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Abstract—Cyber-physical systems typically involve a large
number of mobile autonomous devices that closely interact
with each other and their environment. Standard design and
development techniques from the embedded domain fail to
accurately model the dynamics of such systems and, hence,
there is an increasing need for new programming models and
abstractions. Component-based design approaches are a promis-
ing solution to manage the complexity of large-scale dynamic
systems. However, existing such approaches either do not ac-
curately model transitory interactions between components –
which are typical of cyber-physical systems – or do not provide
guarantees for real-time behavior which is essential in many
safety-critical applications. To overcome this problem, in this
paper, we present a component-based design technique based
on DEECo (Dependable Emergent Ensembles of Components).
The DEECo framework allows modeling large-scale dynamic
systems by a set of interacting components. In contrast to
other component-based design approaches from the literature,
DEECo provides mechanisms to describe transitory interactions
between components. We introduce necessary extensions to the
DEECo design flow and integrate it with real-time analysis
techniques that allow reasoning about timing behavior at the
component-description level. Finally, we illustrate the simplicity
and usefulness of our approach on a case study consisting of an
intelligent crossroad system.

I. INTRODUCTION

Complex cyber-physical systems (CPS) can be found in
many different domains such as smart traffic and transporta-
tion, intelligent buildings, smart grid, etc. A common aspect of
such CPS is that they rely on a large number of autonomous,
typically mobile, embedded devices that form an ecosystem.
The joint cooperation of devices within this ecosystem pro-
vides functionality, which is unattainable by the individual
devices in isolation.

A CPS is inherently distributed and adaptive – i.e., it
constantly reacts to changes in its environment by adapting
its structure and behavior. The collaborative aspect of the
system as well as the necessity that its parts can function
autonomously (in case the connection to other system con-
stituents gets lost) poses a new dimension of challenges.

Typically, these challenges are regarded as separate prob-
lems of communication networks, distributed control, etc. As
such, they have been addressed separately in the respective
research fields. However, a significant aspect of modern CPS,
which remains relatively overlooked, is that these systems can
be also classified as software intensive [1].

This means that most of their functionality is embodied
in the software, which in turn becomes their most complex
and critical constituent. Due to being distributed and adaptive,

software becomes even more complicated and the system starts
exhibiting so-called emergent behavior. This is the situation
where the system’s behavior cannot be inferred any longer
from its individual constituents, but their interplay and their
joint influence on their environment have to be taken into
account.

As a result, there is a strong need for holistic design
and development methods that focus rather on the whole
ecosystem and its overall behavior. Especially, these methods
have to provide systematic software engineering practices that
allow managing the increasing complexity of such systems and
help controlling emergent behavior. By systematic software
engineering, we envision the following four aspects:

i) the high-level (requirements-oriented) design with special
focus on autonomous behavior, adaptivity and distributed
collaboration;

ii) architectural design where a system is modeled by dis-
tributed components with clear responsibilities and well-
defined interaction patterns;

iii) framework for implementation of components, which
keeps the straightforward traceability w.r.t. (i) and (ii);
and

iv) methods for design-time and runtime analysis (e.g., func-
tional verification, timing analysis), which would predict
and control the adaptivity and related emergent behavior
of these systems.

The basic prerequisite for such systematic software en-
gineering is the existence of software models providing an
appropriate level of abstraction. In this respect, classical ex-
isting software models (e.g., component-based models such as
AUTOSAR [2] or formal process models such as Petri Nets
[3]) largely fail to address the needs of distributed adaptive
systems. This is mostly because of the fact that they rely on a
static structure of the system and thus are unable to model an
open-ended system, which adapts its architecture to the current
state of its environment.

On the other hand, new software models (such as DEECo
[4], GCM [5]) appear gradually. They have been specifically
developed to capture the nature of distributed adaptive systems
and are more suitable for the design and development of CPS.
However, by focusing on the cooperative aspects and dynamics
of components, they operate at a high level of abstraction and
they do not provide means to model real-time behavior – which
is particularly relevant to safety-critical applications.

Contributions: In this paper, we bridge the gap between a
high-level (component-based) description of the system and the
analysis of its real-time behavior. In particular, we make use of
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DEECo (Dependable Emergent Ensembles of Components) in
the context of a safety-critical cyber-physical application, viz.,
an intelligent crossroad. DEECo allows for a component-based
design of highly dynamic CPS and provides deterministic
semantics that help guaranteeing real-time behavior. Based
on the crossroad scenario, we derive necessary extensions
to the DEECo design flow in order to capture the real-time
requirements at the component description level. Towards this,
a schedulability or real-time analysis is performed taking ap-
plication and implementation details (such as communication
bandwidth, processing capacity, etc.) into account.

The paper is structured as follows. Section II presents the
intelligent crossroad case-study that we use as the running
example. Section III overviews the basic concepts of DEECo
and illustrates them on the case-study. Section IV extends the
DEECo model by including real-time constraints, which are
then utilized to perform the schedulability analysis proposed
in Section V. In Section VI, we evaluate our approach by
comparing it with results obtained by an OMNet++ simulation
of our case study. Section VII provides the related work,
whereas in Section VIII we discuss some conclusions.

II. CASE-STUDY

We consider an application scenario in the context of Ve-
hicular Ad-hoc Networks (VANets) [6] and semi-autonomous
driving, where an intelligent crossroad system (ICS) optimizes
its throughput by assisting drivers in traversing a road crossing.
This is illustrated in Fig. 1, where cars approach a two-lane
crossing managed by the ICS.

The idea is to replace traffic lights by car-to-infrastructure
(C2I) communication and to synchronize in what order cars
cross the intersection. This way, the ICS takes control over
approaching cars – adjusting speed and steering – to allow for
an uninterrupted flow in all directions. After the intersection,
control over vehicles is returned to the drivers.

The ICS adjusts the speed and direction of each car such
that the highest possible throughput is reached provided that
speed limit regulations are observed and safety of all traffic
participants is guaranteed under all circumstances. Pedestrians
are not considered in this setting1.

We define the region of influence of the ICS by the area in
which it controls all approaching cars. We assume that this area
consists of a 50m radius around the intersection. In addition,
vehicles are prioritized such that their priorities increase as
they get closer to the focal point of the intersection and drop
when they move away.

The scenario exhibits different challenges that one has to
face when designing dynamic distributed systems. One of those
challenges is the description of architectural changes that occur
during runtime. In the scenario vehicles arrive to and leave
the system at different points in time, their priorities vary
according to their distance to the crossing, etc. Such details
need to be properly reflected in the system design.

1The main issue with pedestrians is that they cannot be controlled by the
ICS and, hence, hinder semi-autonomous driving at the crossroad. There might
be different solutions for this problem such as planing a pedestrian underway,
or using mobile phones to communicate with the ICS, etc.

ICS 

Fig. 1. Intelligent crossroad system (ICS)

Furthermore, the scenario exhibits real-time requirements
imposed on the system. In particular, it is required that the
response time between a car and the ICS is kept below a certain
upper bound in order to ensure required responsiveness of the
overall system. In turn, meeting those real-time requirements
allows us to guarantee safety of the final application, which
translates to a collision-free crossing.

III. ARCHITECTURAL MODELING

To address challenges related to the architecture of the
above application, we propose using of the DEECo component
model [4]. It features the structure of a CPS by means of
components (i.e., encapsulated well-defined active entities,
which perform sensing, computation and actuation) and so
called ensembles, which are dynamically established groups
of components that cooperate to achieve a particular goal.
DEECo further provides a special requirements engineering
method and traceability of requirements to components and
ensembles – for further details, we refer to [7].

A. Components

To illustrate the principles behind DEECo, Listing 1 de-
picts a component using a DSL (Domain-Specific Language)
description. In DEECo, each component consists of knowledge
– see lines 8-15 – reflecting its current state. Knowledge is
expressed by attributes organized into hierarchical data struc-
tures. Access to one or more such attributes of a component
is performed through an interface – see lines 1-7 – that are
featured by the component.

In addition, each component has a set of processes (essen-
tially real-time tasks) that manipulate its knowledge. A process
is characterized by a function (lines 29-35), whose parameter
list consists of knowledge attributes. The scheduling and exe-
cution of processes is automatically managed by the runtime
framework, which also takes care of knowledge retrieval before
a process is executed and its update when the execution is
finished. Each of the component’s processes is executed in
isolation meaning that it is not supposed to communicate with
other processes (either of the same component or different one)
in any other way than via component’s knowledge.

The scheduling of a process depends on its specification
(lines 20 and 35), which describes whether a process should
be executed in response to a timer event (periodic execution)
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or as a reaction to a value change in one of its attributes. In
our example, the Vehicle component has a process that takes
speed sensor readings and updates the corresponding attribute
in its knowledge. This is repeated periodically every 5ms (line
20). As another example the ICS process, shown in Listing 1,
determines whether there are privileged vehicles in its region
of influence (lines 29-35) and is executed whenever the number
of vehicles within the crossing changes (line 35).

1 interface MovingUnit:
2 position, route, throttle, privileged, speed
3

4 interface MovingUnitAggregator:
5 movingUnits
6

7 component Vehicle features MovingUnit
8 knowledge:
9 battery: 90%,
10 position: GPS(...),
11 route: [GPS(...)],
12 privileged: FALSE,
13 speed: 40 km/h,
14 throttle: 20%,
15 ...
16 process readSpeed:
17 out speed
18 function:
19 speed = Sensors.getSpeed()
20 scheduling: periodic( 5ms )
21 ...
22

23 component ICS features MovingUnitAggregator
24 knowledge:
25 location: GPS(...),
26 movingUnits: [...],
27 privileged: [...],
28 ...
29 process findPrivilegedVehicles:
30 in vehicles, inout privileged
31 function:
32 for (v : vehicles)
33 if (v.privileged)
34 privileged.add(v)
35 scheduling: triggered( changed(movingUnits) )
36 ...

Listing 1. DEECo component definitions based on a DSL

B. Ensembles

An ensemble in DEECo is a first class concept that defines
a semantic connector between components and constitutes their
composition. The composition in DEECo is flat and occurs
implicitly by components dynamically joining an ensemble at
runtime. When specifying an ensemble, prospective compo-
nents are described by roles. One component in the ensemble
has a coordinator’s role, whereas the remaining components
are members of the ensemble.

The roles are defined by the interfaces – in our example,
MovingUnit and MovingUnitAggregator – and are matched at
runtime to the actual components (i.e., their knowledge) for a
structural coincidence. Later, those components that match the
interfaces are considered for the ensemble evaluation process,
which is composed of two steps. The first step involves
checking the membership condition, which is expressed as a
logic predicate formulated upon coordinator’s and member’s
attributes. This determines whether two components (a coor-
dinator and a member component) should form an ensemble.
The second step depends on the results of the membership
condition check and consists of exchanging attribute values
between coordinator and member according to the description
given in the knowledge exchange specification.

In the example in Listing 2, the coordinator role is deter-
mined by the interface definition MovingUnitAggregator and
the member role by MovingUnit. This way, during the ensem-
ble evaluation, only components featuring appropriate inter-
faces will be considered. The membership condition further
constraints the number of ensemble members only to those,
which are located no farther than 50m from the coordinator
location. Then, according to the knowledge exchange descrip-
tion, the coordinator’s movingUnits attribute is updated with
information about all components that fulfill the membership
condition. This way, the ICS is aware only of those vehicles,
which are currently in its close proximity.

1 ensemble UpdateMovingUnitInformation:
2 coordinator: MovingUnitAggregator
3 member: MovingUnit
4 membership:
5 distance(coordinator.location, member.position) < 50 m
6 knowledge exchange:
7 coordinator.movingUnits.add({member})
8 scheduling: periodic( pens )

Listing 2. A DSL example of an ensemble definition.

C. DEECo’s deterministic semantics

DEECo components are autonomous and rely only on
data that is present in their knowledge. As mentioned before,
any interaction of a component with other components is
realized by ensembles, which is, in a sense, externalized from
the component itself. This property of DEECo’s component
model suits very well to both design and implementation of
distributed adaptive systems as all technical aspects related to
communication between remote components can be abstracted
away from the design phase and left to the runtime framework
to deal with them.

Technically, the runtime framework addresses the distribu-
tion by periodically propagating its ensemble-relevant knowl-
edge to all other nodes in the system2. In our case study,
ensemble-relevant data are the car’s position, its speed, and
its intended direction. This is used to evaluate the distance to
the crossroad and to decide whether cars are heading in its
direction.

Each node then keeps relevant reference knowledge from
all other nodes or components in the system. This way,
since ensemble-relevant information is present at all runtime
instances or nodes of the system, the DEECo runtime frame-
work performs local evaluation of an ensemble membership
condition. If it holds, the (local) reference data of the remote
components involved is used for the knowledge exchange
process.

IV. REAL-TIME CONSTRAINTS

Clearly, real-time constraints stem from the application
requirements. To illustrate this process, in this section, we
identify those requirements in our ICS case study and analyze
the implications for the component description in DEECo.

In order for the ICS to control a car, knowledge needs to
be exchanged from the car to the ICS and from the ICS to the
car at least once per meter of the car’s trajectory. (For this,
clearly, a maximum speed of the car needs to be forced by

2Note that gossip or broadcast algorithms might be used for this purpose.
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the ICS). However, the knowledge exchange happens based
on local data when the corresponding ensemble condition is
evaluated to true at both the ICS and the car node separately.

As discussed above, the knowledge propagation and the en-
semble membership check happen periodically. Let us denote
by ppro the period with which knowledge is propagated and
by pens the period with which ensembles are evaluated on all
nodes. For simplicity, we assume that ppro and pens are equal
for all nodes in the system. Note the presented analysis can be
easily extended to the more general case where ppro and pens
vary from node to node.

Since these two processes are not synchronized with one
another, we have the following conditions in the worst case:

i) A car propagates its knowledge to the ICS immediately
after a membership evaluation has been performed at the
ICS. As a result, data is received pens time later at the
ICS, when the next membership evaluation is performed.

ii) In a similar manner, the ICS propagates its knowledge to
the corresponding car just after a membership evaluation
has been performed in the car. As a result, data is received
pens time later at the car too.

iii) The knowledge of the car changes immediately after
knowledge has been propagated to the ICS. As a result, the
current knowledge is propagated with a delay ppro from
the car to the ICS, when a new propagation is performed.

iv) The ICS’s knowledge changes immediately after knowl-
edge has been propagated to the car. Hence, the current
knowledge is not propagated until a new propagation is
started ppro time later.

As a result, in the worst case, we have a delay due to the
asynchronous nature of the DEECo framework which is given
by: 2× ppro + 2× pens.

In addition, there is also a process running at the ICS which
computes the new values of speed and steering for the car and
is triggered when a knowledge exchange is executed at the ICS.
We denote by rICS the worst-case response time (WCRT) of
this process. Analogously, there is a process running in the
car, which applies the new speed and steering values to the
physical car. This process is also triggered when a knowledge
exchange happens in the car and its WCRT is rcar

3.

As a result, the worst-case delay Dmax for a closed-loop
reaction in DEECo, i.e., a reaction of the car to an input of the
ICS – which is computed based on the car’s current knowledge
– is given by:

Dmax = 2×ppro+2×pens+cICS+ccar+rICS+rcar, (1)

where ccar is the communication delay from a car to the
ICS and cICS is the communication delay from the ICS to
the car. Since there is interference by other messages (from
other cars), ccar is the maximum possible communication
delay in the network. However, from the ICS to the car, there
is no interference – assuming a full-duplex communication
channel – and the communication delay cICS is equal to
the transmission time, since the ICS does not compete for
accessing the network.

3The purpose of this paper is to illustrate the use of DEECo to model timing
constraints at a component level. The implementation details of the different
processes running at the ICS and in different cars are beyond scope.

Now, to guarantee safety, a car needs to be provided with
new speed and steering values at every single meter of its
trajectory. If the car’s speed is at maximum 50Km/h (assuming
an urban scenario and considering that the ICS controls the
speed in its region of influence), we need to know the time
t1m that it needs to cover 1m of its trajectory:

t1m =
1m× 3600s/h

50 · 103m/h
= 72ms. (2)

As a result, the following condition must hold, in order that
the ICS system can be safely implemented in DEECo:

Dmax ≤ t1m. (3)

Note that in (1), rICS and rcar strongly depend on the
workload at the ICS and in the car respectively. Similarly,
ccar and cICS are given by the message scheduling and
transmission on the network. In contrast to this, ppro and pens
can be configure to meet (3). In the next section, we explain
how to compute rICS , rcar, ccar, and cICS .

V. SCHEDULABILITY ANALYSIS

In order to design safety-critical applications in a
component-based fashion, the implementation of the runtime
framework has to allow a deterministic behavior. Clearly, the
runtime framework needs to rely on specific technologies
that make real-time scheduling and real-time communication
possible. In this section, we specify what conditions have to
be fulfilled in order to guarantee a correct timing behavior of
the overall system.

A. Processing Nodes

The DEECo runtime framework is executed on each node
in the system and is in charge of scheduling component’s
processes. For this, a real-time scheduling algorithm needs
to be provided by the operating system. Since processes are
triggered periodically, we assume the scheduling is performed
in line with the rate monotonic policy [8]. That is, processes
are assigned fixed priorities according to the following rule:
the shorter the period the higher the priority.

Now let us denote by T the set of processes on a given
node. Further, τi is a process that belongs to T where ei
denotes its worst-case execution time (WCET) and pi denotes
its period of repetition. Without loss of generality, let us further
assume that all τi in T are sorted in order of non-decreasing pi
(and hence non-increasing priority), i.e., if j < i, then pj ≤ pi.
For T to be schedulable, the following has to hold for each τi
and 1 ≤ i ≤ |T|, where |T| is the number of elements in T:

i∑
j=1

⌈
pi
pj

⌉
ej ≤ pi. (4)

This expression means that for each process τi to be schedu-
lable (and, hence, for T to be schedulable), the sum of all
executions of higher-priority processes in a time interval equal
to pi plus its own execution ei should be less than its deadline
pi. Note that (4) is sufficient but not necessary. A sufficient
and necessary test can be achieved by response time analysis
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ICS 

Sector I Sector II 

Fig. 2. Priorities are given according to the proximity to the intersection

[9]; however, the sufficient test of (4) is enough for the purpose
of this paper. Now, since the following holds:

i∑
j=1

⌈
pi
pj

⌉
ej ≤

i∑
j=1

(
pi
pj

+ 1

)
ej ,

we can reshape (4) to:

i∑
j=1

ej
pj

+

∑i
j=1 ej

pi
≤ 1. (5)

B. Communication Network

A number of techniques have been already proposed to
realize collision-free communication in VANets [10], [11],
[12], [13]. In addition, since VANets are usually based on
wireless communication [14], we assume that Ethernet IEEE
802.1Q is the underlying protocol. This provides mechanisms
to prioritize messages [15].

In general, we will have a number of access points (AP)
which are connected to a full-duplex switch via Ethernet.
Again, the communication to the AP is collision-free. Assum-
ing that wireless network provides 100Mbps and that messages
are at most 1Kbit (1024 bits), then the transmission time cW
on the wireless network is at most – considering a 144-bit
protocol overhead:

cW =
1024 + 144

100Mbps
= 11.68μs.

However, the switch then sends messages to the ICS ac-
cording to their priorities. Let us consider that the ICS’s region
of influence is divided into sectors with different priorities –
see Fig. 2. Cars that are in the first sector (e.g., within 10m
from the intersection) have higher priority than cars in the
second sector (e.g., from 10m to 20m) and so on. The switch
then sends messages to the ICS according to these priorities.

Let us now analyze the communication segment between
the switch and the ICS. To this end, let M denote the set of all
messages being sent to the ICS over the switch. Further, mi

denotes one such message in M where ci is its transmission
time – note that ci is constant for a given i which results
from the amount of bits to be sent and the bandwidth of
the communication channel – and zi denotes the minimum

inter-arrival time between two consecutive such messages. The
deadline of a message is also given by zi.

Let us assume that all mi in M are sorted in order non-
increasing priority, i.e., if j < i, then mj has higher priority
than mi. For all messages in M to meet their deadlines, the
following has to hold for 1 ≤ i ≤ |M|, where |M| is the
number of elements in M:

bi +

i∑
j=1

⌈
zi
zj

⌉
cj ≤ zi, (6)

where bi denotes blocking time on the network. That is,
whenever a message needs to be sent, a lower-priority message
might eventually be using the communication channel. Since
this lower-priority message cannot be interrupted, there is a
blocking time on the bus. Clearly, in worst case, bi is given
by the maximum transmission time among all lower-priority
messages:

bi =
|M|
max
l=i

(cl). (7)

Similar as before, we can approximate (6) as follows by
removing the ceiling function:

i∑
j=1

cj
zj

+
bi +

∑i
j=1 cj

zi
≤ 1. (8)

Let us assume that the bandwidth of the Ethernet link
between the switch and the ICS is equal to 1Gbps. Now since
we consider a message length of at most 1Kbit (1024 bits) and
a protocol overhead of 144 bits, we have that ci = cE for all
messages mi:

cE =
1024 + 144

1Gbits
= 1.168μs.

Finally, in addition to the transmission time, there is always
a delay at the AP and at switches in Ethernet, which accounts
for buffering and routing tasks. This is typically in the order
of 2μs.

C. Computing ccar

We compute ccar as the maximum delay necessary to send
a message from a car, over the network, to the ICS. For this
let us analyze the delay of the lowest priority message in the
system. This is the message of a car being still away from
the intersection. In addition to all higher priority messages,
we assume that all messages of the same priority are sent
before, which leads to the greatest possible communication
delay. Note that messages are sent by components to the ICS
every ppro time units and also from ICS to the cars at the same
rate – we consider a full-duplex communication, such that it is
possible to send and receive messages simultaneously in both
directions.

To know how many messages are sent at maximum over
this network, we need to compute the maximum number of
cars in the system. To determine this number, let us assume
that a car is at least 2m long and that there is a least a 1m
distance between any two cars. As a result of this, in the worst
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possible case, the number of cars n approaching the crossing
from all directions is given by the following equation:

n = 4×
⌈
50m

3m

⌉
= 68. (9)

Now we can compute the maximum communication delay
between ICS and switch denoted by rE . This can be obtained
from (6) or its approximation (8). For simplicity, we choose
using (8) as shown below:

rE = ppro×68× 1.168μs

ppro
+68×1.168μs = 158.85μs, (10)

where ci and zi have been replaced by cE and ppro respec-
tively, and bi is zero according to (7). Recall that we have two
Ethernet links: one from the AP to the switch and another from
the switch to the ICS. Finally, being eAP = eSW = 2μs the
delay on the switch and AP respectively, ccar can be obtained
by:

ccar = 2× rE + cW + eSW + eAP = 333.38μs. (11)

Clearly, since cICS is the transmission delay on the network
without interference, this is given by:

cICS = 2× cE + cW + eSW + eAP = 18.02μs. (12)

D. Obtaining pens and ppro

There will at most 68 different ensembles (between the
ICS and each of the cars) on the ICS – see (9). In addition,
there will be 68 processes to compute speed and steering
values for each car. Since the ensemble membership check
triggers a knowledge exchange when evaluated true, we can
assume that in worst case all 68 ensemble processes trigger
their corresponding computation processes simultaneously. In
addition, there will be one knowledge propagation process for
the ICS4.

Assuming that all the processes have a WCET ei = 25μs
(note that most these processes consist in checking logic
conditions, assigning pointers to given memory spaces, etc.,
or are simple control algorithms), we can use (5) applied to
the ICS so as to compute pens and ppro:

0.025ms

ppro
+ 68 · 2× 0.025ms

pens
+

(0.025ms + 68 · (2× 0.025ms)

pens
≤ 1.

(13)

Finally, we obtain the following value for pens assuming
2×ppro = pens, i.e., that knowledge propagation is done twice
as frequently as any ensemble membership check5:

pens ≥ 6.88ms.

We choose pens = 14ms – twice as much to relax the workload
on the ICS – and hence ppro = 7ms.

4Note that we assume that the knowledge propagation from cars does not
produce any overhead at the ICS, but in the respective cars.

5This is a design decision that needs to be taken. In general, since ensemble
membership checks rely on local knowledge, it is meaningful that knowledge
be updated as often as necessary to guarantee desired functionality.

AP1 AP2 AP3 

ICS 

Switch 

Fig. 3. Simulated network consisting of three access points (AP) and a switch

E. Testing Schedulability

To test schedulability of the system, we need to verify that
(3) holds. For this it is necessary to compute rICS and rcar,
i.e., the WCRTs of the ICS and the car process respectively.
With the values of pens and ppro that we have obtained before,
we can compute rICS using again (5).

rICS = 14ms×
(
0.025ms

7ms
+ 68 · 2× 0.025ms

14ms

)

+0.025ms + 68 · (2× 0.025ms) ≈ 7ms. (14)

Similarly, we can compute rcar using (5). In the car, there
are only one ensemble process, one process to update the speed
and steering values with those values obtained from the ICS,
and a knowledge propagation process. Again, we assume the
ensemble process triggers the update process at cars. Assuming
that ei = 25μs holds, we obtain:

rcar = 14ms×
(
0.025ms

7ms
+ ·2× 0.025ms

14ms

)

+(0.025ms + 2× 0.025ms = 0.18ms,

and, finally, we have from (1):

Dmax = 2× 7ms + 2× 14ms + 0.3334ms + 0.0181ms

+7ms + 0.18ms ≈ 50ms,

which is less than t1m = 72ms – see (2). That is, our ICS is
able to meet all deadlines in the worst case.

VI. EVALUATION

In this section, we validate the analysis presented above by
simulation. To this end, we created an OMNet++ simulation
[16] using INET hardware models. Our network topology
consists of one ICS host connected by a full-duplex switch
to three AP – see Fig. 3.

At the AP we consider a collision-free communication
protocol as per some VANet technique [10], [11], [12], [13].
The communication from the switch to the ICS host is per-
formed under message prioritization according to 802.1Q. The
simulation scenario spans different numbers of vehicles (20,
50 and 70 correspondingly) exchanging Ethernet packets with
the ICS. Vehicles connect dynamically to the AP adjusting
message priorities as they get closer to the intersection. The
following list summarizes the most important simulation pa-
rameters considered in our evaluation:
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Fig. 4. Car-ICS-Car closed-loop reaction times

Priority levels 7
Message length 1024bits
Packet send interval 7ms (ppro from the analysis)
ICS response delay ppro + pens + rICS = 28ms
A car response delay ppro + pens + rcar = 21.18ms
Bandwidth (Car to AP) 100Mbps
Bandwidth (ICS to AP) 1Gbps

20 vehicles 50 vehicles 70 vehicles

Mean 49.1714 49.2961 49.5333
Std. Dev. 0.06058 0.1411 0.1912
Variance 0.00367 0.01992 0.0365

1st Quartile 49.1161 49.1829 49.4368
Median 49.1696 49.2898 49.5704

3rd Quartile 49.223 49.3967 49.6773
Max 49.3299 49.704 49.9311

Fig. 5. Closed-loop reaction time statistics

Figures 4 and 5 show the results of the simulations with
respect to the closed-loop reaction time. These indicate that the
computed Dmax is safe, i.e., that all delay values in the system
are always less than Dmax even for 70 cars, i.e., two more
cars than what it is considered and allowed by the analysis
presented in the above sections.

VII. RELATED WORK

To position the presented approach among a multitude of
the existing component models, we constrain our focus to those
that enable analyzing timing aspects.

The most prominent example is certainly AUTOSAR [2],
which is of common use in the automotive industry. AU-
TOSAR serves as a specification for different layers (i.e.,
application software, runtime environment and basic soft-
ware) of a system constituted by hierarchical components.
AUTOSAR itself does not provide any means to perform
timing analysis and for that reason it has been enriched by the
TIMing MOdel (TIMMO) [17], which builds on the Timing
Augmented Description Language (TADL).

Another widely used model supporting timing analysis is
AADL (Architecture Analysis and Design language)[18]. It
relies on Real-Time Calculus (RTC) [19], which is a formalism
that allows for system-level performance analysis of stream-
processing systems constrained by hard real-time requirements.

Essentially RTC models are extracted from AADL and subse-
quently the RTC tools can be employed.

Similarly, timing analysis enabled at the model level are
supported by the BIP (Behavior, Interaction, Priority) frame-
work [20]. BIP supports real-time aspects by using timed
components, which allow for timing properties being specified
using timed variables and transitions. Those are accounted for
during the validation within the real-time engine implementing
operational semantics of the BIP models.

An architectural approach to modeling systems is also
taken by SysML, which integrates with MARTE [21] to enable
modeling non-functional properties such as power consump-
tion, performance and timing.

However, AUTOSAR, AADL, SysML and BIP assume
static component architectures, which effectively prevents their
application in case of modern CPS development. In contrast,
our approach targets at open-ended CPS where the architecture
changes continuously (e.g., cars appear and disappear without
anticipation) and leads to emergent behavior in the system.

Another example of a component model that allows for
timing estimates of a system is the Palladio Component
Model (PCM) [22]. The strongest point of PCM is the extra-
functional property prediction framework that allows estimat-
ing overall system performance. It relies on different models,
depending on what is required to be analyzed (e.g., reliability,
performance, throughput, etc.). These are decorated by non-
functional properties specification, which serves as an input
for model analysis. Similar to our approach PCM builds
on simulation-based techniques for model validation, which
allows exploring different designs for a given system or appli-
cation. However, in a similar manner as the related approaches
above, PCM does not support dynamic architectures, which
again limits its applicability in today’s complex CPS.

VIII. CONCLUDING REMARKS

In this paper, we have presented DEECo as a special-
purpose, component-based, design and development frame-
work for open-ended CPS. DEECo specifically targets at
dynamic distributed systems and, thus, provides systematic
software engineering mechanisms to describe and analyze
such complex application scenarios. These mechanisms mainly
consist in modeling transitory interactions between one or
more components in the system.

We extended DEECo’s design flow by a technique to esti-
mate worst-case, closed-loop, response times between DEECo
components. This effectively allows guaranteeing real-time
requirements from high-level DEECo-based designs provided
that the underlying platform supports real-time, e.g., real-time
operating system, priority-based communication protocols, etc.
Clearly, if the underlying technologies are nondeterministic,
then it is not possible to provide any timing guarantees
and, as a consequence, no safety-critical applications can be
implemented on their basis.

We illustrated our proposed technique based on an intelli-
gent crossroad scenario. Towards this, we derived the worst-
case delay Dmax of a DEECo-based system – see Eq. (1).
This analysis is general enough and can be used for other
applications. Note that the term 2 × ppro + 2 × pens is the
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overhead by DEECo, whereas cICS + ccar and rICS + rcar
stand for the communication and the computation overhead
respectively. DEECo’s overhead is configurable by properly
choosing ppro and pens which again need to be in accordance
with the application requirements. The communication and
computation overhead will depend on the used technologies
such as communication protocols, scheduling algorithms, etc.

We envision integrating the proposed technique into the
existing ensemble development life cycle [23], which provides
a systematic approach (i.e., methodology) towards engineer-
ing (ensemble-based) CPS. The presented work fits into the
modeling part of that cycle, which is followed by verification
performed on the basis of simulation techniques – similar to the
procedure shown in this paper. An important aspect is also the
requirements engineering part, which should besides functional
properties also account for non-functional, in particular, real-
time aspects.

Overall, the technique presented in this paper allows rea-
soning about real-time requirements at the component level
and constitutes a necessary step towards holistic software
engineering methods for modern cyber-physical systems.
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