoldTi and xnewTi deadlines provided
that τnew does not run. If τnew starts running, only the xnewTi

deadlines are guaranteed schedulable.

106

Authorized licensed use limited to: UNIVERSITAETSBIBLIOTHEK CHEMNITZ. Downloaded on April 13,2022 at 15:13:17 UTC from IEEE Xplore. Restrictions apply.

For this reason, the first release of τnew has to be postponed
until all HI tasks in the system have virtual deadlines equal to
xnewTi. Let us assume that the admission control algorithm
accepts τnew and, hence, computes xnew at time t. If dmax

denotes the latest absolute virtual deadline of an active HI
job at time t, τnew’s first release will be delayed by a time
equal to dmax − t. After dmax, note that all HI tasks will
have virtual deadlines equal to xnewTi and, hence, it is safe
to start executing τnew. In this transition between τ and τ ∪
{τnew}, if the system remains in the LO mode, schedulability
is guaranteed by (25) and (26).

Since the admission control algorithm has found xnew,
switches to HI mode are safe after dmax. However, we need
to analyze what happens if the system switches to HI mode
between t and dmax. Here, from (7), we have that the following
two conditions hold – since xold and xnew are valid:

ΔU

1− xold
≤ 1, (27)

ΔU

1− xnew
≤ 1. (28)

If the system switches to HI mode between t and dmax, some
of the HI tasks will have old and some new virtual deadlines.
Again, let us denote by τ̄ the set of HI tasks with xoldTi
deadlines and by τ̆ the set of HI tasks with xnewTi deadlines.
Since τ̄ and τ̆ are disjoint subsets containing all HI tasks, (27)
and (28) can be rewritten as:

ΔŪ

1− xold
+

ΔŬ

1− xold
≤ 1, (29)

ΔŪ

1− xnew
+

ΔŬ

1− xnew
≤ 1, (30)

where ΔŪ = ŪHI
HI − ŪLO

HI is the increase in utilization of τ̄ ,
and ΔŬ = ŬHI

HI − ŬLO
HI the increase in utilization of τ̆ . Here

(29) and (30) indicate that ΔŪ
1−xold

+ ΔŬ
1−xnew

≤ 1 also holds
and, thus, switching to HI mode in [t, dmax] is safe according
to Theorem 2.

In case (iv), we know that (23) holds. On the other hand,

since ULO
LO +

ULO
HI

xnew
+

CLO
new

xnewTnew
≤ 1 holds as τnew can be

accepted, (24) also holds. As for case (iii), the first release
of τnew in the system will be postponed until all HI tasks in
the system have virtual deadlines equal to xnewTi, i.e., until
dmax, where dmax is the latest absolute virtual deadline of an
active HI job at τnew’s time of admission t.

Similar to case (iii), we need to analyze what happens if the
system switches to HI mode between t and dmax. From (7), we
know that (27) and the following condition hold guaranteeing
safe switches to HI mode before t and after dmax:

ΔU +Δunew

1− xnew
≤ 1. (31)

Let τ̄ represent the set of HI tasks with xoldTi deadlines
and τ̆ the set of HI tasks with xnewTi deadlines in [t, dmax].
Again, these are disjoint subsets containing the totality of the
HI tasks in τ . Considering that CLO

new < CHI
new and that τnew

does not run in [t, dmax], i.e., Δunew = 0 in [t, dmax], (27)
and (31) can again be rewritten as (29) and (30) respectively.

These indicate that ΔŪ
1−xold

+ ΔŬ
1−xnew

≤ 1 holds and, hence,
switching to HI mode in [t, dmax] is safe as per Theorem 2.

Finally, if the system switches to HI mode in [t, dmax],
τnew must wait until the point in time at which the processor

first idles, which is also the situation in case (v). From the
point in time at which the processor idles, schedulability is
guaranteed by (4).

The MC system should clearly tolerate the delay incurred
by the admission control algorithm. For example, in the case
of workload balancing, τnew will have to continue on its old
processor until it can start running on the new processor. Sim-
ilarly, if task migration is performed in response to hardware
errors, these have to permit the above mentioned delay.

IX. EXPERIMENTAL EVALUATION

We evaluate the performance of the proposed bi-level
deadline scaling. The two variants, with independent scaling
factors and with related scaling factors, are compared against
the WCR and the original EDF-VD algorithm (i.e., with the
algorithms from the literature that can be used for constant-
time admission control).

A. Test Data

In this section, we explain how we obtained test data for
our experiments. The description below is common to all
curves presented in the paper. Details concerning a specific
curve will be explained as it becomes necessary. We use the
algorithm UUniFast [24] to generate task sets for a varying
LO utilization, i.e., for a varying ULO

LO + ǓLO
HI + ÛLO

HI . A total
number of 250,000 different task sets were created for each
of the curves shown below. In our experiments we consider
task sets with 10 tasks respectively, where every time half of
the tasks are LO and half HI tasks. Out of the HI tasks 80%
belong to τ̌ and 20% to τ̂ . That is, for 10 tasks per set, |τ̌ | = 4
and |τ̂ | = 1, i.e., only one task experiences a large increase of
computation demand in HI mode.

B. Configuring twoFactors

As shown in Alg. 1, twoFactors requires a parameter called
step. This variable determines the increase of x in each
iteration of the while-loop. If step is small, twoFactors will
require more time to run; however, its accuracy will be higher.
On the other hand, if step is set to be large, twoFactors will
run faster but it will have less accuracy.

In this section, we perform experiments to investigate
what values are meaningful for step. For this purpose, let
us consider Fig. 2. Test data was created as described in
Section IX-A, where Δui

ui
of tasks in τ̌ are uniformly generated

in the interval (0, 0.1]. Here, Δui is defined in (1) and

ui :=
CLO

i

Ti
. That is, tasks in τ̌ experience up to 10% more

execution demand in HI mode. Tasks in τ̂ have 3 times more
execution demand in HI mode.

Clearly, for step = 0.1, twoFactors has less accuracy than
for step = 0.01 or step = 0.001 as it can be observed in Fig. 2.
However, for step = 0.1, the while-loop is executed 10 times
– see Alg. 1, whereas for 0.01 and step = 0.001 it is executed
100 and 1,000 times respectively. Further there is almost no
improvement from step = 0.01 to step = 0.001. Therefore,
for our remaining experiments, we choose step = 0.01 for
twoFactors. Note that this choice makes twoFactors be 100
time slower than the original EDF-VD. However, as discussed
in Section VII-C, twoFactors can be speed up in a considerable
manner by using binary search.

107

Authorized licensed use limited to: UNIVERSITAETSBIBLIOTHEK CHEMNITZ. Downloaded on April 13,2022 at 15:13:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. twoFactors: different step for n = 10

Fig. 3. relFactors: different α for n = 10

C. Configuring relFactors

The algorithm relFactors requires a parameter named α
which establishes the relation between the two scaling factors
– see Alg. 2. As discussed previously, when α gets closer to 1,
the performance of relFactors gets closer to that of the original
EDF-VD algorithm.

In this section, we perform experiments to evaluate possible
values of α. For this, let us consider Fig. 3. Again, test data
was created as described in Section IX-A, where tasks in τ̌
experience up to 10% more execution demand and tasks in τ̂
experience 3 times more execution demand in HI mode.

From Fig. 3, we can observe that α = 0.7 delivers the
best results. Probably, one would expect a better performance
of relFactors for α = 0.3, i.e., for a smaller α. However, a
decreasing α leads to shorter virtual deadlines for tasks in τ̂
and, hence, these will stop being schedulable from a given
point onwards. For our following experiments, we use α =
0.7 obtained in an empirical manner. An optimum value of α
clearly depends on task parameters and, hence, will vary from
task set to task set remaining an open problem.

D. Comparison with WCR and EDF-VD

In this section we compare the proposed algorithms with
WCR and EDF-VD with respect to schedulability. That is, for
a number of task sets, we compare how many of them can be
successfully scheduled by the different algorithms. In other
words, algorithms with better schedulability curves will be
able to accommodate more new tasks in an admission control
setting.

Test data was created again as described in Section IX-A,
where as before tasks in τ̌ require in HI mode up to 10%

Fig. 4. Schedulability curves for
Δui
ui

= 3 ∀ τi ∈ τ̂ and n = 10

Fig. 5. Schedulability curves for
Δui
ui

= 3 ∀ τi ∈ τ̂ and n = 50

additional execution demand. The additional execution demand
of tasks in τ̂ is varied for the different curves.

In Fig. 4 and 5, we compare algorithms for the case where
tasks in τ̂ require 3 times more execution demand in HI
mode. The proposed algorithms twoFactors and relFactors both
outperform EDF-VD, where twoFactors has a slightly better
performance than relFactors. In a LO utilization interval from
80% to 95%, we can see that the proposed algorithms allow
around 20% more schedulatility for n = 10 – see Fig. 4 – and
around 40% more schedulability for n = 50 – see Fig. 5. As
expected, WCR is the algorithm with the worst performance.

When considering that tasks in τ̂ double their execution
demand in HI mode, i.e., their increase in execution demand
gets closer to that of tasks in τ̌ , the improvement of both
proposed algorithms over EDF-VD gets smaller. Considering
twoFactors, From around 20% to 40% more schedulability for
high LO utilizations in the case of Fig. 4 and 5, it reduces
to around 10% more schedulable task sets for n = 10 in
Fig. 6 and to 20% more schedulable task sets for n = 50 in
Fig. 7. Note that relFactors presents almost no improvement
with respect to EDF-VD in this case.

Overall, the experiments presented in this section show the
usefulness of the proposed approach for the case where the
HI execution demand of tasks in τ̂ strongly differs from that
of tasks in τ̌ . If this is not the case, the proposed algorithms,
particularly twoFactors, still introduce an improvement with
respect to EDF-VD; however, this becomes less significant.

From the above exposition, the threshold on Δui – to
classify tasks either into τ̌ or τ̂ – should be chosen such that
Δui

ui
≥ 1. That is, all HI tasks with a HI execution that is

less than twice the LO execution demand should be classified

108

Authorized licensed use limited to: UNIVERSITAETSBIBLIOTHEK CHEMNITZ. Downloaded on April 13,2022 at 15:13:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Schedulability curves for
Δui
ui

= 1 ∀ τi ∈ τ̂ and n = 10

Fig. 7. Schedulability curves for
Δui
ui

= 1 ∀ τi ∈ τ̂ and n = 50

into τ̌ ; otherwise into τ̂ . This constellation is not uncommon
in practice, where the WCET of a task might be many times
greater than possible optimistic estimates of it such as those
based on the average execution time [7].

X. CONCLUDING REMARKS

In this paper, we proposed introducing a second deadline
scaling factor to the original EDF-VD algorithm. This way, to
achieve a more accurate schedulability test, tasks experienc-
ing a large increase of computation in HI mode are treated
separately from other tasks in the system.

After deriving schedulability conditions for this case, we
proposed two algorithms twoFactors and relFactors and com-
pared them with the state-of-the-art approaches having the
same complexity, viz., WCR and the original EDF-VD al-
gorithm. Our experiments show that the proposed technique
strictly outperforms these known approaches which we also
proved in an analytical comparison.

The two proposed algorithms can be used for constant-
time admission control in MC settings, where new tasks need
to be tested for admittance on an already running system. We
further derived necessary conditions that any admission control
algorithm needs to fulfill in order to be safe and, hence, used
in MC systems.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers and Prof.
Sanjoy Baruah for their valuable comments on this paper.

REFERENCES

[1] S. Baruah, V. Bonifaci, G. D’Angelo, A. Marchetti-Spaccamela, S. Van
Der Ster, and L. Stougie, “Mixed-criticality scheduling of sporadic task
systems,” in Proc. of European Symposium on Algorithms (ESA), 2011.

[2] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
S. van der Ster, and L. Stougie, “The preemptive uniprocessor schedul-
ing of mixed-criticality implicit-deadline sporadic task systems,” in
Proc. of Euromicro Conference on Real-Time Systems (ECRTS), 2012.

[3] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Müller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström, “The worst-case
execution-time problem - overview of methods and survey of tools,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 7,
2008.

[4] M. Lv, W. Yi, N. Guan, and G. Yu, “Combining abstract interpretation
with model checking for timing analysis of multicore software,” in Proc.
of Real-Time Systems Symposium (RTSS), 2010.

[5] L. Kosmidis, J. Abella, F. Wartel, E. Quinones, A. Colin, and F. Cazorla,
“PUB: Path upper-bounding for measurement-based probabilistic timing
analysis,” in Proc. of Euromicro Conference on Real-Time Systems
(ECRTS), Jul. 2014.

[6] M. Slijepcevic, L. Kosmidis, J. Abella, E. Quiñones, and F. J. Cazorla,
“Time-analysable non-partitioned shared caches for real-time multicore
systems,” in Proc. of Design Automation Conference (DAC), Jun. 2014.

[7] A. Colin and S. Petters, “Experimental evaluation of code properties
for WCET analysis,” in Proc. of Real-Time Systems Symposium (RTSS),
2003.

[8] P. Ekberg and W. Yi, “Bounding and shaping the demand of mixed-
criticality sporadic tasks,” in Proc. of Euromicro Conference on Real-
Time Systems (ECRTS), 2012.

[9] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in Proc. of Real-Time
Systems Symposium (RTSS), 2007.

[10] S. Baruah, A. Burns, and R. Davis, “Response-time analysis for mixed
criticality systems,” in Proc. of Real-Time Systems Symposium (RTSS),
2011.

[11] S. Baruah, B. Chattopadhyay, H. Li, and I. Shin, “Mixed-criticality
scheduling on multiprocessors,” Real-Time Systems (RTS), vol. 50,
2013.

[12] R. Pathan, “Schedulability analysis of mixed-criticality systems on
multiprocessors,” in Proc. of Euromicro Conference on Real-Time
Systems (ECRTS), 2012.

[13] P. Ekberg and W. Yi, “Bounding and shaping the demand of generalized
mixed-criticality sporadic task systems,” Real-Time Systems (RTS),
vol. 50, no. 1, 2014.

[14] H. Su and D. Zhu, “An elastic mixed-criticality task model and its
scheduling algorithm,” in Proc. of Design, Automation and Test in
Europe (DATE), 2013.

[15] T.-W. Kuo and A. K. Mok, “Load adjustment in adaptive real-time
systems,” in Proc. of Real-Time Systems Symposium (RTSS), 1991.

[16] G. Buttazzo, G. Lipari, and L. Abeni, “Elastic task model for adaptive
rate control,” in Proc. of Real-Time Systems Symposium (RTSS), 1998.

[17] Q. Zhao, Z. Gu, and H. Zeng, “PT-AMC: Integrating Preemption
Thresholds into Mixed-Criticality Scheduling,” in Proc. of Design,
Automation and Test in Europe (DATE), 2013, pp. 141–146.

[18] Y. Wang and M. Saksena, “Scheduling fixed-priority tasks with pre-
emption threshold,” in Proc. of Real-Time Computing Systems and
Applications (RTCSA), 1999.

[19] A. Burns and R. Davis, “Mixed criticality systems - a review,” Depart-
ment of Computer Science, University of York, Tech. Rep., 2015.

[20] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM (JACM),
vol. 20, 1973.

[21] D. Müller and A. Masrur, “The schedulability region of two-level
mixed-criticality systems based on EDF-VD,” in Proc. of Design,
Automation and Test in Europe (DATE), 2014.

[22] S. Baruah, A. Mok, and L. Rosier, “Preemptively scheduling hard-real-
time sporadic tasks on one processor,” in Proc. of Real-Time Systems
Symposium (RTSS), Dec. 1990.

[23] J. W. S. Liu, Real-Time Systems. Prentice Hall, 2000.

[24] E. Bini and G. Buttazzo, “Measuring the performance of schedulability
tests,” Real-Time Systems (RTS), vol. 30, no. 1-2, 2005.

109

Authorized licensed use limited to: UNIVERSITAETSBIBLIOTHEK CHEMNITZ. Downloaded on April 13,2022 at 15:13:17 UTC from IEEE Xplore. Restrictions apply.

