
78-3

Composing Real-Time Applications from Communicating

Black-Box Components

Martin Beckerl, Alejandro Masrur2, and Samarjit Chakrabortyl
l

Institute for Real-Time Computer Systems, TU Munich
2Software Technology for Embedded Systems, TU Chemnitz

Abstract- To handle complexity, embedded soft­
ware is usually divided into components that are devel­
oped independently from each other and then need to
be integrated in a reliable and deterministic manner.
This involves buffering and synchronizing exchanged
signals, as well as finding a feasible execution schedule,
which is a tedious and error-prone procedure. We pro­
pose a model of computation that enables a program­
ming framework which automatically performs such
an integration, without requiring access to the com­
ponents' source code. The developer only needs to
declare interface signals between the components, con­
nect them and define their execution periods. A soft­
ware library then synthesizes deterministic communi­
cation mechanisms and provides a flexible, yet safe
interface for time-triggered execution. Our approach
does not require any run-time environment or special
compiler, which makes it light-weight and amenable to
be used on embedded platforms with limited resources.

1. INTRODUCTION

Embedded software is typically structured into a num­
ber of components that can be programmed, tested and
debugged independently from each other. For example,
a signal processing application might comprise of sensor
tasks, processing tasks and actuator tasks, all running at
different speeds but are supposed to interact with each
other. This requires defining interfaces between them, i. e. ,
capturing which data is exchanged and at which points
in time. Naturally, each component assumes that its in­
terface is satisfied by all other components. As a result,
when integrating components into one composite program,
it needs to be guaranteed that the assumptions made at
the individual components can be fulfilled. Towards this,
it becomes essential to find a suitable execution schedule
and to manage the communication between components.
This involves configuring precise points in time at which
components are executed, as well as instantiating and syn­
chronizing communication buffers between them.

In this paper, we are concerned with black-box compo­
nents given in the form of garbled C code or object code,
that shall be executed periodically at different rates, and
(logically) in parallel (see Fig. 1) . We assume that only the
components' interfaces and execution times are known and
that the developer has no precise control over the schedul­
ing of the components, which are common constraints from
many industrial contexts. For such a setting, we propose
an approach that automatically performs a safe and effi­
cient integration of the components as explained before.
Our Contribution: First, we present a model of compu­
tation supporting periodic and parallel execution of black­
box software components, without making any assump­
tions on the target platform such as, for example, on the
operating system or the scheduler. In this model the com­
ponents run at different rates and communicate with each

, - - - - - - - - - - - - - - -x· -" ' - - - - - - - - - - - - - - - - -"

+ +
Wrapper Wrapper
RATE�10Hz RATE�15Hz
REQUIRE(8.y) REQUIRE(A.x)
PROVIDE(A.x) PROVIDE(B.y)

- - - - - -c;.: - - - - �t:nda�
-

C
-
- - - - -;:J - - - - - '

Compiler & Linker

•.................. � -.

Task Dispatcher

buffers
�•

deterministic composite program

Fig. 1. Workflow of our approach.

other through signals and events. Based on this model, we
then analyze properties that are relevant for our composi­
tion, e.g. , bounded communication delays. We also show
how these properties can be verified on a target platform
that implements the model.

Second, to address the difficulties that arise when com­
posing applications from communicating components, e.g. ,
buffering and synchronizing signals between components
and managing their time-triggered execution, we provide
a C library that follows our model, carrying out such work
automatically. The library allows specifying the compo­
nents and their interfaces in the C language itself, in an
intuitive and natural way, without needing to know all the
components in the system. The user is only required to
declare inputs and outputs of the individual components
and to connect them to the black-box. The conveyed infor­
mation is leveraged during the build process of a standard
C compiler/linker, where communication and synchroniza­
tion mechanisms are then generated automatically.

The rest of this paper is organized as follows. After giv­
ing an overview of related work, we introduce our model
of computation in Section 3. In Section 4 we analyze our
model regarding its real-time properties, which we built
upon later. Section 5 then describes the software library,
how it extends the C language with constructs for declar­
ing the components and how it ensures that all interfaces
are satisfied. Finally, the last section presents a case study
illustrating the usefulness of the proposed library and eval­
uating its incurred memory and execution overhead.

978-1-4799-7792-5/15/$31.00 ©2015 IEEE 624
Authorized licensed use limited to: UNIVERSITAETSBIBLIOTHEK CHEMNITZ. Downloaded on April 13,2022 at 15:12:51 UTC from IEEE Xplore. Restrictions apply.

II. RELATED WORK

Approaches like Nemo [2], 42 [8], Architecture Analy­
sis & Design Language (AADL) [5], Timed Multitasking
(TM) [7] (later extended by COMDES [1]) and PTIDES
[4] support integrating software components and also auto­
matic code generation for deploying them. They introduce
elaborate languages for defining hierarchical entities, in­
terface contracts, constraints, resource awareness, etc. In
general, all these approaches have the disadvantage that
components have to be developed based on their respec­
tive programming constructs. This may not only cause a
significant effort, in particular, when code is already ex­
isting, but in contrast to our approach, an integration of
black-box components is not possible.

A more light-weight programming framework is Giotto
[6], which integrates black-box components given in C or
Java in a time-triggered multi-rate setting. Similar to
Giotto, we are not constrained to a particular scheduling
scheme and we have a non-zero communication delay be­
tween components. A difference is, however, that Giotto
defines its own language, which requires an additional com­
piler and a run-time environment (interpreter). As a re­
sult, in comparison to our approach, Giotto incurs a larger
memory overhead, as well as a rather steep learning curve
for the language itself.

Port-based objects (PBOs) [10] treat components as
black boxes, and focus on their deterministic composition
under multi-threading. In particular, PBOs have some
similarities to our approach, focusing on simplicity and
determinism in a multi-rate setting. However, their com­
ponents are not synchronized to each other and also require
a more complex syntax.

Finally, in contrast to some of the mentioned related
works, our approach does not require separate compilers
([1, 2, 3]) or run-time environments ([7]) . In particular,
some run-time environments impose demanding platform
requirements and are oftentimes not available for small
embedded platforms (e.g. , [8], the Java Virtual Machine)
typically used in cost-sensitive domains.

III. MODEL OF COMPUTATION

In this section we introduce the definition of and require­
ments for the black-box components, as well as the details
of execution and communication semantics.

A. Definition of Black Box

We define a black box as a software component, from
which only its interface and its high-level behavior are
known. It implements some functionality and - together
with other black boxes - composes an overall application.

A black-box component can be given either as a library,
as object code or even as C source code. In addition, each
black-box component has to comply with the following re­
quirements:

(1) The component performs a time-discrete computa­
tional task which takes place periodically in time steps
of length Ti.

(2) The component has to advance logical time (i. e. , the
time from the component's perspective) by Ti at every
invocation.

78-3

(3) The component must have a bounded worst-case re­
sponse time (WC RT) in combination with all other
components, i. e. , no infinite loops and no indefinitely
blocking calls are allowed.

The WCRT of a component depends on the target plat­
form and other implementation details. We illustrate how
to obtain the WC RT of a component in Section 4B.

The concept of periodic and discrete computation is
common and can be found in signal processing programs,
such as those obtained from Simulink models, but also in
many other contexts. As a result, our model does not
dictate the programming language used for implementing
the individual components, which is a major distinction to
other approaches from the literature.

B. Model of Execution

As a basic programming entity in our model, we intro­
duce a container. A container encloses one black-box com­
ponent and runs logically in parallel to other containers.
It provides an interface to the component, which automat­
ically manages the periodic execution as well as synchro­
nization of communication.
Clocks: Let us denote by Ci any component in the system,
where i = 1 . . . nc and nc is the number of components.
They are triggered periodically, with a direct relation to
physical time. Towards this, there exists a basic clock with
a period Tb, that ''ticks'' at the time instants t = k . Tb,
with k E Z indexing the ticks. Then, each component Ci
shall be executed with an individual period Ti, which must
be an integer multiple of Tb:

Ti = Pin, Pi E Z+, (1)
We will refer to Pi as prescaler of container Ci.
Execution Sequence: A component Ci is triggered every
Ti time units, where the following three steps take place:

1. Read-in (R): all required inputs are obtained from
other components and get buffered.

2. Process (P): the black-box component is executed
on the buffered inputs and produces buffered outputs.

3. Write-back (WB): the outputs are propagated from
their buffer to other components.

Table I depicts the relation of these three steps to physi­
cal time, where the WU-operator means the Worst-Case
Response Time, as explained in the next section.

TABLE I
EXECUTION SEQUENCE OF A CONTAINER Ci TRIGGERED AT
TIME kTi, W ITH ASSOCIATED LOGICAL AND PHYSICAL TIME.

step

read-in (R)
process (P)

write-back (WB)

logical
time

executed anywhere in physical
time interval

kTi kTi+ (0, W(R)]
kTi kTi+W(R)+ (0, W(Ci)]
(k + l)Ti kTi+W(R)+W(Ci)+(O, W(WB)]

The steps read-in and write-back serve as synchroniza­
tion points for the communication. That is, indepen­
dently of when the inputs or outputs are getting pro­
duced, they are only propagated between the components
at these steps. Through this, we are free to execute Ci
at any time within its period without running into non­
determinism under preemptive scheduling, unlike other ap­
proaches based on buffered communication such as [9].

625
Authorized licensed use limited to: UNIVERSITAETSBIBLIOTHEK CHEMNITZ. Downloaded on April 13,2022 at 15:12:51 UTC from IEEE Xplore. Restrictions apply.

C. Model of Communication

In this section we discuss how data exchange between
components takes place.
Communication: Components can provide or receive
two basic types of data: events and signals.

1. Events are boolean data items which can either be
present or absent , whereas the latter is the default
state. Events are registered. That is, once an event
is present, it remains present, until the sink (i.e. , the
receiving component) has read or retrieved it.

2. Signals are data items which carry a value and are
always present. They are sampled by the sinks. That
is, if a component Ci is released every Ti time, it can
only obtain the freshest value of a signal at exactly
these time instants.

Both events and signals are directed. They have exactly
one source component and one or multiple sink compo­
nents. However, without loss of generality, signals/events
with multiple sinks can be regarded as multiple point-to­
point signals/events.

Signals or events can be emitted by a component Ci
at any physical time t. However, from the perspective of
logical time, they are regarded as being emitted at time
l i J Ti, i.e. , at the beginning of the component's period, as
if the component would finish computation in zero time.

In order to obtain a deterministic behavior, signals and
events cannot be read by a sink as long as the source is
possibly still running. Hence, one has to account for the
actually non-zero execution time of the components. To­
wards this, we assume that an emitted signal or event is not
available earlier than I i, lTi, i.e. , at the end of the compo­
nent's period. Clearly, this requires that the components
finish their computation before their next invocation time,
but also introduces a communication delay between any
two components.

IV. ANAYSIS OF THE MODEL

In the following we show that the chosen model of com­
putation exhibits properties which are beneficial for real­
time systems, viz. , that the communication delay between
the components is bounded and that the semantic correct­
ness of an implementation on a specific target platform can
be verified with standard methods.

A. Communication Delay

In the following we give analytical bounds on the min­
imum delay, which plays an essential role in verifying the
correctness of an implementation, as well on the maximum
delay, which defines the freshness of signals and events, i.e. ,
is vital for system performance.

We define the communication delay as the latency be­
tween the logical emission of a signal or event at the source
component and its logical arrival at the sink component.

Example: The communication delay between two compo­
nents is illustrated in Fig. 2: A component Co with Po = 3
logically emits an event at time t = O. Co is triggered at
t = 0 and finishes computation anywhere in [0, POTb[. Al­
though this means that the event is physically produced
anywhere in [0, pon[, it is not available to other compo­
nents before POTb = 3Tb·

A second component C1 with PI = 1 receives this event
at time t = 3n and immediately echoes it back. The echo

78-3

is logically emitted at t = 3Tb, but not available until time
t = 4Tb. Co retrieves the echo at time t = 6Tb. The
communication delay is hence 3Tb in both directions.

OTb ITb 2n 3n 4n 5n 6n 7n STb
elk

Co
Cj

Legend: i task release

task execution

• - - generate signal

- -> signal flow

Fig. 2. Illustration of communication delay for our echo example:
Co sends an event, and Cj responds as soon as possible.

Corollary 1. Minimum Delay. Given a source Csrc
and a sink Csnk, the minimum communication delay of an
event or signal from Csrc to Csnk is D':::��snk = Tsrc where
Tsrc is the activation period of Csrc.

Corollary 1 follows from the earlier definition that an
event or a signal emitted by Csre at a given time t is not
available to any Csnk before t + Tsre.
Theorem 1. Maximum Delay of Events. The max­
imum communication delay of an event from a compo-

t C t t C . .
b Dmax,evt nen src 0 a componen snk ZS gwen Y src snk =

Tsrc + Tsnk - GCD, where GCD is the greatest cbmmon
divisor of the activation periods Tsrc and Tsnk.

Theorem 1 follows from observing that in the worst case
Csnk might be released just before an event (that was
sent by Csre at time t) becomes available, i.e. , some time
<5 before t + Tsre. In this case, Csnk sees this event at
t + Tsre - <5 + Tsnk. Clearly, the smaller <5, the larger the
communication delay of this event. Using Bezout's Iden­
tity [11, p.45, 87], it can be concluded that the smallest
possible <5 is given by the greatest common divisor (GCD)
of Tsre and Tsnk. The theorem follows.
Theorem 2. Maximum Delay of Signals. The max­
imum communication delay of a signal from a compo-

t C t t C . .
b Dmax,sig nen src 0 a componen snk ZS gwen y src,snk =

Tsrc + min{Tsnk' Tsrc} - GCD, where GCD is the greatest
common divisor of the activation periods Tsrc and Tsnk.

Theorem 2 is a slight variation of Theorem 1. Depending
on the values of Tsre and Tsnk, signals can be overwritten
by Csre before Csnk sees the last change. As a result, we
b . h Dmax,sig < Dmax,evt o taln t at sre,snk _ sre,snk ·

B. Correctness of the Deployed System

So far we discussed the semantics of our model and de­
rived analytical bounds for the communication delay. Next
we sketch how to verify whether these properties hold true
for an implementation on a particular target platform.
Worst-Case Execution Time Analysis: As a first step,
the worst-case execution time (WCET, i.e. , the maximum
computation time, without considering interruptions from
other processes) ei of the components Ci, as well as for the
operations read-in and write-back has to be found. At this
point platform-specific details, such as operating system,
caches, etc. have to be considered.
Worst-Case Response Time Analysis: As second
step, a worst-case response time (WCRT) analysis needs to
be performed for each component Ci based on the WCETs
ei, the periods Ti and the used scheduling policy.

626
Authorized licensed use limited to: UNIVERSITAETSBIBLIOTHEK CHEMNITZ. Downloaded on April 13,2022 at 15:12:51 UTC from IEEE Xplore. Restrictions apply.

Verification of Semantic Correctness: As a last step,
we need to verify whether the implementation on a specific
processor follows the semantics. For this, the following
condition needs to hold for each component Gi:

W(R) + W(Gi) + W(WB) < min {Df'Jn} (2) jEsink(i) ,

where W(Gi) is the result of the previously calculated val­
ues from the WCRT analysis, sink(i) denotes the set of
all indices j where Gj is a sink for any signal/event pro­
duced by Gi, and Di,'Jn is the minimum communication
delay from Corollary 1. The condition results from the
latest possible point in time until when a component has
to physically produce a signal/event, such that it logically
makes no difference for all of its sinks, i.e., such that it
does not break the communication semantics.

However, from Corollary 1 it follows that
minjEsink(i) {Di,'t} == Ti, thus eq. (2) becomes:

W(R) + W(Gi) + W(WB) < Ti. (3)
Equation (3) allows to verify whether properties such as
the maximum communication delay are preserved by an
implementation, without the need to know how the com­
ponents are interconnected, which is a considerable advan­
tage of our model.

V. THE C LIBRARY

We developed a C library which follows the models in­
troduced in the previous sections. The goal of this imple­
mentation was to show that your model could be realized
easily and proves useful in a practical setting. Although
this is not the best possible implementation, we also pro­
vide some measurements on the incurred overhead.

The library introduces new, mainly declarative, con­
structs to C, which are used to declare the components,
their interfaces (signals and events) , and to invoke the
black boxes. This way, the user does not have to be con­
cerned about implementation details and benefits from an
intuitive syntax and high readability. The library exhibits
properties suitable for real-time systems:

• small, static memory footprint,
• support for multi-threading,
• provision of signal/event trace logging, and
• any non-deterministic use is prevented (program does

not compile and link if there is no driver, multiple
drivers, non-matching data type or unsynchronized
signals / events) .

It works with any standard C89 compiler/linker, and
thus can be used in a wide range of applications. The
declarative constructs shown in the next subsections are
realized through C pre-processor macros.

A. Declaring Components

Each black-box component has to be declared separately
in its own translation unit. These are later synthesized to
containers (see § B), which provide the necessary communi­
cation mechanisms. Towards this, the following functions
need to be implemented by the user: 1

• static void CONT_READIN_MECvoid): For each sig­
nal that is an input to the component, the macro
UPDATE_SIGNAL has to be called, which synchronizes
the signal.

1 Note that code for write-back is generated automatically and
needs not be written by the user.

78-3

II file cO.c, component 0
#define CONT_NAME CO

CONT_PRESCALER(3) ;

I I file c1. c, component 1
#define CONT_NAME Cl

CONT_PRESCALER(l) ;

ANNOUNCE_EVENT(echo_l) ;

REQUIRE_EVENT(echo_2);

ANNOUNCE_EVENT(echo_2) ;

REQUIRE_EVENT(echo_l);

void CONT_READIN_ME() {
UPDATE_EVENT(echo_2) ;

void CONT_READIN_ME() {
UPDATE_EVENT(echo_l) ;

}
void CONT_PROCESS_ME() {

SET_EVENT(echo_l);

void CONT _PROCESS_ME () {
if (GET_EVENT(echo_l))

SET_EVENT(echo_2) ; }
II

Fig. 3. The echo example from Fig. 2 realized with our library.

• static void CONT]ROCESS_ME(void): This func­
tion is invoked every Ti time units. The user has to
do the necessary bits to invoke the black-box com­
ponent, and get the results from it. Afterwards, the
macro SET_SIGNAL has to be called for every signal
that is an output of the component.

To illustrate the usage, the complete code that implements
the echo example is given in Fig. 3.

B. Synthesizing Communication Mechanisms

The communication buffers for signals and events are
generated automatically and kept hidden from the user.
These are created when one of the following macros is used:

• ANNOUNCE: Indicates that the component associated
with the current translation unit produces an output
signal/event with the given name and type, which can
be used by other components.

• REQUIRE: Indicates that the component associated
with the current translation unit expects that a sig­
nal/event with the given type and name exists.

Each of these macros instantiates a part of a guarded dou­
ble buffer inside the corresponding translation unit, which
works in the following way: Source containers hold one
part of a double buffer for each signal/event, which gets
instantiated with the macro ANNOUNCE. The sinks hold the
other part of the double buffer - instantiated with the
macro REQUIRE - and use the macro UPDATE to read from
the source's part. This macro invokes a callback to the cor­
responding reading function that is provided by the source
(also through ANNOUNCE). These functions only allow for a
copy operation when the source container is not possibly
running. The other macros SET and GET only work on the
local part of the double buffer.

Due to this arrangement, the overhead for writing a sig­
nal/event at the source side is negligible, whereas the read­
ing introduces a synchronization overhead. However, in
the following we show how this overhead can be reduced
further. An optimization of the write phase could be done
analogously, but does not have much impact due to the
aforementioned reasons.

B.l. Reducing Synchronization Overhead

If the source runs slower than the sink (Tsrc > Tsnk),
it frequently happens that the sink tries to read a signal
or event from the source which has not been updated yet
(from Corollary 1: D��nsnk = Tsrc and Tsrc > Tsnk)' In this
case, we can skip the reading process and hence no syn­
chronization is necessary then. It can be shown that this

627
Authorized licensed use limited to: UNIVERSITAETSBIBLIOTHEK CHEMNITZ. Downloaded on April 13,2022 at 15:12:51 UTC from IEEE Xplore. Restrictions apply.

case happens as often as 1 - �Qk, i.e. , the synchronization
overhead for a signal between"t'hese two components can
be reduced by the above ratio.

G. Integration with the Platform

To realize the periodic execution of components and thus
to ensure their binding to physical time, we require the user
to write a simple glue code that we call task dispatcher.
Its only purpose is to attach to a platform-specific timer
that fires every Tb time units, and to delegate this trigger
to the individual containers. The actual release schedule
(each component Ci is released according to its Ti) is en­
coded in the containers, invisible to the task dispatcher.
Thus, the user does not have to care in which order or
even under which policy the components are being sched­
uled. Moreover, since our library is thread-safe, it is possi­
ble to make use of multi-threading, to parallelize the com­
putationally intensive step clock, such that the execution
physically takes place in parallel.

VI. CASE STUDY
We used the Pololu 3pi robot as an embedded platform

in a bare-metal setup to show the usefulness and simplic­
ity of the proposed approach. The platform is based on an
8-bit Atmel Atmega 328p processor, which has tight con­
straints on memory consumption and run-time overhead
(32 kB flash, 2 kB RAM, 20 MHz) .

clk-....,..----------------....-

communication

----A I

Platform .

. .
- --

Fig. 4. Setup for the case study: We integrate two black boxes as
shown, which together control a robot.

The goal is to let the robot solve a maze drawn with
2 cm-wide lines on the floor. For this we use the Pledge
Algorithm, which essentially follows the maze's walls until
it reaches the exit of the maze. The robot can detect the
lines through five reflectance sensors (IR [0 . . . 4]).

We decided to use two components in this setup: (1) sen­
sor pre-processing (de-noise, de-bounce) and (2) behavioral
logic (the Pledge algorithm) . Both are supposed to run in
parallel, whereas the sensor pre-processing and the plat­
form I/O run at ten times the frequency of the behavior
(Pspp = Pia = 1, Pbeh = 10) .

Once the components have been developed indepen­
dently, the resulting black boxes are encapsulated in two
different containers that are connected by signals as de­
picted in Fig. 4.

A. Deterministic Interface & Portability

The platform's sensors and actuators have to be con­
nected to the components. To avoid non-determinism at
this point, we advocate using another component which

78-3

we call I/O-Mapper. It serves as a gateway to the plat­
form functions, i.e. , it "offers" all sensors, and "receives"
all actuator requests. This way it is ensured that every
output has exactly one driver and that sensor signals are
consistent among all components.

The code inside the I/O mapper naturally is platform­
specific, which is why we implemented this component in
C, following the rules in §IIIA. Once the I/O mapper is
completed, the user need not be concerned with the plat­
form anymore. As a result, containers running "upon" the
I/O mapper can be easily ported to other platforms.

B. Freshness of Sensor Data

The maximum delay of the sensor data can be ob­
tained from the maximum communication delay derived
in §IV A. It is produced through the chain of components
I/O Mapper -7 Sensor Pre-processing -7 Behavior. With
n = 10 ms, according to Theorem 2, this amounts to
20 ms. Since the robot moves with approximately 12 cm/s,
this delay corresponds to a distance of 2.4 mm, which is
12 % of the line width. Consequently the communication
delay is sufficiently low to detect a line reliably.

C. Implementation Overhead

We evaluated memory and timing overhead of our li­
brary, both for the case study and more generic settings, to
show the relationship between used features (components,
signals etc.) and resources (memory, processor time) .

C.1. Memory Overhead

Methodology: We determined the memory overhead
from the output of the avr-gcc 4.7.2 compiler/linker, by
observing growth in the segments . text and . data. Com­
piler optimization was turned off, so as not to distort the
results.

total memory overhead overhead of signals only

number of components

- -B- 1=1: 72x + 1
1=3: 95x + 5

-.- 1=5: 134x + 11

2 4 6 8
number of signals

o

Fig. 5. Memory overhead (Atmel Atmega 328p) of the containers
(left) and signals (right) .

Case Study: Overall, the program size increased by 8 %
from 14,090 to 15,212 Bytes in comparison to a program
which just instantiates the components on the robot plat­
form without letting them interact2. Consequently this
8 % would be the amount of memory, that would be avail­
able for a manual composition of the components instead
of our library.

2 Obviously, this implementation was not functional.

628
Authorized licensed use limited to: UNIVERSITAETSBIBLIOTHEK CHEMNITZ. Downloaded on April 13,2022 at 15:12:51 UTC from IEEE Xplore. Restrictions apply.

Generic: We compiled a large number of different pro­
grams and determined only the memory demand incurred
by our containers, whilst varying the number of outgoing
signals per container ns and also in the number of sinks
per signal, i. e. , their fan out, denoted by f.

00 -0 <: o u <l> 00

1.2

� 0.8
.S
00
� 0.6
u ::> Z 00 0.4 .S

'll:
0.2

I/O Mapper Sensor Pre-processing

Robot Behavior Do Synchronization

Contai ner Overhead
(34%)

low-rate behavior high-rate behavior

Fig. 6. Timing overhead for the behavioral component running at a
low rate (left, Pbeh = 10) and a high rate (right, Pbeh = 1).

The left side of Fig. 5 shows in one plot all the taken
measurements (dashed line). It includes two linear fits:
(1) The first (lower) line captures the memory used by
empty components (i. e. , ns=O). It can be seen that each
component requires 330 B, and that the basis overhead is
122 B. (2) The other (upper) line goes through all measure­
ments where we used ns = 10 signals, each connected to all
components (f=max). The right side of Fig. 5 shows the
memory demand per signal, indicating that a higher fan
out requires more memory, but also that the sinks share
some memory at the signal source, since triplicating fan
out results in less than three time the memory.
Summary: Our library has a very low base overhead per
component and an additional overhead that scales linearly
with the number of components and signals.

G.2. Timing Overhead

Methodology: We determined the overhead in terms of
cycle-based execution time, to avoid suffering from po­
tential distortions caused by background processes or the
measurement itself. We used callgrind on again non­
optimized code and evaluated only the timing profile of
those functions rooting in the task dispatcher.
Case Study: The resulting distribution of execution time
for the setup of our case study (prescalers Pspp = Pio =

1, Pbeh = 10) is shown in Fig. 6 at the left-hand side.
The plot shows the number of instructions for a simulated
time of 10 s, in total 1. 71 million. Most of the process­
ing time was spent in synchronization and the sensor pre­
processing. The total timing overhead incurred by using
our approach is 249,714 instructions, i. e. , 16 %.
Generic: We let the behavioral component from the case
study run ten times as fast as before, by setting Pbeh =

1. The result is shown in Fig. 6 on the right side: As
expected, the behavioral component consumes ten times
the processing time than before, and both I/O mapper
and pre-processing components are unaffected, consuming

78-3

the same processing time as before. The synchronization,
however, increased by (only) a factor of 1.6, as opposed
to the lOx rate change of the behavioral component. The
total timing overhead is now 261,114 instructions (8 %),
i. e. , the absolute timing overhead barely changes. This
suggests that our framework comes with a constant timing
overhead.
Summary: Our library incurs a timing overhead that
only depends on the number of the components. It is inde­
pendent of the component periods. In contrast to this, the
synchronization between components - which is required
anyway when integrating components - does depend on
periods.

VII. CONCLUSIONS

In this paper we proposed a model of computation and
a prototypical implementation of a C library supporting
the deterministic composition of real-time programs from
black-box components. Our library automatically solves
the tedious task of implementing communication and syn­
chronization mechanisms between components, and can
easily be used on different targets. It is light-weight, easy
to use and does not require a special compiler or a run­
time environment. The user only has to provide interface
specifications, e.g. , declare the available and required com­
munication signals. The correct behavior of our library
running on a particular target system can be verified us­
ing standard methods such as worst-case execution and
response time analysis. As future work, we plan to extend
our model of communication to allow for shorter commu­
nication delays, as well as extending the implementation
towards multi-core platforms.

REFERENCES
[1] ANGELOY, C. , ET AL. A software framework for hard real-time

distributed embedded systems. In Euromicro Conference SEAA
(Sept. 2008).

[2] DELAVAL, G. , AND RUTTEN, E. A domain-specific language
for multitask systems, applying discrete controller synthesis.
EURASIP Journal on Embedded Systems 2007, 1 (2007).

[3] EDWARDS, S. A. , AND TARDIEU, O. SHIM: A deterministic
model for heterogeneous embedded systems. IEEE Transactions
on VLSI Systems 14, 8 (2006).

[4] EIDSON, J. , LEE, E. A. , MATlC, S. , SESHIA, S. A. , AND ZOU,
J. Distributed real-time software for cyber-physical systems.
Proceedings of the IEEE (special issue on CPS) 100, 1 (January
2012), 45 - 59.

[5] FEILER, P., LEWIS, B. A. , AND VESTAL, S. The SAE Ar­
chitecture Analysis & Design Language (AADL) a standard for
engineering performance critical systems. In Computer Aided
Control System Design, 2006 IEEE International Conference
on Control Applications (Oct 2006), pp. 1206-1211.

[6] HEN ZINGER, T. A. , HOROWITZ, B. , AND KIRSCH, C. M.
Giotto: A Time-triggered Language for Embedded Program­
ming. Proceedings of the IEEE 91, 1 (2003).

[7] LlU, J. , AND LEE, E. A. Timed multitasking for real-time
embedded software. IEEE Control Systems 23, 1 (2003).

[8] MARANINCHI, F. , AND BOUHADlBA, T. 42: Programmable
models of computation for a component-based approach to het­
erogeneous embedded systems. In A CM International Confer­
ence on Generative Programming and Component Engineering
(GPCE) (Oct. 2007).

[9] SCAIFE, N., AND CASPI, P. Integrating model-based design
and preemptive scheduling in mixed time-and event-triggered
systems. Tech. Rep. TR-2004-12, Verimag, 2004.

[10] STEWART, D. B. , ET AL. Design of dynamically reconfigurable
real-time software using Port-Based Objects. IEEE Transac­
tions on Software Engineering 23, 12 (1997).

[ll] TIGNOL, J. Galois' T heory of Algebraic Equations. World Sci­
entific, 2001.

629
Authorized licensed use limited to: UNIVERSITAETSBIBLIOTHEK CHEMNITZ. Downloaded on April 13,2022 at 15:12:51 UTC from IEEE Xplore. Restrictions apply.

