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In this paper, we deal with the schedule synthesis problem of mixed-criticality cyber-physical systems
(MCCPS), which are composed of hard real-time tasks and feedback control tasks. The real-time tasks
are associated with deadlines that must always be satisfied whereas feedback control tasks are charac-
terized by their Quality of Control (QoC) which needs to be optimized. A straight-forward approach to
the above scheduling problem is to translate the QoC requirements into deadline constraints and then,
to apply traditional real-time scheduling techniques such as Deadline Monotonic (DM). In this work,
we show that such scheduling leads to overly conservative results and hence is not efficient in the above
context. On the other hand, methods from the mixed-criticality systems (MC) literature mainly focus on
tasks with different criticality levels and certification issues. However, in MCCPS, the tasks may not be
fully characterized by only criticality levels, but they may further be classified according to their criticality
types, e.g., deadline-critical real-time tasks and QoC-critical feedback control tasks. On the contrary to tra-
ditional deadline-driven scheduling, scheduling MCCPS requires to integrate both, deadline-driven and
QoC-driven techniques which gives rise to a challenging scheduling problem. In this paper, we present
a multi-layered schedule synthesis scheme for MCCPS that aims to jointly schedule deadline-critical,
and QoC-critical tasks at different scheduling layers. Our scheduling framework (i) integrates a number
of QoC-oriented metrics to capture the QoC requirements in the schedule synthesis (ii) uses arrival curves
from real-time calculus which allow a general characterization of task triggering patterns compared to
simple task models such as periodic or sporadic, and (iii) has pseudo-polynomial complexity. Finally,
we show the applicability of our scheduling scheme by a number of experiments.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The trend in many cost-driven domains such as automotive
evolves from federated architectures which are comprised of many
networked electronic control units (ECUs) each implementing a
specific functionality, to more integrated architectures which require
the integration of several functions on more powerful processing
components [2]. As a consequence, such systems need to support
the execution of software with different criticality, and hence, are
generally referred to as mixed-criticality systems (MC). Such systems
are prevalent in various application domains such as automotive
systems, avionics, and automation industry, and are certified
according to stringent industrial standards which precisely specify
different levels of criticality. For instance, the DO-178B specifica-
tion, an avionics software standard, describes five levels (from A
to E) to indicate the criticality of functions [5]. Similarly, the ISO
26262, an automotive safety standard, introduces four safety integ-
rity levels (ASIL) [6]. In this context, certification in MCs has drawn
a lot of attention [7,15,8]. Towards this, tasks with high criticality
are subject to stringent certification processes while less critical
functions have to pass a less rigorous process. For example, depend-
ing on the criticality of a task the certification authority may specify
different requirements to determine the value of the worst-case
execution time (WCET). That is, for certification, high critical tasks
may be characterized by more pessimistic WCET estimates for
schedulability analysis than for conventional (internal) analysis.
In particular, many of the high critical tasks in a car or an airplane
implement safety–critical control applications where embedded
computers monitor and regulate physical processes via feedback
loops. Such systems are characterized by tight interactions of the
computational components with the physical processes and are
commonly referred to as Cyber-Physical Systems (CPS) [1]. More-
over, in highly integrated architectures the safety–critical feedback
control tasks co-exist with conventional hard real-time tasks on the
same platform sharing resources. More specifically, such systems
are made up of a mix of (i) time-critical real-time tasks with hard
deadlines, and (ii) safety–critical feedback control tasks imposing
Quality of Control (QoC) requirements. In this work, we refer to
such systems as mixed-criticality cyber-physical systems (MCCPS).
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Here, the difference to conventional MCs is that in MCCPS the
criticality of tasks may not be sufficiently characterized by discrete
criticality levels, but in addition, the tasks may be classified accord-
ing to criticality types. For example, two tasks may exhibit the
same criticality level, e.g., a time-critical real-time task, and a
safety–critical control task, however, their criticality type may dif-
fer. Consequently, the criticality types must be exploited in the
schedule synthesis. To this end, we consider two criticality types:
(i) deadline-critical real-time tasks, and (ii) QoC-critical control
tasks. On the one hand, deadline-critical tasks are associated with
hard real-time constraints, i.e., deadlines, that must always be sat-
isfied. That is, any deadline miss may result in a malfunction of the
system potentially causing a catastrophe (e.g., a task deploying an
airbag). On the other hand, QoC-critical control tasks impose stabil-
ity and QoC constraints. Clearly, a stable system is necessary for the
correct functioning of control applications. However, in most feed-
back control systems, stability is not a sufficient condition to ensure
the desired and safe functioning of the system, and hence, specified
QoC requirements need to be met. For instance, for cruise control it
is not sufficient to ensure that the car reaches the desired speed v
set by the driver (i.e., stability) but it is also important that v is
reached within a certain specified time t with an accuracy of a
(i.e., QoC).

The (necessary) stability condition may be expressed as a dead-
line constraint of the corresponding control task, and hence, can be
verified using conventional schedulability analysis. In contrast, the
QoC requirements cannot be easily translated into deadlines.

� Since a shorter delay potentially improves QoC [27], the QoC
optimization problem can be cast as the problem of finding
the minimum deadlines for which schedulability is not violated.
� In addition, finding the optimal deadlines for the control tasks

depends on the interplay between the feedback delays and
associated QoC characteristics. While considering multiple con-
trol tasks, the problem becomes even harder due to the different
sensitivity to the feedback delays.

Consequently, platforms implementing MCCPS need to be capa-
ble of meeting the requirements of both, deadline-critical and QoC-
critical control tasks. This gives rise to a challenging scheduling
problem which requires conjoining control engineering and real-
time disciplines in an integrated scheduling framework.

Related work: There exists a wide range of literature on schedul-
ing of real-time systems. Along the lines of scheduling in MCCPS,
three major directions of related work have become apparent
which we classify as work on (i) jointly scheduling tasks with both
soft and hard time constraints (ii) scheduling MCs, and (iii) control/
scheduling co-design.

In (i), the problem of jointly scheduling soft real-time tasks
while guaranteeing the deadlines of hard real-time tasks has
already been addressed in early research works. Burns et al. [16]
and Davis [17] introduced a dual priority scheme for jointly sched-
uling tasks with hard and soft deadlines. The range of available
priorities is distributed among different priority bands where pri-
orities associated with the upper band represent highest priorities.
Further, hard real-time tasks are assigned two priorities, from the
upper and lower bands, respectively, whereas tasks with soft dead-
lines are scheduled at run-time in the lower band.

Server-based approaches such as Priority Exchange Sever [9],
Sporadic Server [10], and Deferrable Server [11], have been studied
to jointly schedule real-time tasks and best-effort tasks. These
approaches primarily use most processor bandwidth to service
the periodic real-time tasks, e.g., scheduled according to Rate
Monotonic (RM). The remaining bandwidth is then used to service
the best-effort tasks. Similarly, server mechanisms have also been
studied applying dynamic priority assignment schemes such as
EDF [12]. However, the server-based approaches are restricted to
periodic real-time tasks and consider best-effort tasks to be pro-
cessed in the background at lower priorities, potentially resulting
in long response times. To overcome this drawback, polling servers
have been introduced for periodically executing the soft real-time
tasks at highest priorities. However, if the computational demands
exceed the server capacity, then the execution of the soft-real time
tasks might not be completed before the next release of the polling
server, which effectively leads to long response times. Another
approach has been presented by Lehoczky et al. [13] and Davis
et al. [14]. They propose slack stealing algorithms to minimize soft
real-time task response times whilst guaranteeing the deadlines of
the hard real-time tasks. For this, the maximum amount of slack
which may be stolen from the hard real-time tasks is computed.
However, the presented techniques suffer from restrictions which
limit their practical use to only a small range of task sets. More pre-
cisely, both approaches are restricted to strictly periodic tasks only,
and the latter approach suffers from a high execution time over-
head due to the algorithm, which makes the approach infeasible
in practice.

In summary, the above mentioned works present contributions
for jointly scheduling soft real-time or best-effort tasks and hard
real-time tasks. However, the characterization of feedback control
tasks is fundamentally different in the following ways:

� Soft deadlines may be occasionally missed and their violation
does not seriously harm the system. Similarly, firm deadlines
can be missed but there is an upper limit on the number of
misses within a given time interval. Due to the stringent stabil-
ity requirements, control tasks are generally classified as firm
real-time tasks rather than soft real-time tasks. However, since
we aim to optimize the QoC, we do not allow any deadline
misses to avoid potential QoC degradation.
� The QoC of a control task is highly sensitive to its feedback

delay. Consequently, the optimal priority assignment among
multiple control tasks is not a traditional delay minimization
problem. Rather, it depends on the interplay between the delay
and associated QoC characteristic.

As a result, the above techniques are not applicable in our
setting.

In (ii), there has been a tremendous research effort towards
analysis and synthesis of mixed-criticality systems. Generally, re-
search on MCs is mainly centering on the question: how to cope
with the conflicting design requirements of safety assurance, resource
efficiency, flexibility and extensibility. Towards this, Islam et al. [18]
propose a dependability-driven approach for the integration of
both safety–critical and non-safety critical software functionalities
on shared resources. In this context, the mapping process considers
functional and extra-functional constraints of dependability and
real-time. De Niz et al. [21] and Lakshmanan et al. [22] describe
schedule synthesis techniques in MCs using zero-slack scheduling
algorithms. Here, the goal is to minimize the utilization demand
by reducing preemption of low-criticality tasks by tasks with high
criticality using different modes. For this purpose, every task is
either in normal mode where it is scheduled based on its fixed pri-
ority or in critical mode where the scheduler suspends tasks with
low criticality such that critical tasks steal their slack. Further,
Lakshmanan et al. [19] studied scheduling of mixed-criticality cy-
ber-physical systems under overload conditions. This approach
guarantees the timing requirements of the more critical tasks in
overload situations. Recently, work related to verification and cer-
tification of MCs has gained a lot of attraction in academia and in
industry. In this context, Vestal [20] assumes that tasks with differ-
ent criticality levels are associated with different levels of assur-
ance. That is, the higher the degree of assurance required (higher
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criticality), the larger and more conservative worst-case execution
times (WCET) are considered for schedulability analysis. In other
words, the WCET values must have the same level of assurance
as required for the corresponding task. Towards this, it is shown
that the classical real-time scheduling policies such as DM are
not optimal for MCs. To overcome this drawback, they propose a
multi-criticality scheduling technique as an extension of fixed pri-
ority scheduling (FPS). This line of research has been followed by a
number of works which present contributions to various fields re-
lated to certification of MCs such as mixed-criticality workload
models [7], mixed-criticality scheduling techniques [15], and re-
sponse-time analysis for MCs [8].

Since the above lines of research made significant contributions
in the field of certification and scheduling in MCs they are con-
cerned with mixed-criticality task sets characterized by discrete
criticality levels. In the setting we consider in this work, the quan-
tification of mixed-criticality by criticality levels does not capture
the QoC optimization of feedback control tasks. For this purpose,
we extend the existing notion of mixed-criticality for MCCPS by
criticality types, and we propose an integrated scheduling scheme
which exploits the criticality types for optimizing QoC.

In the area of (iii) there has been considerable amount of work
on schedule synthesis for control applications. In particular, the
area of control/scheduling co-design [23] has recently gained a lot
of attention with the goal to design the embedded platform, e.g.,
the schedules, and the controller, i.e., sampling periods and con-
troller gains. In the area of scheduler design for optimized QoC,
Voit et al. [25] studied the problem of optimally chosing the
parameters of hierarchical schedules on the communication bus
in order to improve multiple control performance metrics. Focus-
ing on controller design, Bini et al. [27] studied the problem of
optimal period assignment for multiple control tasks using approx-
imate response-time analysis under FPS. Similarly, Wu et al. [29]
propose an integrated approach to improve the control perfor-
mance through proper selection of task periods and deadlines un-
der EDF scheduling. The works presented by Goswami et al. [32],
Jia et al. [28] and Majumdar et al. [31] allow transmission failures
in the feedback loop. Exploiting this, the overall design of the con-
troller and the scheduler is optimized. Aminifar et al. [26] present a
design flow which uses both worst-case and average QoC and sta-
bility for determining periods, task schedules, and controller
parameters. Similarly, Samii et al. [24] propose a design that inte-
grates static and priority-based scheduling in the controller design
with the goal to optimize QoC.

Although, these works made significant contributions in con-
troller/scheduler co-design with the goal to optimize QoC, they
are solely concerned with scheduling control tasks for optimized
QoC. However, the work presented in this paper focuses on the
joint schedule synthesis of mixed task sets comprising of feedback
control tasks and hard real-time tasks. Such joint scheduling has
been addressed in Goswami et al. [34] for a time-triggered archi-
tecture. In this work, we present a general framework for schedul-
ing such mixed task sets under FPS.

This article extends an earlier version [33] of our work which
investigated the basic MCCPS scheduling problem on an illustrative
task set. In this paper, we extend the previous work in several
directions: (i) we introduced multiple QoC-oriented metrics which
can easily be integrated in our framework and enhance our analy-
sis (ii) we provide run times of our scheduling algorithms, and we
show that our results are close to the theoretical optimal solutions
whereas the earlier version [33] contains no such evaluations, (iii)
we perform a sensitivity analysis to study the sensitivity of our ap-
proach to variations in the real-time task parameters, and we com-
pare our results with the classical DM approach and a QoC-aware
priority assignment scheme, and finally (iv) we implemented the
presented concept in a controller/plant co-simulation framework
to apply and verify the theoretical outcomes of our analysis.

Problem statement and contributions: In this work, we address
the schedule synthesis problem for a task set that is mapped onto
a shared resource implementing an MCCPS as depicted in Fig. 1.
The task set consists of a number of deadline-critical tasks T 2 srt

(see T1; T2; T3), and a number of QoC-critical control tasks T 2 sc

(see T4; T5). Due to its execution time and interference from other
tasks, each task experiences a response time or delay D. Further,
each deadline-critical task is associated with a relative deadline d
which must always be satisfied. On the other hand, the QoC of a
control task deteriorates with increasing D according to the func-
tion JðDÞ, which depends on the controller design, the system to
be controlled, and the delay D experienced by the control task. Fur-
ther, some control tasks are intrinsically more sensitive to delay
than others. For instance, reducing the delay of a control task T4

(see Fig. 1) by some amount D might result in a QoC increase which
is less than that of reducing T5’s delay by the same amount D. As a
consequence, finding a priority assignment that leads to the max-
imum possible overall QoC requires analyzing the behavior of all
control tasks for all possible priority levels. That is, if n is the num-
ber of all tasks in the system, finding the optimal priority assign-
ment requires Oðn!Þ time (i.e., factorial of n), which results in an
exponential complexity on the number of tasks in the system. An
algorithm with exponential complexity is not suitable for large-
or even mid-size problem settings, and hence, there is a need for
designing efficient scheduling algorithms. To address this problem
we need to jointly consider deadline-driven and QoC-driven sched-
uling techniques in an integrated schedule synthesis framework as
depicted in Fig. 1. In this paper, the overall goal is to design a pri-
ority assignment technique with the following objectives:

1. All the real-time tasks meet their deadlines d in the worst-case
D 6 d; 8T 2 srt : ð1Þ
2. The overall QoC of all the control tasks is maximized, i.e.,
maximize
J� ¼
X
8T2sc

JðDÞ: ð2Þ
Clearly, for deadline-critical tasks, it is meaningful to assign pri-
orities according to the Deadline Monotonic (DM) policy, i.e., the
shorter the deadline of a task the higher its priority, since this re-
sults in an optimal priority assignment [35]. That is, if a fixed-pri-
ority schedule is feasible under any priority assignment, then DM
will also be feasible. However, the inverse does not hold. In other
words, if DM is feasible, it does not necessarily imply that any
other schedule (different to DM) would also be feasible. For
MCCPSs, we define an optimal schedule such that (i) the schedule
is feasible, i.e., all deadlines are satisfied (see (1)), and (ii) the over-
all QoC is maximum (see (2)). Consequently, the DM scheme does
not necessarily provide optimal results as the criterion in (ii) is not
explicitly taken into account, even though it provides an optimal
priority assignment for purely deadline-driven tasks as described
in (i). For this reason, in this work, we present a multi-layered
scheduling scheme to synthesize schedules for deadline-critical
and QoC-critical tasks according to 1 and 2. Our scheme can be
summarized as follows:

� In Section 2, we give an overview of the timing analysis tech-
niques and the control theoretic fundamentals that we use in
our scheduling framework. In particular, the triggering patterns
of tasks are modeled as arrival curves which allow for a more
expressive representation of task triggering patterns compared
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to standard models. Hence, our scheduling framework is neither
restricted to periodic task triggerings nor to any deadline con-
straints such as deadlines smaller than periods.
� In Section 3, we describe the multi-layered scheduling scheme

which integrates appropriate scheduling strategies at each layer
for different criticality types. That is, deadline-critical tasks are
scheduled at layer 1 with the goal to guarantee deadlines
whereas QoC-critical control tasks are scheduled at layer 2 with
respect to stability and QoC optimization. For this purpose, we
introduce several QoC-oriented metrics that allow capturing
the QoC requirements during schedule synthesis. Finally, we
show that our algorithm has pseudo-polynomial complexity.
� In Section 4, we demonstrate the applicability of our proposed

scheme by a number of experiments. We evaluate and compare
the results with the DM and a QoC-aware approach, and show a
sensitivity analysis using several task sets for different resource
utilizations. Finally, to demonstrate the usefulness of our
scheme, we also implemented a MCCPS task set on a real hard-
ware/software setup. Our proposed approach may be seam-
lessly applied with fixed priority preemptive schedulers which
are widely used in the automotive domain (OSEK, AUTOSAR).

2. Theoretical background

Before we present our scheduling scheme, we first give an over-
view on the analytical techniques we use to model the MCCPS, and
to compute the delays of tasks. For this purpose, we use real-time
calculus (RTC) [37] which allows computing and propagating anal-
ysis results in a compositional manner, and hence, RTC exhibits
expedient features for integration in a modular scheduling frame-
work. Further, we give a brief review on control theory basics and
we present the control task model used in this work.
vdist(f,g)

t
Fig. 2. Delay and backlog computation.
2.1. Real-time tasks

RTC is an analytical framework for worst-case performance
analysis of real-time systems. RTC allows modeling of (i) the
triggering pattern of tasks (event model) which generate execution
demands on a resource, and (ii) the service offered by a resource
(resource model), e.g., a processor, to each task running on it. The
mathematical framework of RTC is based on (min,+) and (max,+)
algebra and has its roots in network calculus [36].

Terms and definitions: Let R ¼ R [ fþ1;�1g where R is the set
of real numbers and F be the set of monotonic functions
F ¼ ff : Rþ ! R j 8s < t; 0 6 f ðsÞ 6 f ðtÞg where Rþ is the set of
non-negative real numbers. Further, the supremum (sup) of a set
S #F is the smallest U 2 F such that h 6 U for all h 2 S. Similarly,
the infimum (inf) of S is the largest L 2 F such that h P L for all
h 2 S.

The (min,+) convolution � and deconvolution Ø operators are
defined as: 8f ; g 2 F ; 8t 2 Rþ

f � gð ÞðtÞ ¼ inf f ðsÞ þ gðt � sÞ j0 6 s 6 tf g;
f Øgð ÞðtÞ ¼ sup f ðt þ uÞ � gðuÞju P 0f g:

Similarly, the (max,+) convolution� and deconvolution Ø operators
are defined as: 8f ; g 2 F ; 8t 2 Rþ

f�gð ÞðtÞ ¼ sup f ðsÞ þ gðt � sÞ j 0 6 s 6 tf g;

f Øg
� �

ðtÞ ¼ inf f ðt þ uÞ � gðuÞ j u P 0f g:
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The maximum vertical and horizontal deviation (distance) between
two functions f ; g 2 F are given by: (see Fig. 2)

vdistðf ; gÞ¼def supf f ðtÞ � gðtÞ j t P 0 g; ð3Þ

hdistðf ; gÞ¼def sup inf s P 0jf ðtÞ 6 gðt þ sÞf g j t P 0f g: ð4Þ

Further, a function f 2 F is sub-additive iff f ðxþ yÞ 6 f ðxÞ þ f ðyÞ for
all x and y in Rþ. Similarly, f is super-additive iff f ðxþ yÞP
f ðxÞ þ f ðyÞ for all x and y in Rþ. In this paper, we assume that all gi-
ven upper (lower) functions satisfy sub-additivity (super-additivity)
before the analysis.

Event model: Triggering patterns of tasks are modeled using a
count-based abstraction where an arrival pattern of a stream is
modeled as a cumulative function RðtÞ denoting the number of
events that arrive during the time interval ð0; t�. The maximum
and minimum number of events that are recorded during any time
interval of length D is represented by a pair of arrival functions
a ¼ ðau;alÞ that is defined as

8D P 0; 8t P 0 : alðDÞ 6 RðDþ tÞ � RðtÞ 6 auðDÞ: ð5Þ

Arrival curves allow for an expressive characterization of event
streams which are able to represent standard event models, e.g.,
periodic, periodic with jitter and sporadic, as well as arbitrary arrival
patterns. Standard event arrival patterns are often specified by the
tuple ðp; jÞ, where p denotes the period, and j the jitter. The corre-
sponding pair of arrival curves to this specification is modeled as

alðDÞ ¼ D� j
p

� �
; and auðDÞ ¼min

Dþ j
p

� �
;

D
j

� �� 	
: ð6Þ

Fig. 3 shows an example of a pair of arrival curves specified as
a ¼ ð10;55Þ, i.e., p ¼ 10; j ¼ 55.

Resource model: Similarly, resource capacities are captured by a
cumulative function CðtÞ denoting the number of events that can
be processed by a resource in the time interval ð0; t�. The maximum
and minimum number of events that can be processed in any time
interval of length D is upper- and lower-bounded by a pair of ser-
vice functions b ¼ ðbu; blÞ which are defined as

8D P 0; 8t P 0 : blðDÞ 6 CðDþ tÞ � CðtÞ 6 buðDÞ: ð7Þ

Further, b can also be expressed in terms of the maximum and min-
imum number of available resource units, e.g., processor cycles.

Compositional analysis: Let us consider an arrival pattern which
is bounded by the arrival functions a ¼ ðau;alÞ and triggering task T
on a resource with available service b ¼ ðbu; blÞ as illustrated in
Fig. 4(a)). Further, let us assume the buffer that stores arriving
events has infinite capacity.

Then, according to (3) and (4) the maximum backlog B at the in-
put buffer, i.e., the maximum buffer space required to buffer this
event stream, and the maximum delay D experienced by the input
stream a are given by
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Fig. 3. Arrival curve a ¼ ð10;55Þ.
B ¼ vdistðau;blÞ; and D ¼ hdistðau; blÞ: ð8Þ

The bounds on the output arrival functions a0 and remaining
service functions b0 for a greedy preemptive processing component
are computed as follows [37]:

au0 ¼min au � buð ÞØbl; bu
n o

; ð9Þ

al0 ¼min alØbu
 �
� bl; bl

n o
; ð10Þ

bu0 ¼ bu � al

 �

Ø 0; ð11Þ

bl0 ¼ bl � au
� �

� 0: ð12Þ

Further, the bounds on the processed arrival curves a0 ¼ ðau0;al0Þ,
and the remaining service b0 ¼ ðbu0;bl0Þ can be used in a composi-
tional manner. Consider the example in Fig. 4(b)) where the input
streams a1 and a2 are processed by the tasks T1 and T2 on a resource
with total service b1. Assume the output of T1 is processed by task
T3 using service b2, and T1 and T2 are scheduled according to fixed
priority preemptive scheduling (FPS) where T1 is assigned a higher
priory than T2. Then, the full service b1 is available to the task with
the highest priority (T1) to process its input stream (a1). The backlog
and worst-case delay are computed as B1 ¼ vdistðau

1;b
l
1Þ and

D1 ¼ hdistðau
1;b

l
1Þ. The bounds on the processed output stream a01

and the remaining service b01 are computed using (9)–(12). Now,
b01 is used to compute the performance bounds of task T2 which pro-

cesses input stream a2, i.e., B2 ¼ vdistðau
2; b

l0
1Þ and D2 ¼ hdistðau

2;b
l0
1Þ.

In a similar way, the processed output stream a01 is used as an input
for task T3 using service b2. The total end-to-end delay experienced
by the input stream a1 can now be computed as ~D1 ¼ hdistðau

1; b
l
1Þþ

hdistðau0
1 ;b

l
2Þ.

2.2. Control tasks

Before describing the control task models, we briefly review
some basic concepts from control theory. A feedback control system
aims to achieve the desired behavior of a dynamical system by
applying appropriate inputs (that are computed based on the feed-
back signals) to the system. In general a dynamical system is mod-
eled by a set of differential equations called the state-space model,

_xðtÞ ¼ AxðtÞ þ BuðtÞ; ð13Þ

where xðtÞ 2 Rn is the system state and uðtÞ 2 R is the control input to
the system. A 2 Rn�n and B 2 Rn�1 are the system and input matrices,
respectively. A feedback control loop performs mainly three
sequential operations:

� measure the states xðtÞ (measure),
� compute input signal uðtÞ (compute) and,
� apply the computed uðtÞ to the plant (13) (actuate).

Performing these operations in a continuous fashion in any
implementation platform requires infinite computational power.
Hence, in a digital implementation platform for such a feedback
loop, these operations are performed only at discrete-time
intervals (sampling instants) tk for k 2 N0. The time interval
between two consecutive executions of a feedback control loop
(control task) is the sampling period tkþ1 � tk ¼ h. In an
ideal implementation with constant sampling period h, the
continuous plant dynamics can be transformed into a discrete-
time dynamics,

x½kþ 1� ¼ Adx½k� þ Bdu½k�; ð14Þ
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Fig. 4. (a) RTC processing model, (b) Compositional analysis.
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1 The time duration from the start of execution of measure operation and end of
execution of actuate operation is known as sensor-to-actuator delay or response time D
of a control task. For the rest of the paper, we will refer to D as delay of a control task
T 2 sc .
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where

Ad ¼ eAh; Bd ¼
Z h

0
eAtdt � B:

In general, a feedback control algorithm utilizes the full or reduced-
order states in computing u½k� so as to meet certain high-level
design requirements. In the case of full state-feedback control, the
control law u½k� is given by,

u½k� ¼ Kx½k�; ð15Þ

where K is the state-feedback gain which needs to be designed.
Clearly, the closed-loop dynamics becomes as follows in this case,

x½kþ 1� ¼ ðAd þ BdKÞx½k�:

The behavior of the closed-loop system depends on various proper-
ties of ðAd þ BdKÞ. The eigenvalues of ðAd þ BdKÞ are called system
poles. In this work, a desired set of system poles is achieved by
designing the feedback gain K using pole-placement technique
[38]. Such ideal implementation implicitly assumes instantaneous
execution of three operations – measure, compute and actuate. The
QoC that we achieve with an ideal implementation is referred to
as nominal performance. In an embedded platform with limited
computational capacity, these three operations consume a finite
amount of time for their execution.

In general, variable feedback delay or jitter in the delay experi-
enced by the control messages results in multiple switching subsys-
tems (depending on the exact duration and sequence of the
feedback delays) and the controller must be appropriately
designed to stabilize the resulting switched system. However, it is
very difficult to provide any analytical guarantees on the perfor-
mance of such switched systems. Since our work mainly targets
QoC-critical applications, we use a control task model such that the
feedback delay remains constant, and hence, jitter can be avoided.

Our control task model is based on the Logical Execution Time
(LET) paradigm [3] where the operations measure, compute, and
actuate are performed sequentially in one task as depicted in
Fig. 5(a). According to this model, we first analyze the worst-case
response times1 Dwc of the control tasks. Next, we ensure that the
measure and the actuate operations are separated by exactly Dwc

time units as depicted in the figure. This essentially means that
the actual response times of the jobs of a control task may experience
delays D 6 Dwc , but the actuation is only performed after Dwc time
units (see wait in Fig. 5(a)) to realize constant delays in the feedback
loops. Such a task model has the following advantages which we ex-
ploit in this work:

� In contrast to a contoller with time-varying feedback delay, a
controller with constant feedback delay imposes less stringent
deadline constraints to ensure stability [30]. Naturally, a longer
deadline leads to better schedulablility.
� The fixed timing constraints on the control task implementation

are platform independent. Consequently, the I/O behavior, and
thus, the QoC behavior of the control application is time and
value deterministic [4].

In the process of executing such a control loop, the control input
uðtÞ is held until the next update (see Fig. 5(b)), i.e.,
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uðtÞ ¼ KxðtkÞ; tr
k 6 t 6 tr

kþ1: ð16Þ

Given the input signal (16) and the delay being D < h, the discrete-
time system (14) becomes a sampled-data system [39],

x½kþ 1� ¼ Adx½k� þ B0ðDÞu½k� þ B1ðDÞu½k� 1�; ð17Þ

where

Ad ¼ eAh; B0ðDÞ ¼
Z h�D

0
eAtdt � B; B1ðDÞ ¼

Z h

h�D
eAtdt � B:

Putting (16) in (17), we get the following closed-loop system,

x½kþ 1� ¼ Adx½k� þ B0ðDÞKx½k� þ B1ðDÞKx½k� 1�: ð18Þ

In (18), we assume that u½�1� ¼ 0 for k ¼ 0. Next, we define new
system states z½k� ¼ x½k� 1� x½k�½ �0 and we obtain,

z½kþ 1� ¼ Aclðh;DÞz½k�; ð19Þ

where

Aclðh;DÞ ¼
0 K

B1ðDÞK Ad þ B0ðDÞK

� 

; ð20Þ

where K is the unity matrix. Stability of the overall closed-loop sys-
tem is governed by the properties of Aclðh;DÞ and for stability, the
absolute value of maximum eigenvalue of Aclðh;DÞ should be less
than unity, i.e.,

jkmaxðAclðh;DÞÞj < 1: ð21Þ

The closed-loop system might become unstable when D is long and
fails to meet (21). In an ideal implementation, the delay of a control
application is D ¼ 0. An actual implementation under resource con-
straints results in D > 0 which causes deterioration in the QoC of a
control loop. As a QoC measure, we consider stability margin [42] of
a control loop, i.e.,

JðDÞ ¼ 1� jkmaxðAclðh;DÞÞj ð22Þ

as illustrated in Fig. 6. In this work, we assume that the QoC JðDÞ of a
given control system is a monotonically decreasing function of the
delay D [27], i.e.,

JðDiÞ > JðDjÞ; 8Dj < Di 6 Dwc: ð23Þ

The stability margin2 quantifies how far is the feedback loop from
being unstable. As a QoC metric, we consider the degradation in
QoC due to implementation irregularities (such as D > 0) from their
performance with an ideal implementation (where D ¼ 0). The QoC
achieved with an ideal implementation is defined as nominal perfor-
mance J0, where

J0 ¼ 1� jkmaxðAclðh;0ÞÞj: ð24Þ

For a given worst-case delay Dwc of a control task, the corre-
sponding QoC is indicated as JðDwcÞ as depicted in the figure. As ex-
plained, the delay D ¼ Dwc is constant and the resulting QoC is
exactly JðDwcÞ. Naturally, we aim to reduce Dwc by an appropriate
priority assignment such that the resulting QoC JðDwcÞ improves.
Since our goal is to improve the overall QoC of all control applica-
tions (see (2)), the priority assignment highly depends on the rela-
tion between Dwc and the function JðDwcÞ of all control tasks.

3. Multi-layered schedule synthesis scheme

In this section, now we present our main result. We first
formally describe the setting under consideration, followed by
the basic scheme of our proposed approach. Next, we outline the
2 Note that the presented scheme is also applicable to any other QoC-metric e.g.,
quadratic error and settling time, that follows the monotonicity property depicted in
(23).
details of our algorithm followed by a discussion on the algorithm
complexity.

3.1. System description

We consider an MCCPS where the task set s is mapped and exe-
cuted on a single resource r sharing total available service br

according to FPS. Let srt 	 s denote the set of deadline-critical
real-time tasks, and sc 	 s be the set of QoC-critical control tasks.
We assume that all tasks are independent from each other. Further,
let the task indices be i 2 I with I ¼ f1;2; . . . ;ng; Irt 	 I denoting
the set of indices related to srt , and Ic 	 I indicating the set of
indices related to sc such that Irt \ Ic ¼ ;. Each task Ti 2 s is charac-
terized by the tuple ðai; ei; di;piÞ where

� ai ¼ ðau
i ;al

iÞ denotes a pair of arrival curves according to (5)
which triggers the execution of task Ti,
� ei ¼ ðeu

i ; e
l
iÞ specifies the maximum and the minimum execution

demand of Ti, where eu
i ; e

l
i 2 Rþ,

� di 2 Rþ represents the relative deadline of Ti 2 srt . For Ti 2 sc; di

specifies the maximum delay at which the control system is still
stable, i.e., the maximum D at which inequality (21) is fulfilled,
� pi 2 P, with P ¼ f1;2; . . . ;ng, and pi denoting the unique prior-

ity of Ti 2 s on resource r. Further, pi ¼ 1 represents the highest
priority, and pi ¼ n the lowest.

Further, br denotes the total available service on resource r (see
(7)). The real-time task set srt is referred to as schedulable iff all the
tasks Ti 2 srt meet their deadlines, i.e., Di < di; 8i 2 Irt .

On the other hand, the control task set sc is schedulable iff all
the tasks Ti 2 sc meet their stability constraints, i.e.,
jkmaxðAclðh;DiÞÞj < 1; 8i 2 Ic. However, in contrast to the real-time
tasks, it is not sufficient to just meet this constraint but in addition
it is necessary to maximize the overall QoC J� ¼

P
i2Ic

Ji where Ji is
shown in (22).

3.2. Multi-layered scheduling scheme

Before we present the details of our proposed schedule synthe-
sis algorithm we first outline the basic scheme using the example
depicted in Fig. 7. As described above, the overall goal is to come up
with a priority assignment such that the all real-time tasks Ti 2 srt

meet their firm deadlines di, and at the same time, overall QoC is
optimized for the control tasks Ti 2 sc . For this we present a mul-
ti-layered scheduling scheme where tasks of similar criticality
are assigned a certain layer in the scheduling engine. This allows



Fig. 7. Multi-layered scheduling scheme, iteration 1.

Fig. 8. Multi-layered scheduling scheme, iteration 2.
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to implement appropriate scheduling strategies for each type of
criticality in an integrated scheduling framework. In the example,
we have assigned the real-time task set srt the top layer, and the
control task set sc the bottom layer. Let srt ¼ fT1; T2; T3g be the
set of real-time tasks and sc ¼ fT4; T5g be the set of control tasks
as illustrated in the figure. Further, let n ¼ 5 denote the total
number of tasks in the system, the total number of priorities to
be assigned, respectively. The available priorities pi 2 f1; . . . ;ng
are indicated by a priority list, where the minimum available
priority is denoted by pmin, i.e., the lowest priority which has not
been assigned to any task yet. Similarly, the task list represents
all the tasks Ti 2 s that have not been assigned any priorities. Note
that the task list basically consists of two lists representing the
different layers:

� Layer 1: Contains the set of real-time tasks srt which is sorted
according to deadlines di in descending order, i.e., the first task
in the list is the task with the longest deadline. Note that tasks
Ti 2 srt are assigned priorities with the goal to guarantee the
deadlines, i.e., Di 6 di.
� Layer 2: Contains the set of unsorted control tasks sc . Tasks

Ti 2 sc are assigned priorities with the goal to guarantee stabil-
ity as per (21) and to maximize overall QoC J� according to (2).

Let us look at the example in Fig. 7. We start assigning the mini-
mum available system priority pmin ¼ n to the first task T1 2 srt of
Layer 1, i.e., p1 ¼ pmin (here pmin ¼ 5), and check whether D1 6 d1

holds. In the example D1 < d1, and hence, T1 meets its deadline if
assigned pmin. Consequently, we update the priority and task list
for the next iteration as illustrated in Fig. 7. This requires (i) fixing
the priority assignment p1 ¼ n, (ii) decrementing the minimum
available system priority pmin ¼ n� 1 for the next iteration, and
(iii) removing T1 from the task list. We repeat this procedure for
every task in Layer 1 until the schedulability test fails. For instance,
the worst-case delay experienced by T2 exceeds the deadline as
D2 > d2 for p2 ¼ pmin. Note that T2 is currently the real-time task
with the longest deadline in the task list. As a result, none of the
other remaining real-time tasks will meet their deadlines while
being assigned pmin as their deadlines are equal or tighter due to
the sorting of the task list. Hence, we need not to check the other
real-time tasks for schedulablility, and we switch to Layer 2 where
we now pursue a QoC-oriented priority assignment strategy. For
this we evaluate the QoC (see function getQoC ()) in Fig. 8. In partic-
ular, we assign pmin to the control tasks Ti 2 sc for which overall QoC
is optimized, e.g., T5. Subsequently, the priority and task list are up-
dated again, i.e., p5 ¼ n� 1 is locked, pmin ¼ n� 2, and T5 is re-
moved from the task list. This procedure is repeated until all tasks
Ti 2 s have been successfully assigned priorities.
3.3. QoC optimization

As described above the function getQoC () determines which
control task is assigned pmin. Towards this, we introduce three dif-
ferent QoC-objectives Pi that can be selected as an optimization
objective. Essentially, pmin is assigned the control task Ti 2 sc for
which Pi is minimum. We explain the QoC-objectives in detail in
what follows.

QoC deviation: We define the QoC deviation P1 as

P1 ¼
J0 � JðDwcÞ

J0
: ð25Þ
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Clearly, P1 captures normalized deviation of QoC due to non-zero
delay D ¼ Dwc from its nominal value J0 ¼ Jð0Þ. In essence, P1 mea-
sures the deviation of a control task’s QoC to the delay. Thus, a high-
er P1 implies that the potential improvement in terms of QoC will
be more significant in the case of Dwc ! 0. Consequently, a control
task with higher P1 should be assigned a relatively high priority so
that it contributes more to the overall QoC (2). Let us consider
Fig. 9(a) which illustrates the QoC functions J4ðDÞ and J5ðDÞ of the
control tasks of our example in Fig. 8. Let J4ð0Þ ¼ 0:8 and
J5ð0Þ ¼ 0:4, and Dwc be the worst-case delay experienced by any of
the two control tasks for the priority assignments pmin. Further, as-
sume J4ðDwcÞ ¼ 0:3 and J5ðDwcÞ ¼ 0:25. According to (25)
P1ðJ4Þ ¼ 0:625 and P1ðJ5Þ ¼ 0:375, and hence T5 will be assigned
p5 ¼ pmin as depicted in Fig. 8. Consequently, corresponding to the
presented schedule synthesis scheme, T4 will certainly be assigned
a priority p4 > p5, i.e., the worst-case delay D0wc experienced by T4

will certainly be smaller than Dwc . This is also depicted in Fig. 9(b)
where the improvement in QoC is significantly higher for T4

(DJ4 > DJ5) than for T5. Note that the actual improvement in QoC
depends on the behavior of function JðDÞ, which is not reflected in
P1.

Integral of QoC deviation: The integral of QoC deviation is defined
as

P2 ¼
XD¼Dwc

D¼0

J0 � JðDÞ
J0

� �
: ð26Þ

P2 captures the nature of QoC deviation over the range of possible
delays 0 6 D 6 Dwc , and thus captures more details of JðDÞ com-
pared to P1. For instance, in Fig. 10(a), two QoC curves J4ðDÞ and
J5ðDÞ have similar P1 at D ¼ Dwc , but J4ðDÞ (see hatched area) will
have higher P2 compared to J5ðDÞ. As a result, T5 will be assigned
p5 ¼ pmin, and consequently T4 will be assigned a priority p4 > p5.
Clearly, for the same amount of reduction in Dwc the corresponding
control task of J4ðDÞ will contribute more to the overall QoC (2).
Thus, the control tasks with higher P2 should be assigned relatively
high priority. In the example, for D ¼ Dwc , minimizing P1; P2,
respectively, results in the same priority assignment p4 > p5 for
T4 and T5.

However, as depicted in Fig. 10(a), it can be seen that, e.g., for
D ¼ D0wc; P1ðJ4Þ ¼ P1ðJ5Þ, whereas the integral of QoC deviation P2

is more expressive than P1, and clearly P2ðJ4Þ > P2ðJ5Þ.
QoC gradient: The QoC gradient is defined as

P3 ¼
d

dD
J0 � JðDÞ

J0
jD¼Dwc

� ��1

: ð27Þ

P3 indicates the sensitivity of a control task’s QoC to the delay at
D ¼ Dwc which is the operating point for the control task model un-
der consideration (in Section 2.2). A control task with higher P3 im-
plies that a small reduction in Dwc might results in higher benefit in
terms of QoC as depicted in Fig. 10(b) for Dwc . Intuitively, assigning a
relatively high priority to the control tasks with higher P3 has more
significant impact on the overall performance (2). Similarly to the
integral of QoC deviation P2, the QoC gradient P3 strongly depends
on the exact shape of JðDÞ and the operation point Dwc .

3.4. Schedule synthesis algorithm

In this section we present the detailed algorithm of our proposed
schedule synthesis scheme as illustrated in Algorithm 1. As inputs,
the algorithm requires (i) the task set s which is mapped on resource
r, where each task Ti 2 s is characterized by the tuple ðai; ei; di;piÞ (ii)
the service curve br which models the processing capacity on r, and
(iii)Pi which specifies the QoC-oriented metric that is used to deter-
mine the priority assignment of the control tasks.
Algorithm 1. Priority assignment algorithm

Require s; br; Pi

1: sort srt according to deadlines
2: pmin ¼ n
3: pi ¼ 0; 8i 2 f1; . . . ng
4: While pmin > 0 do
5: for all fi 2 Irtjpi ¼ 0g do
6: pi ¼ pmin

7: Di ¼ computeDelayðÞ
8: if ðDi 6 di) then
9: Ti is assigned priority pi ¼ pmin

10: pmin ¼ pmin � 1
11: else
12: Ti is assigned invalid priority pi ¼ 0
13: if f9j 2 Icjpj ¼ 0g then
14: if ðselectControlTaskðÞ ¼¼ stableÞ then
15: pmin ¼ pmin � 1
16: else
17: return (not schedulable)
18: end if
19: else
20: return (not schedulable)
21: end if
22: end if
23: end for
24: iff8i 2 Irt jpi – 0gthen
25: if ðselectControlTaskðÞ ¼¼ stableÞ then
26: pmin ¼ pmin � 1
27: else
28: return (not schedulable)
29: end if
30: end if
31: end while
32: return (schedulable)

Before the algorithm starts, we perform an initialization which
involves:

� Sorting the real-time task set srt according to deadlines di in
descending order (line 1).
� Initialization of pmin with the lowest available priority n ¼ jsj

(line 2).
� Initialization of all task priorities pi ¼ 0; 8i 2 I (line 3). Ti 2 s

with priorities pi ¼ 0 indicate unscheduled tasks which are
member of the task list whereas tasks with pi ¼ f1; . . . ;ng indi-
cate tasks which have already been successfully assigned feasi-
ble priorities, and hence do not belong to the task list.

As long as there exist unassigned priorities (line 4) we iterate
over all real-time tasks in the task list, i.e., Ti 2 srt ; 8i 2 Irt such that
pi ¼ 0 (line 5). We start assigning the first task in the list Ti 2 srt

the actual minimum priority pi ¼ pmin (line 6). Next, corresponding
to pi, we compute the worst-case delay Di calling the function com-
puteDelay () (line 7) using the RTC framework. This involves the
two steps outlined in Algorithm 2:

� Computation of the lower remaining service bl
r;i for Ti. This is

achieved using the relation defined in (12). From the total avail-
able service br we deduct the execution demands ej of all event
streams aj of the tasks Tj 2 s with higher priorities than Ti’s, i.e.,
tasks for which pj < pi (lines 1–5). Recall that pi ¼ pmin, and the
priorities of all unscheduled tasks have been initialized with
pi ¼ 0. In other words, all tasks Tj that have not been assigned
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any priorities, i.e., pj ¼ 0, are considered as tasks having higher
priorities than Ti.
� Computation of the worst-case delay Di experienced by the

event stream ai triggering Ti (line 6). For this purpose, we com-
pute Di ¼ hdistðau

i ; b
l
r;iÞ as defined in (4).
Algorithm 2. computeDelay ()

1: bl0 ¼ bl0
r

2: for all fj 2 Ijpj < pig do

3: bl0 ¼ bl0 � au
j

� �
� 0

4: end for

5: bl
r;i ¼ bl0

6: Di ¼ hdistðau
i ; b

l
r;iÞ

7: return ðDiÞ
Algorithm 3. selectControlTask ()

1: stable ¼ false
2: for all fi 2 Ic jpi ¼ 0g do
3: pi ¼ pmin

4: Di ¼ computeDelayðÞ
5: if ðjkmaxðAclðhi;DiÞÞj < 1Þ then
6: stable ¼ true
7: Pi ¼ getQoCðÞ
8: end if
9: end for
10: ifðstable ¼¼ trueÞ then
11: for all fi 2 IcjðjkmaxðAclðhi;DiÞÞj < 1Þg do
12: if ðPi ¼miniPiÞ then
13: pi ¼ pmin

14: else
15: pi ¼ 0
16: end if
17: end for
18: return (stable)
19: else
20: return (unstable)
21: end if

Next, we check if Di respects the deadline of Ti 2 srt , and in case
Di 6 di (line 8) we lock the priority assignment pi ¼ pmin (line 9),
and pmin is decremented for the next iteration (line 10). In case
the deadline is violated, we reset the priority assignment pi ¼ 0
(line 12) because Ti requires a higher priority to guarantee its
deadline. Further, in case there exists at least one unscheduled
control task (line 13) we call the function selectControlTask () (line
14) which is responsible for the priority assignment to the control
tasks Ti 2 sc . In case no control task is available the task set s is not
schedulable (line 20). Function selectControlTask () involves the
steps outlined in Algorithm 3:

� Computation of worst-case delay Di (line 4) (see Algorithm 2),
evaluation of the stability condition in (21) (line 5), and compu-
tation of the QoC (line 7) according to the implemented QoC
objectives in (25)–(27) selected in function getQoC ().
� Check if at least one control task is stable (line 10) and return

unstable otherwise. Note that if Algorithm 3 returns unstable,
Algorithm 1 declares the entire task set s as unschedulable (lines
16 and 28) and the algorithm stops. Next, the task with mini-
mum Pi (lines 11–17) is assigned pmin. Further, if there are
two tasks with exactly same minimum QoC, then pmin is
assigned to one of them arbitrarily.

In case a feasible priority assignment was found for a control
task (line 13), pmin is decremented for the next iteration (line 15).
Note that lines 24–30 again represent the priority assignment algo-
rithm for the control tasks in case all real-time tasks already have
been scheduled and there are only control tasks left.

3.5. Complexity analysis

In this section, we are concerned with analyzing the complexity
of our proposed schedule synthesis algorithm. As discussed previ-
ously, it is meaningful to assign priorities to real-time tasks in the
system according to DM. For this purpose, the set of real-time tasks
srt needs to be sorted in order of decreasing deadlines (see Line 1 in
Algorithm 1). Recall that our schedule synthesis algorithm starts
assigning priorities from the lowest to the highest. This way, if
real-time tasks are schedulable at lower priority levels, the algo-
rithm can use higher priority levels to accommodate control tasks
and, hence, improve QoC. Such sorting can be performed in
Oðjsrt j log jsrt jÞ time where jsrt j represents the number of elements
in srt . Further, our proposed algorithm outlined in Algorithm 1 has
to assign n different priorities, i.e., for each priority level, there will
be either one real-time or one control task – multiple tasks per pri-
ority level are not allowed in our setting. For each priority level,
there is one iteration of the while-loop (line 4). Hence, this loop
is executed n times starting by pmin ¼ n (see Line 2) until
pmin ¼ 0 is reached (see Line 4).

In each iteration of the while-loop, the algorithm tries to
accommodate a real-time task (from the sorted task set srt) in
the current priority level given by pmin (see for-loop, Line 5). For
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this, the delay incurred by the real-time task at the current pmin

needs to be computed (see computeDelay (), Line 7). The function
computeDelay () (shown in Algorithm 2) computes the minimum
service bl

r;i which results from subtracting the arrival curves au
j of

higher-priority events from the available service. It has been pro-
ven that if a deadline is missed by a given schedule, this always
happens within the so-called busy period, i.e., within the time inter-
val in which the resource is busy without idle time [40]. As a con-
sequence, the computation of bl

r;i can be limited to the busy period
on the resource. Hence, computeDelay ()’s complexity is pseudo-
polynomial in the form Oðn� ZÞ, where n is the total number of
tasks in the system and Z is the length of the busy period on the
shared resource [41].

The function selectControlTask () (shown in Algorithm 3) calls
computeDelay (). Since selectControlTask () iterates over the set of
control tasks, its complexity is Oðjscj � n� ZÞ < Oðn2 � ZÞ, where
jscj denotes the number of tasks in sc . Note that the function get-
QoC () in Algorithm 3 has constant complexity and hence does
not influence selectControlTask ()’s complexity.

The for-loop’s body in Algorithm 1 is executed at most n times,
once for each priority level. Note that, if a real-time task is not be
schedulable for a given priority level pmin, it will require another
iteration of the for-loop. However, the number of iterations in
the for-loop is upper-bounded by n. The complexity of executing
the for-loop in Algorithm 1 is given by O n� ðn� Z þ n2 � Z


 �
which can be expressed as O n3 � Z


 �
, i.e., also pseudo-polynomial

as a result of the complexity of computeDelay (). Finally, since the
while-loop’s body is also executed n times, the overall complexity
of our proposed algorithm is pseudo-polynomial in the form
O n4 � Z

 �

.

4. Experimental results

In this section, we show a number of experimental results (i)
using an illustrative task set, and (ii) by performing a sensitivity
analysis based on task sets for different utilizations.

4.1. Illustrative example

Let us consider a task set of the form s ¼ srt [ sc that consists of
n ¼ 10 tasks Ti 2 s. Further, let Ti 2 srt ; 8i 2 Irt with
Irt ¼ f1;2;3;4;5;6g, and Ti 2 sc; 8i 2 Ic with Ic ¼ f7;8;9;10g. Each
task Ti is characterized by the tuple ðai; ei; diÞ where

� ai denotes Ti’s triggering pattern, defined by the tuple ðpi; jiÞ
with period pi, and jitter ji,
� ei describes the tuple ðeu

i ; e
l
iÞ indicating the maximum and min-

imum execution time of Ti,
� di is the deadline of Ti 2 srt , the longest delay (in brackets of
Table 1) by which the system controlled by Ti 2 sc is still stable,
respectively.

In order to demonstrate our scheme, we consider an illustrative
example with the task set specification as depicted in Table 1. The
task parameters and sampling periods of the control tasks are typ-
ical values as found in automotive settings. Further, let the task set
s according to Table 1 be mapped on a single processing resource r
with a total initial linear service br . Each control task Ti 2 sc is
responsible for regulating the behavior of a dynamical system. In
order to ensure the generality of our results, instead of choosing
a specific plant model from the automotive domain, we consider
a set of inverted pendulums with different parameters as systems
to be controlled by the control tasks. Inverted pendulum is a
fundamental benchmark in control theory [43] and a classical
representative example that relates to many real-life control sys-
tems. This is mainly because its plant is naturally unstable with
fast and nonlinear dynamics. As a result, the control design
imposes typical stability and performance requirements such as
settling-time, steady-state error and robustness constraints which
are also relevant for many automotive control systems. The linear-
ized version of its continuous-time model has the following
parameters:

A ¼
0 1

9:8
l 0

" #
; B ¼

0
1

m�l

" #
: ð28Þ

For the sake of illustration, we have chosen different values of m
and l in our case study. Towards this, we have designed four con-
trollers as per (16) using a pole-placement technique.

Observations and discussion: We studied and compared the re-
sults of four different scheduling strategies which are depicted in
Table 2. The table shows the priority assignments piðXÞ ¼ fp1;p2;

. . . ;p10g with X ¼ fDM;P1;P2;P3g, and pi ¼ 1 denotes highest
priority and pi ¼ 10 the lowest. The overall QoC for each of the
scheduling strategies is J� ¼

P
i2Ic

JiðDiÞ. As a reference, we also
compute the nominal overall QoC J�nom ¼

P
i2Ic

Jið0Þ ¼ 1:3 indicating
the maximum overall QoC that can be achieved on an ideal imple-
mentation platform with zero delays, i.e., D ¼ 0 for all the control
tasks. For the sake of comparison, we evaluate for each scheduling
strategy, how far is the actual overall QoC (J�) from the nominal
overall QoC ðJ�nomÞ where J�nom represents a safe upper bound on
the maximum realizable QoC. Consequently, we may use J�=J�nom

as a measure to estimate the quality of the derived results. Note
that the computation of the exact optimal solution requires to
evaluate n! (i.e., factorial of n) priority assignments. That is, for
n ¼ 10 we have 3,628,800 combinations to be evaluated, which is



Table 2
Results for different scheduling strategies.

Ti piðDMÞ piðP1Þ piðP2Þ piðP3Þ

T1 2 srt 10 10 10 10
T2 2 srt 6 8 8 8
T3 2 srt 4 7 7 7
T4 2 srt 3 5 5 5
T5 2 srt 2 3 3 3
T6 2 srt 1 2 2 2
T7 2 sc 5 1 1 4
T8 2 sc 9 9 9 9
T9 2 sc 8 6 6 1
T10 2 sc 7 4 4 6
J� 0:301137 1:173276 1:173276 0:739011
J�=J�nom 23:2% 90:2% 90:2% 56:8%

tðAlgÞ 2.7 s 4.9 s 9.4 s 13.9 s
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not feasible. Finally, we also show typical run times tðAlgÞ of the
different algorithms which have been implemented in Matlab,
and were executed on a dual core 1.8 GHz processor with 3 GB
RAM. We discuss the results of Table 2 in detail in what follows.

� The column for piðDMÞ shows the classical deadline monotonic
priority assignment for all tasks Ti 2 s. In this case, the overall
QoC has been computed as J�ðDMÞ ¼ 0:301137 which clearly
shows the worst QoC compared to the other approaches.As dis-
cussed before, if there exists a feasible schedule under fixed pri-
orities, the DM schedule is also feasible. However, it does not
allow optimizing the control performance. Under DM, all the
control tasks Ti 2 sc have been assigned lower priorities
piðDMÞ ¼ f5;9;8;7g; 8i 2 Ic , compared to piðP1Þ ¼ f1;9;6;4g.
As a result, delays experienced by the control tasks may be high
as long as their deadlines are met, and hence, DM is not be very
efficient for optimizing overall QoC as J�=J�nom ¼ 23:2%.
� The last three columns piðP1Þ; piðP2Þ, and piðP3Þ show results

for each of the QoC-oriented metrics implemented in the
multi-layered scheduling scheme, i.e., (i)QoC deviation P1 (ii)
integral of QoC deviation P2, and (iii) QoC gradient P3, as defined
in (25)–(27), respectively. The desired QoC metric is configured
and evaluated using the function getQoC () of Algorithm 3 which
selects the control task with minimum P1; P2; P3, respec-
tively. It can be observed that the priority assignments piðP1Þ
and piðP2Þ are equal for all tasks Ti 2 s, and achieve a QoC
J�ðP1Þ ¼ 1:173276 (J�ðP2Þ respectively) which is 90:2% of the
nominal value J�nom.On the other hand, piðP3Þ results in a lower
QoC of J�ðP3Þ ¼ 0:739011; J�=J�nom ¼ 56:8%. The difference com-
pared to piðP1Þ and piðP2Þ is reflected in the priority assignment
for the control tasks that is piðP1Þ ¼ f1;9;6;4g compared
to piðP3Þ ¼ f4;9;1;6g;8i 2 Ic . This demonstrates that the con-
trol tasks exhibit different sensitivity to delay resulting in differ-
ent QoC depending on the exact priority assignment.

Table 3 shows the delays Di for each of the control tasks
T7; T8; T9; T10 2 sc that have been computed for the scheduling
strategies under consideration.
4.2. Control task implementation

As discussed in Section 2.2 our scheme employs a time-driven
control task model where the time interval between the start of
measure and end of actuate operation is of fixed length D. The value
of D is computed by our scheduling framework for every control
task (see Algorithm 3, line 4 in Section 3.4), and hence, provides
the timing parameters that are necessary to implement the time-
driven control task model.

We developed a run-time software framework (see Fig. 11) for
integrated control/plant co-simulation enabling a time-triggered
implementation of the task model described in Section 2.2. Each
Table 1
Task set specification.

Ti a :¼ ðpi; jiÞ (ms) ei :¼ ðeu
i ; e

l
iÞ (ms) di (ms)

T1 2 srt (50,20) (1.50.2) 50
T2 2 srt (20,15) (1.30.2) 20
T3 2 srt (10,30) (0.50.2) 15
T4 2 srt (20,25) (0.70.3) 12
T5 2 srt (10,15) (8.00.5) 8
T6 2 srt (10,25) (1.20.1) 5
T7 2 sc (30,0) (1.80.2) (15)
T8 2 sc (40,0) (1.20.3) (32)
T9 2 sc (40,0) (1.70.1) (27)
T10 2 sc (30,0) (1.00.2) (21)
control task Ti 2 sc is defined by the tuple ðpi;pi;DiÞ, where pi is
the period, pi denotes the priority, and Di is the delay as depicted
in Table 3. Our framework runs a scheduler at a fixed base period
Tbase which imposes the following:

� Di ¼ ki � Tbase with ki 2 Zþ denoting the release prescaler,
� pi ¼ ri � Tbase with ri 2 Zþ 6 ki denoting the delay prescaler.

An example for T1 : k1 ¼ 2; r1 ¼ 1, and T2 : k2 ¼ 4; r2 ¼ 2 is
illustrated in Fig. 12. When multiple jobs are triggered, the one
with the highest priority is executed first. Using our framework,
we implemented the four control tasks for the QoC deviation P1

and DM with Tbase ¼ 1ms. The delay values DiðDMÞ and DiðP1Þ for
the control tasks have been determined based on the task set of Ta-
ble 1 and the corresponding priority assignment in Table 2, and are
depicted in Table 3. Since Tbase ¼ 1ms, we have

D̂iðDMÞ ¼ DiðDMÞ
Tbase

� �
and D̂iðP1Þ ¼

DiðP1Þ
Tbase

� �
:

With the plant model as depicted in (28), we have two system
states x0ðtÞ and x1ðtÞ, and one control input uðtÞ. Fig. 13 and
Fig. 14 show the state trajectories and input signals that we ob-
tained from our simulation for the four control applications
Ti 2 sc . Fig. 13 shows the results for the control tasks scheduled
according to DM. As all the control deadlines are met all four sys-
tems are stable, i.e., the control inputs converge towards zero with
increasing time. However, it can be noticed that the plants converge
much faster with the control task implementation according to P1

as depicted in Fig. 14. This is because the delays for the control task
implementations are smaller for T7; T9 and T10, and the overall QoC
J�ðP1Þ > J�ðDMÞ (see Table 2) which is reflected in the faster con-
vergence for P1. Note that the delay for T8 is same for DM and P1

which is reflected in the same trajectory as depicted in the figures.
Finally, this experiment demonstrates (i) the relation between
schedulability and stability, and (ii) the QoC behavior which is re-
flected in the convergence of the control inputs.

4.3. Sensitivity analysis

The task set depicted in Table 1 is an illustrative example to
demonstrate the applicability of our proposed scheme. We showed
that all three presented heuristics clearly outperform the classical
DM approach. However, the results for the above task set may not
be generalized as different task parameters such as periods, execu-
tion times and deadlines may clearly influence the results of the
applied priority assignment scheme. To account for this, we next
study the sensitivity of the presented metrics to variations in the
real-time task parameters and compare the results with the DM
approach. Note that we first keep the configuration of the control



Table 3
Execution delays D for different control task implementations.

Ti DiðDMÞ (ms) DiðP1Þ (ms) DiðP2Þ (ms) DiðP3Þ (ms)

T7 2 sc 12.9 1.8 1.8 10.7
T8 2 sc 22.6 22.6 22.6 22.6
T9 2 sc 21.4 13.1 13.1 1.7
T10 2 sc 19.2 10.0 10.0 13.1

D1 = 1 
…

t

…

t

T1: 

T2: 

Tbase = 1 p1 = 2 

D2 = 2 

p2 = 4 

Fig. 12. Examples of time-triggered control task implementations.
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tasks according to Table 1 and we also use the same controllers
C1; C2; C3; C4. For our sensitivity analysis, we generated a set of
N ¼ 30 real-time task sets srt 2 CU , where jCU j ¼ N, for different re-
source utilizations U where U ¼

P
i2Irt

ei
pi

. We consider a selected
discrete range of resource utilizations 0:3 6 U 6 0:9 such that
CU ¼ fsrt;1; srt;2; . . . ; srt;30g for all U. Each task set s consists of
n ¼ 10 tasks, where jsrt j ¼ 6, and jscj ¼ 4. More specifically, for
each real-time task set srt 2 Cu we randomly determine the task
parameters period pi 2 f10;20; . . . ;100g, deadline di ¼ pi, and exe-
cution time ei that lead to a resource utilization U. We again con-
sider the control task set sc ¼ fT7; T8; T9; T10g as defined in
Table 1. For the sake of simplicity, we assume jitter to be zero
(j ¼ 0). For each utilization U we computed the average control
performance �J� ¼ 1

N

PN
i¼1J�i , and plotted �J� against U as depicted in

Fig. 15. For this, among all generated task sets, only feasible task
sets were considered. For the sake of comparison, we perform
the priority assignment for each of the generated task sets with
the DM approach, and the proposed multi-layered scheduling
scheme using the QoC-metrics P1; P2, and P3. The figure shows
that up to a utilization of U ¼ 0:6 all three heuristics P1; P2, and
P3 clearly outperform the DM approach. P1 and P2 clearly show
the best overall performance. P3 results in a lower performance
compared to P1 and P2, but still outperforms the DM approach
for small utilizations U < 0:6. However, �J�ðP3Þ significantly deteri-
orates, and even lies below DM with increasing utilization for
U > 0:7. Note that �J�ðP3Þ is not strictly monotonically decreasing.
For instance, at U ¼ 0:65; �J�ðP3Þ starts increasing until U ¼ 0:73,
and subsequently �J�ðP3Þ heavily deteriorates again. This fluctuating
behavior is because the QoC gradient P3 strongly depends on the
characteristics of the QoC function JðDÞ and the operation point
D ¼ Dwc at which JðDÞ is evaluated. Hence, P3 turns out to be not
a very reliable optimization subject for QoC optimization. Further,
it is interesting to observe that DM shows a similar performance at
high utilizations, e.g., for U ¼ 0:9, compared to P1 and P2. This is
because the number of schedulable task sets significantly
decreases at high utilizations. Hence, there is less scope for
optimizing the overall control performance. Since DM always finds
a feasible solution, i.e., one that allows meeting all deadlines, if
there exists one, this is most likely the one with the best possible
Fig. 11. Overview of ex
performance. Here, the QoC heavily depends on the control tasks’
deadlines.

4.4. Schedulability vs. QoC

In this experiment, we investigate the performance of our pro-
posed multi-layered scheduling scheme with respect to schedula-
bility and QoC optimization. For this purpose, we compare the
results of P1 which turned out to perform well for our control task
specification (see Fig. 15) with (i) the DM approach which is known
to be optimal with respect to schedulability, and (ii) a bandwidth
reservation (BR) scheme that realizes optimal overall QoC J�. Next,
we explain the BR approach in more detail.

The idea of the BR scheme is to reserve the high-priority band-
width for the control tasks and the remaining bandwidth for the
real-time tasks. That is, we assign (i) the highest available priori-
ties to the control tasks such that they experience reduced delays
and achieve a maximum QoC J�, and (ii) the remaining lower
priorities to the real-time tasks. Consider a task set s ¼ srt [ sc

consisting of n tasks. Then, the optimal priority assignment (with
respect to QoC) is the one which assigns the set of high priorities
Pc ¼ f1; . . . ; jscjg to the control tasks Ti 2 sc , and the remaining
(lower) priorities Prt ¼ fjscj þ 1; . . . ;ng to the real-time tasks
Ti 2 srt such that the mapping Pc # sc results in maximum QoC
J�. Naturally, the mapping Pc # sc depends on the delay sensitiv-
ity of the control tasks, i.e., on the characteristics of JðDiÞ, and the
actual delays Di experienced by the tasks. Note that for computing
the delays Di we do not need to consider interference from the
real-time tasks as all tasks in srt have lower priorities. Hence,
the number of possible choices for assigning priorities to the con-
trol tasks is reduced to jscj!, i.e., factorial of jscj. In our example,
jscj ¼ 4, and hence, the optimal priority assignment Pc # sc

may easily be obtained by combinatorial search. In order to
achieve best possible schedulability of the real-time task set srt ,
perimental setup.
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Fig. 13. Observed plants regulated by the control tasks T7; T8; T9; T10 2 sc scheduled according to DM.
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Fig. 14. Observed plants regulated by the control tasks T7; T8; T9; T10 2 sc scheduled according to P1.
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we perform the mapping of the remaining (lower) priorities to
real-time tasks Prt # srt in DM fashion. In summary:

� The BR approach is used as a reference for QoC optimization. It
achieves optimal QoC J� but suffers from non-optimal schedula-
bility. This is because the high-priority bandwidth is always
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Fig. 15. Control performance vs. utilization.
shared among the control tasks and the real-time tasks are
more likely to miss their deadlines when always being assigned
low priorities.
� The DM approach is optimal with respect to schedulability, i.e.,

if there exists a feasible schedule, DM is feasible, too. However,
as already shown in Section 4.3, DM is not optimal with respect
to QoC optimization.

Towards this, we will show that our multi-layered scheduling
scheme combines the advantages of DM and BR leading to both
good schedulability and QoC optimization.

Observations: For our experiments, we synthesized 200 task sets
generating high utilizations U > 80% (according to the procedure
described in Section 4.3), and we evaluated schedulability and
QoC for DM, BR, and P1. The results are summarized and explained
in what follows:

� BR: Out of the 200 task sets, NBR ¼ 136 have been determined as
feasible for BR. By definition, if BR is feasible, then the corre-
sponding priority assignment PðBRÞ results in optimal QoC,
i.e., J� ¼ 1:27013458. As a result, PðBRÞ ¼ P�, and
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Table 4
Task set generating U ¼ 86:75%.

Ti pi ei di PðBRÞ : DiðpiÞ PðDMÞ : DiðpiÞ PðP1Þ : DiðpiÞ

T1 2 srt 45 2.7 43 29.7 (10) 29.7 (10) 29.7 (10)
T2 2 srt 5 0.9 5 5.2 (5) 0.9 (1) 4.0 (4)
T3 2 srt 10 0.8 10 6.9 (6) 1.7 (2) 6.9 (6)
T4 2 srt 20 5.2 20 17.7 (9) 13.9 (6) 17.7 (9)
T5 2 srt 10 0.4 10 7.3 (7) 2.1 (3) 7.3 (7)
T6 2 srt 10 1.1 10 8.4 (8) 3.2 (4) 8.4 (8)
T7 2 sc 30 1.4 (15) 1.4 (1) 4.6 (5) 1.4 (1)
T8 2 sc 40 1.2 (32) 4.3 (4) 17.7 (9) 6.1 (5)
T9 2 sc 40 0.7 (27) 3.1 (3) 16.5 (8) 3.1 (3)
T10 2 sc 30 1.0 (21) 2.4 (2) 14.9 (7) 2.4 (2)

Schedulabe No Yes Yes
Overall QoC J� N/a 0.915 1.269
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J�ðBRÞ ¼ J� > J�ðDMÞ for all 136 feasible task sets. This is also
depicted in Fig. 16 where the triangles indicate J�ðBRÞ, and the
crosses denote J�ðDMÞ for all the feasible task sets.
� DM: Due to the optimality of DM, NDM ¼ 170 > NBR task sets

turned out to be feasible which is an improvement of 34 com-
pared to BR. This can also be observed at points in Fig. 16 where
there exists a feasible DM schedule (cross) but no correspond-
ing BR schedule (no triangle). However, as expected
J�ðDMÞ < J� for all feasible task sets as depicted in the figure.
The maximum QoC deviation from the optimal value J� over
all feasible task sets is computed as DJmaxðDMÞ ¼ J��
mini¼1...NDM J�i ðDMÞ ¼ 0:7442 (58:59%), the average QoC deviation

from J� is computed as DJavgðDMÞ ¼ J� �
PNDM

i¼1
JiðDMÞ

NDM
¼ 0:1275

(10:04%).
� P1: Our approach is always feasible if DM is feasible, and hence,

NP1 ¼ NDM such that J�ðP1Þ > J�ðDMÞ (see Fig. 17). Further, for
task sets where both BR and DM are feasible, P1 finds the
optimal priority assignment. That is, PðP1Þ ¼ PðBRÞ ¼ P�, and
J�ðP1Þ ¼ J�ðBRÞ ¼ J�. In cases where BR is not feasible but P1 is
feasible, the achieved QoC is very close to the optimum J� as
DJavgðP1Þ ¼ 0:0037 (0:29%). Further, the maximum deviation
from the optimum QoC is computed as DJmaxðP1Þ ¼ 0:4264
(33:6%) which is significantly less than in the case of DM.

Table 4 illustrates an example for one of the generated task sets
at U ¼ 86:75%. As shown there, BR fails to meet the deadline of
real-time task T2 whereas DM and P1 satisfy all deadlines. This is
because BR assigns the highest priorities to the control tasks
T7; T8; T9; T10, in particular, p7 ¼ 1; p8 ¼ 4; p9 ¼ 3, and p10 ¼ 2,
and the remaining (lower) priorities have been assigned to the
real-time tasks Ti 2 srt in DM manner. In the example, for
T2; d2 ¼ 5 which is the shortest deadline among all real-time tasks,
and hence, p2 ¼ 5 (see bold numbers in brackets). However, the
corresponding delay experienced by T2 is computed as
D2ðp2Þ ¼ 5:2 > d2 which results in a deadline violation. In contrast,
the other schemes DM and P1 are feasible, however, as shown in
Table 4, the priority assignments PðDMÞ and PðP1Þ are different.
In particular, for P1 the priorities assigned to the control tasks
Ti 2 sc are higher than for DM. As a result, the delays experienced
by the control tasks are significantly shorter for P1 : D7 ¼
1:4; D8 ¼ 6:1; D9 ¼ 3:1; D10 ¼ 2:4 compared to DM: D7 ¼ 4:6;
D8 ¼ 17:7; D9 ¼ 16:5; D10 ¼ 14:9. Consequently, the overall QoC

J�ðDMÞ ¼ 0:915 is significantly less than J�ðP1Þ ¼ 1:269.
5. Concluding remarks

This paper presented a multi-layered schedule synthesis algo-
rithm for MCCPS where we tackle the problem of jointly schedul-
ing deadline-critical real-time tasks and QoC-critical control tasks.
The proposed approach integrates RTC-based timing analysis
techniques in a multi-layered scheduling framework. That is,
real-time tasks are scheduled according to a deadline-driven
scheduling policy in the top layer, and control tasks are assigned
priorities subject to QoC optimization in the second layer. For this
purpose, we presented three different QoC-oriented metrics that
we implemented in our framework. We compared our results to
classical DM scheduling and a BR approach, and we show that
our approach efficiently combines the advantages of DM and BR
which significantly improves overall QoC while guaranteeing
schedulability. Future work envisages to extend the scheduling
framework in two directions. That is (i) integrating the concept
of criticality levels and building a bridge to conventional MCs
theory, and (ii) by exploring the applicability of the presented
scheduling scheme to multi-processors which constitute highly
relevant processing platforms in future high-end MCCPSs. There
is a lot of work on scheduling and schedulability analysis for mul-
tiprocessor and multicore platforms. So far, our work only consid-
ers a uniprocessor setup and extending it to multiprocessors will
be interesting.
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