
QOC-ORIENTED EFFICIENT SCHEDULE SYNTHESIS FOR
MIXED-CRITICALITY CYBER-PHYSICAL SYSTEMS

Reinhard Schneider, Dip Goswami, Alejandro Masrur, Samarjit Chakraborty

Institute for Real-Time Computer Systems, TU Munich, Germany

ABSTRACT
Cyber-physical systems (CPS) are characterized by a tight
interaction between computational resources and physical
systems. Such systems typically consist of a mix of time-
critical real-time tasks and safety-critical control tasks.
Time-critical applications are normally associated with
hard real-time constraints which need to be guaranteed
by the system. On the other hand, control applications
are not strictly related to deadlines but rather to quality
of control (QoC). Traditional scheduling policies such
as Deadline Monotonic can guarantee timing constraints,
however, they do not allow for QoC optimized schedules.
Optimizing overall QoC while guaranteeing all deadlines
constitutes a challenging scheduling problem which is
increasingly attracting attention. In this paper, we present
an efficient schedule synthesis algorithm for such mixed-
criticality systems. The proposed algorithm has a polynomial
complexity and ensures all hard real-time constraints while
maximizing overall QoC for all control applications.

Index Terms— Scheduling algorithm, cyber-physical sys-
tems, mixed-criticality systems, real-time systems

I. INTRODUCTION
Mixed-criticality systems are built up of systems imple-

menting different levels of criticality. Such safety-critical
systems are present in various application domains and are
typically certified according to stringent industrial standards.
For instance:

• the DO-178B [16] specification is an avionics software
standard which describes processes for development
and analysis of software used in airborne systems.

• ISO 26262 [14] is an automotive safety standard, titled
”Road vehicles – Functional safety” which covers
functional safety aspects of the entire development pro-
cess including specification and verification of software
safety requirements, and software architectural design.

• IEC 61508 [12] is a fundamental industrial safety
standard which describes requirements for functional
safety of electronic safety-related systems.

In this context, we consider time-critical real-time tasks
and safety-critical control tasks which constitute a mixed
criticality system. The system realized by time-critical real-
time tasks depends on hard real-time constraints, deadlines,
that need to be satisfied under all circumstances. Thus, any

deadline miss can result in a malfunction of the system. As
a result, guaranteeing deadlines is a necessary and sufficient
condition to ensure a flawless behavior of such systems.

In contrast, system stability is a necessary condition which
must be realized by safety-critical control tasks implement-
ing the functionality. However, in most cases stability is not
a sufficient condition to ensure the desired system behavior.
This is because the realized functionality is qualified accord-
ing to the control performance (QoC), e.g., it is important
that the system follows a certain trajectory. Hence, optimized
QoC results in another design objective which needs to be
carefully considered at design time.

In many application domains such as in the automotive
industry, software of different levels of criticality, coexist
on the same platform and share processing resources. Often,
the goal is to achieve a segregation of critical and non-
critical functions in order to ensure freedom of interference
and to guarantee safe system behavior. However, this
involves specialized hardware and software effort which
in turn may reduce flexibility and increase costs, and hence
more integrated approaches are desired. Consequently, the
integration of software of mixed-criticality to optimize costs,
weight, and energy consumption gives rise to a challenging
scheduling problem that we want to tackle in this work.

Related work: Of late there has been tremendous research
effort towards analysis and synthesis of mixed-criticality
systems. The work in [8] proposes a dependability driven
approach for the integration of both safety-critical and non-
safety critical software functionalities on shared resources.
In this context, the mapping process considers functional and
extra-functional constraints of dependability and real-time.

Recently there has been research interest in schedule
synthesis for mixed-criticality systems. Baruah et al. [1],
[3], introduce formal models for mixed-criticality workloads
and present a response-time analysis method for fixed
priority uniprocessor scheduling in mixed criticality systems.
Further, [9] and [7] describe schedule synthesis techniques
in the context of mixed criticality systems. The above lines
of work address mixed criticality in the sense of jointly
scheduling hard real-time tasks and soft real-time tasks.
However, they do not consider control tasks. Further there
has been recent work on schedule synthesis for control
applications with the goal to maximize QoC [15], [17],
[18]. These approaches made significant contributions
to controler/scheduler co-design, however, they did not

Authorized licensed use limited to: UNIVERSITAETSBIBLIOTHEK CHEMNITZ. Downloaded on April 13,2022 at 15:06:21 UTC from IEEE Xplore. Restrictions apply.

consider the joint schedule synthesis of real-time tasks and
control tasks in a mixed-criticality environment.

Problem statement and overview of our scheme: Our goal
is to automatically synthesize schedules for a set of real-
time tasks τrt and a set of control tasks τc that are executed
on a shared resource. As the underlying scheduling policy
we consider fixed priority preemptive scheduling (FPPS),
and hence, the schedule synthesis problem boils down to
an offline priority assignment problem. Clearly, it is mean-
ingful to assign priorities to real-time tasks according to
the Deadline Monotonic (DM) policy, i.e., the shorter the
deadline of a task the higher its priority. This results in an
optimal priority assignment [10], which means that if a fixed-
priority schedule is feasible under any priority assignment,
then DM will also be feasible. However, the inverse does
not hold, i.e., if DM is feasible, it does not necessarily
imply that any other schedule (different to DM) would also
be feasible. However note that, even if DM results in an
optimal solution for assigning priorities to real-time tasks in
the system, it is not applicable to control tasks. In the case
of control tasks, an optimal priority assignment depends on
the performance of the system realized by such tasks. That
is, priorities should be assigned to control tasks in a mixed-
criticality environment such that the overall performance is
maximized.

In general, a control task’s performance is a function of
its execution delay: the more execution delay, the worse
the performance. However, from the point of view of the
performance, different control tasks may behave very differ-
ently. Some control tasks are intrinsically more sensitive to
execution delay than others. As a result, when synthesizing
schedules in a mixed control/real-time task environment, the
impact of different priority levels on control tasks needs to
be analyzed, and hence, the priority assignment problem be-
comes much more difficult to solve. Our proposed schedule
synthesis scheme is characterized as follows:

• The triggering patterns of tasks are modeled as arrival
curves which allow for more general characterization of
event streams than standard event models. Hence, our
scheduling algorithm is not restricted to strictly periodic
arrival patterns

• Time-critical real-time tasks are scheduled such that
their deadlines are guaranteed in the worst case

• Safety-critical control tasks are scheduled with respect
to stability and optimized QoC. For this, we present a
heuristic to optimize the overall QoC and compare our
results with classical DM scheduling

• We propose a multi-layered scheduling scheme which
allows to implement appropriate scheduling strategies
for each type of criticality being present in the system
in an integrated scheduling framework.

II. THEORETIC BACKGROUND

In this section we give an overview on theoretic back-
ground that we use in this work. We first introduce a

performance analysis framework followed by a section on
control theoretic fundamentals.

II-A. Real-Time Calculus
Real-time calculus (RTC) is an analytical framework

for worst-case performance analysis of real-time systems.
RTC allows modeling of (i) the triggering pattern of tasks
(event model) which generate execution demands on a
resource, and (ii) the service offered by a resource (resource
model), e.g., a processor, to each task running on it. The
mathematical framework of RTC is based on (min,+) and
(max,+) algebra [5].

Terms and definitions: Let R = R∪ {+∞,−∞} where R

is the set of real numbers and F be the set of monotonic
functions F = {f : R+ → R | ∀s < t, 0 ≤ f(s) ≤ f(t)}
where R

+ is the set of non-negative real numbers. Further,
the supremum (sup) of a set S ⊆ F is the smallest U ∈ F
such that h ≤ U for all h ∈ S. Similarly, the infimum (inf)
of S is the largest L ∈ F such that h ≥ L for all h ∈ S.

The (min,+) convolution ⊗ and deconvolution � operators
are defined as: ∀f, g ∈ F , ∀t ∈ R

+

(
f ⊗ g

)
(t) = inf

{
f(s) + g(t− s) | 0 ≤ s ≤ t

}
,(

f � g
)
(t) = sup

{
f(t+ u)− g(u) | u ≥ 0

}
.

Similarly, the (max,+) convolution ⊗ and deconvolution �
operators are defined as: ∀f, g ∈ F , ∀t ∈ R

+

(
f⊗g

)
(t) = sup

{
f(s) + g(t− s) | 0 ≤ s ≤ t

}
,(

f�g
)
(t) = inf

{
f(t+ u)− g(u) | u ≥ 0

}
.

The maximum vertical and horizontal deviation (distance)
between two functions f, g ∈ F are given by:

vdist(f, g)
def
= sup{ f(t)− g(t) | t ≥ 0 } (1)

hdist(f, g)
def
= sup

{
inf

{
τ ≥ 0 | f(t) ≤ g(t+ τ)

} | t ≥ 0
}

(2)

Further, a function f ∈ F is sub-additive iff f(x + y) ≤
f(x) + f(y) for all x and y in R

+. Similarly, f is super-
additive iff f(x+y) ≥ f(x)+f(y) for all x and y in R

+. In
this paper, we assume that all given upper (lower) functions
satisfy sub-additivity (super-additivity) before the analysis.

Event model: Data streams are modeled using a count-based
abstraction where an arrival pattern of a stream is modeled
as a cumulative function R(t) denoting the number of events
that arrive during the time interval (0, t]. The maximum and
minimum number of events that are recorded during any
time interval of length Δ is represented by a pair of arrival
functions α = (αu, αl) that is defined as

∀Δ ≥ 0, ∀ t ≥ 0 : αl(Δ) ≤ R(Δ + t)−R(t) ≤ αu(Δ).

Arrival curves allow for an expressive characterization of
event streams which are able to represent standard event
models, e.g., periodic, periodic with jitter and sporadic,
as well as arbitrary arrival patterns. Standard event arrival

Authorized licensed use limited to: UNIVERSITAETSBIBLIOTHEK CHEMNITZ. Downloaded on April 13,2022 at 15:06:21 UTC from IEEE Xplore. Restrictions apply.

0 20 40 60 80 100 1200

2

4

6

8

10

12

14

16

18

Δ [ms]

#e
ve

nt
s

αu(Δ)
αl(Δ)

Fig. 1. Arrival curve α = (10, 55, 1)

patterns are often specified by the tuple (p, j, d), where p
denotes the period, j the jitter, and d the minimum inter-
arrival distance of events in the stream. The corresponding
pair of arrival curves to this specification is modeled as

αl(Δ) =

⌊
Δ− j

p

⌋
, and αu(Δ) = min

{⌈
Δ+ j

p

⌉
,

⌈
Δ

j

⌉}

(3)
Fig. 1 shows an example of a pair of arrival curves specified
as α = (10, 55, 1), i.e., p = 10, j = 55, and d = 1.

Resource model: Similarly, resource capacities are captured
by a cumulative function C(t) denoting the number of events
that can be processed by a resource in the time interval (0, t].
The maximum and minimum number of events that can be
processed in any time interval of length Δ is upper- and
lower-bounded by a pair of service functions β = (βu, βl)
which is defined as

∀Δ ≥ 0, ∀ t ≥ 0 : βl(Δ) ≤ C(Δ + t)− C(t) ≤ βu(Δ).

Further, β can also be expressed in terms of the maximum
and minimum number of available resource units, e.g.,
processor cycles.

Compositional performance analysis: Let us consider an
input data stream which is bounded by the arrival functions
α = (αu, αl) and processed by task T on a resource with
available service β = (βu, βl) as illustrated in Fig. 2 a).
Further, let us assume the buffer that stores arriving events
of the input data stream has infinite capacity.

Then, according to (1) and (2) the maximum backlog B
at the input buffer, i.e., the maximum buffer space that is
required to buffer this event stream, and the maximum delay
D experienced by the input stream α are given by

B = vdist(αu, βl), (4)

and

D = hdist(αu, βl). (5)

The bounds on the output arrival functions α′ and remaining
service functions β′ for a greedy preemptive processing

�� �‘

��

�‘

T

��� ��‘

���

��‘

T1

��� ��‘

��‘‘

T2

��‘‘
T3

���

��‘

a) b)

B

B1

B2

B3

Fig. 2. a) RTC processing model, b) Compositional analysis.

component are computed as follows [6]:

αu′
= min

{(
αu ⊗ βu

)� βl, βu
}

(6)

αl′ = min
{(

αl � βu
)⊗ βl, βl

}
(7)

βu′
=

(
βu − αl

) � 0 (8)

βl′ =
(
βl − αu

) ⊗ 0 (9)

Further, the bounds on the processed arrival curves α′ =
(αu′

, αl′), and the remaining service β′ = (βu′
, βl′) can be

used in a compositional manner. Consider the example in
Fig. 2 b) where the input streams α1 and α2 are processed
by the tasks T1 and T2 on a resource with total service
β1. Assume the output of T1 is processed by task T3 using
service β2, and T1 and T2 are scheduled according to FPPS
where T1 is assigned a higher priory than T2. Then, the full
service β1 is available to the task with the highest priority
(T1) to process its input stream (α1). The backlog and
worst-case delay are computed as B1 = vdist(αu

1 , β
l
1) and

D1 = hdist(αu
1 , β

l
1). The bounds on the processed output

stream α1
′ and the remaining service β1

′ are computed
using (6)-(9). Now, β1

′ is used to compute the performance
bounds of task T2 which processes input stream α2, i.e.,
B2 = vdist(αu

2 , β
l′
1) and D2 = hdist(αu

2 , β
l′
1). In a similar

way, the processed output stream α1
′ is used as an input for

task T3 using service β2.

II-B. Control Theory
A feedback control system aims to achieve the desired

behavior of a dynamical system by applying appropriate
inputs (that is computed based on the feedback signals) to
the system. In general a dynamical system is modeled by a
set of differential equations called the state-space model,

ẋ(t) = Ax(t) +Bu(t), (10)

where x(t) ∈ Rn is the system state and u(t) ∈ R is the
control input to the system. A ∈ Rn×n and B ∈ Rn×1 are
the system and input matrices, respectively. State-feedback
control essentially implies the design of u(t) as a function of
the states x(t) (feedback signals) so as to meet certain high-
level design requirements. A feedback control loop performs
mainly three operations:

• measure the states x(t) (measure),
• compute input signal u(t) (compute) and,
• apply the computed u(t) to the plant (10) (actuate).

Authorized licensed use limited to: UNIVERSITAETSBIBLIOTHEK CHEMNITZ. Downloaded on April 13,2022 at 15:06:21 UTC from IEEE Xplore. Restrictions apply.

worst-case execution delay D

compute preemption wait

actuate measure

Fig. 3. Control task model

Performing these operations in a continuous fashion in
any implementation platform requires infinite computation
power. Hence, in a digital implementation platform of
such feedback loop, these operations are performed only at
discrete-time intervals (sampling instants) tk for k ∈ N0.
The time interval between two consecutive executions of a
feedback control loop (control task) is the sampling period
tk+1 − tk = h. In this work, we consider state-feedback
controllers of the form u(t) = Kx(t) where K is the
state-feedback gain which needs to be designed. The time
duration from the measure operation to the actuate is known
as sensor-to-actuator delay or response time D of a control
task. For the rest of the paper, we will refer to D as execution
delay of a control task T ∈ τc as depicted in Fig. 3. We
assume a control task model where the operations measure,
compute, and actuate are performed in one task. Further, we
consider a task model where the actuation is performed after
worst-case delay D even if the computation of the control
input is completed earlier (see Fig. 3) to avoid jitter in the
execution delays of the control tasks.

In the process of executing such a control loop, the control
input u(t) is held until the next update comes, i.e.,

u(t) = Kx(tk), tk ≤ t ≤ tk+1 (11)

Given the input signal (11) and the execution delay being
D < h , the continuous-time system (10) becomes a
sampled-data system [4],

x[k + 1] = Adx[k] +B0(D)u[k] +B1(D)u[k − 1], (12)

where

Ad = eAh, B0(D) =

∫ h−D

0

eAtdt ·B, B1(D) =

∫ D

0

eAtdt ·B

Putting (11) in (12), we get the following closed-loop system,

x[k + 1] = Adx[k] +B0(D)Kx[k] +B1(D)Kx[k − 1]. (13)

In (13), we assume that u[−1] = 0 for k = 0. Next, we

define new system states z[k] =
[
x[k] x[k − 1]

]′
and

we get,

z[k + 1] = Acl(h,Di)z[k], (14)

where
Acl(h,Di) =

[
0 Λ

B1(D)K Ad +B0(D)K

]
, (15)

where Λ is the unity matrix. Stability of the overall closed-
loop system is governed by the properties of Acl(h,D) and

for stability, the absolute value of maximum eigenvalue of
Acl(h,D) should be less than unity, i.e.,

|λmax(Acl(h,D))| < 1. (16)

The closed-loop system might become unstable when D is
long and fails to meet (16).

II-C. Quality of Control
In an ideal implementation, the execution delay of a

control application is D = 0. An actual implementation
under resource constraints results in D > 0 which causes
deterioration in the performance of a control loop. As a QoC
measure, we consider stability margin of a control loop, i.e.,

J = 1− |λmax(Acl(h,D))|. (17)

Clearly, the stability margin quantifies how far is the feed-
back loop from being unstable. As a QoC metric, we
consider the degradation in control performance due to
implementation irregularities (such as D > 0) from their
performance with ideal implementation (where D = 0). The
performance with ideal implementation is defined as nominal
performance J0, where

J0 = 1− |λmax(Acl(h, 0))|. (18)

With D > 0 in an actual implementation, we have

J(D) = 1− |λmax(Acl(h,D))|. (19)

To this end, we define the QoC gradient P(D) as

P(D) =
J0 − J(D)

J0
. (20)

Clearly, P(D) captures the rate of control performance
degradation in relation to non-zero execution delay.

III. SCHEDULE SYNTHESIS SCHEME
In this section we first describe the setting under con-

sideration, followed by the basic scheme of our proposed
scheduling algorithm. Next, we explain the problem com-
plexity and outline the details of our algorithm followed by
a discussion on the algorithm complexity. Finally, we show
the applicability of our results using an illustrative example.

III-A. System Description
We consider a system that consists of a task set τ which

is mapped on a resource r with total available service βr.
Let τrt ⊆ τ denote the set of time-critical real-time tasks,
and τc ⊆ τ be the set of safety-critical control tasks. Assume
that all tasks are mapped and executed on resource r sharing
service βr. Further, the set of indices is denoted by i ∈ I ,
and Irt ⊆ I is the set of indices related to τrt, similarly
Ic ⊆ I denotes the set of indices related to τc. Let task
Ti ∈ τ , be characterized by the tuple {αi, ei, di, πi} where

• αi = (αu
i , α

l
i) denotes a pair of arrival curves that

triggers the activation of Ti

Authorized licensed use limited to: UNIVERSITAETSBIBLIOTHEK CHEMNITZ. Downloaded on April 13,2022 at 15:06:21 UTC from IEEE Xplore. Restrictions apply.

n
n - 1
n - 2

1

.

.

.

T1

T4

T2

T3

priority list task list
D1 < d1

1

.

.

.

�1 = n

update priority list

1

.

.

.

�1 = n

T2

T4

T3

D2 > d2

T5 T5 1

.

.

.

�1 = n 1

�5 = n - 1

QoC5 > QoC4

11

n - 1

priority list task list update priority list

a) Iteration 1 b) Iteration 2

11

n - 1
n - 2 n - 2

55

n - 2

�min

�min
�min

T1 �min

Layer 1

Layer 2

switch
Layer

Fig. 4. Multi-layered scheduling scheme

• ei = (eui , e
l
i) specifies the maximum and the minimum

execution demand of Ti

• di represents the deadline of all real-time tasks Ti ∈ τrt.
For Ti ∈ τc, i.e., control tasks, the deadline can be
understood as the maximum delay bound at which the
control system is still stable

• πi ∈ {1, 2, ..., n} denotes the priority of Ti on resource
r where πi = 1 represents the highest priority, πi = n
the lowest priority, respectively

Further, the real-time task set τrt is schedulable iff all the
tasks Ti ∈ τrt meet their deadlines, i.e., Di < di. On the
other hand there exists a maximum execution delay that a
control task can tolerate until it gets unstable. However, in
contrast to the real-time tasks, it is not sufficient to just meet
this constraint but it is also necessary to optimize QoC. The
control task set τc is schedulable iff all the tasks Ti ∈ τc
meet their stability constraints (16). On top of stability the
goal is to maximize the overall QoC, J∗ =

∑
i∈Ic

Ji.
Further, we assume a FPPS policy which is supported

by many operating systems in various industrial domains
such as OSEK/VDX [13], a widely-used standard in the
automobile industry.

III-B. Multi-layered Scheduling Scheme
Before we present the details of our proposed schedule

synthesis algorithm we first outline the basic scheme using
the example in Fig. 4. The overall goal is to come up with
a priority assignment strategy such that all real-time tasks
Ti ∈ τrt meet their firm deadlines di, and at the same time,
overall QoC is optimized for the control tasks Ti ∈ τc. For
this we present a multi-layered scheduling scheme where
tasks of similar criticality are assigned a certain layer in
the scheduling engine. This allows to implement appropri-
ate scheduling strategies to each type of criticality in an
integrated scheduling framework. In the example, we have
assigned the real-time task set τrt the top layer, and the
control task set τc the bottom layer. Let T1, T2, T3 ∈ τrt be
the set of real-time tasks and T4, T5 ∈ τc be the set of control
tasks as illustrated in the figure. Further, let n = |τ | denote
the total number of tasks in the system. In the example,
n = 5, and hence, we have five priorities to be assigned. The
available priorities {1, ..., n} are indicated by a priority list,
where the minimum available priority is denoted by πmin,
i.e., the lowest priority which has not been assigned to any

task yet. Similarly, the task list represents all the tasks Ti ∈ τ
that have not been assigned any priorities. Note that the task
list basically consists of two lists representing the different
layers:

• Layer 1: Contains the set of real-time tasks τrt which
is sorted according to deadlines di in descending order.
Tasks Ti ∈ τrt are assigned priorities with the goal to
guarantee the deadlines, i.e., Di ≤ di.

• Layer 2: Contains the set of unsorted control tasks τc.
Tasks Ti ∈ τc are assigned priorities with the goal to
guarantee stability as per (16) and to maximize overall
QoC (J∗) according to the QoC gradient (see (20)).

Let us look at the example in Fig. 4a). We start assigning
the minimum available system priority πmin = n to the
first task T1 ∈ τrt of Layer 1, i.e., π1 = πmin, and check
whether D1 ≤ d1 holds. In the example D1 < d1, and
hence, Ti meets its deadline if assigned πmin. Consequently,
we update the priority and task list for the next iteration as
illustrated in Fig. 4a). This requires, (i) fixing the priority
assignment π1 = n, (ii) decrementing the minimum available
system priority πmin = n−1 for the next iteration, and (iii)
removing T1 from the task list. We repeat this procedure for
every task in Layer 1 until the schedulability test fails. For
instance, the worst-case delay experienced by T2 exceeds
the deadline (D2 > d2) for π2 = πmin. As T2 is currently
the real-time task with the longest deadline, also none of
the other remaining real-time tasks will be able to meet its
deadline while being assigned πi = πmin. Hence, we need
not to check the other real-time tasks for schedulablility,
and we switch to Layer 2 where we now pursue a QoC-
oriented priority assignment strategy. In particular, we assign
πmin to the control tasks T4, T5 ∈ τc for which overall QoC
is optimized, e.g., T5. Subsequently, the priority and task
list is updated again, i.e., π5 = n − 1 is locked, πmin =
n− 2, and T5 is removed from the task list. This procedure
is repeated until all tasks Ti ∈ τ have been successfully
assigned priorities.

III-C. Complexity of the Schedule Synthesis Problem
Clearly, assigning priorities to real-time tasks according to

Deadline Monotonic (DM) can be done in polynomial time.
However, a priority assignment for the control tasks requires
more effort, in particular, since this normally requires to
maximize the overall control performance in the system.

Authorized licensed use limited to: UNIVERSITAETSBIBLIOTHEK CHEMNITZ. Downloaded on April 13,2022 at 15:06:21 UTC from IEEE Xplore. Restrictions apply.

As stated before, the control performance of a control task
is a function of its execution delay: the more execution delay,
the worse the performance. However, some control appli-
cations are more sensitive to delay than others. Moreover,
reducing the execution delay of a control task Ti by some
amount Δ might result in a performance increase which is
less than that of reducing a Tj’s delay by the same amount
Δ. As a consequence, finding a priority assignment that
leads to the maximum possible control performance requires
analyzing the behavior of all control tasks for all possible
priority levels.

In general, if the execution delay of all control tasks is
the minimum possible, the overall control performance will
be the maximum possible. However, in a mixed-critically
environment, since control tasks share service on a resource
(not only among them but also with real-time tasks), the
execution delay suffered by them will vary with the priority
they are assigned to: the higher the priority assigned to a
control task, the lower its execution delay. (Of course, in
a mixed-critically environment, not all priority levels can
be assigned to a control task, since some priorities will
necessarily be used by real-time tasks to guarantee their
deadlines.)

On the one hand, which control task is assigned a given
priority πi depends on the control task’s performance be-
havior for the execution delay resulting of πi. On the other
hand, this also depends on the execution delays incurred by
other control tasks because of not being assigned πi but other
priorities. In other words, the optimal priority assignment for
control tasks (i.e., the one that maximizes the overall control
performance) in a mixed-criticality environment requires
analyzing all possible priority combinations. That is, if n
is the number of all tasks in the system, finding the optimal
priority assignment requires O(n!) time (i.e., factorial of n),
which results in an exponential complexity on the number
of tasks in the system.

An algorithm with exponential complexity is not suitable
for large- or even mid-size problem settings. For this reason,
in this paper, we propose a heuristic which allows for a near-
optimum priority assignment as detailed below.

III-D. Schedule Synthesis Algorithm
In this section we present the detailed algorithm of our

proposed schedule synthesis scheme illustrated in Alg. 1.
Before the actual algorithm starts, we first perform an

initialization process which requires

• sorting the real-time task set τrt according to deadlines
di in descending order (line 1)

• initialization of the minimum available system priority
πmin = n (line 2)

• initialization of all task priorities πi = 0, ∀i ∈ I (line
3). Tasks with priorities πi = 0 indicate tasks in the task
list whereas tasks with πi = {1, ..., n} indicate tasks
which have already been successfully assigned feasible
priorities, and hence do not belong to the task list

As long as there exist unassigned priorities (line 4) we iterate
over all real-time tasks in the task list, i.e. {Ti ∈ τrt | πi =

Algorithm 1 Priority assignment algorithm.

Require: τ, βr

1: sort τrt according to deadlines
2: πmin = n
3: πi = 0, ∀i ∈ {1, ...n}
4: while πmin > 0 do
5: for all {i ∈ Irt | πi = 0} do
6: πi = πmin

7: Di = computeDelay()
8: if (Di ≤ di) then
9: Ti is assigned priority πi = πmin

10: else
11: Ti is assigned invalid priority πi = 0
12: if {∃j ∈ Ic | πj = 0} then
13: if (selectControlTask() == stable) then
14: πmin = πmin − 1
15: else
16: return (not schedulable)
17: end if
18: else
19: return (not schedulable)
20: end if
21: end if
22: πmin = πmin − 1
23: end for
24: if {∀i ∈ Irt | πi = 0} then
25: if (selectControlTask() == stable) then
26: πmin = πmin − 1
27: else
28: return (not schedulable)
29: end if
30: end if
31: end while
32: return (schedulable)

0} (line 5) while Ti ∈ τrt is assigned the actual minimum
priority πi = πmin (line 6). Next, corresponding to πi,
we compute the worst-case delay Di calling the function
computeDelay() (line 7) using the RTC framework. This
involves the following steps outlined in Alg. 2:

• Computation of the lower remaining service βl
r,i for Ti.

This is achieved using the relation defined in (9). From
the total available service βr we deduct the execution
demands ej of all event streams αj of the tasks Tj ∈ τ
with higher priorities than Ti’s, i.e., tasks for which
πj < πi (lines 1-5). Recall that πi = πmin, and the
priorities of all unscheduled tasks have been initialized
with πi = 0. In other words, all tasks Tj that have not
been assigned any priorities, i.e., πj = 0, are considered
as tasks having higher priorities than Ti.

• Computation of the worst-case delay experienced by the
event stream αi (line 6) using Di = hdist(αu

i , β
l
r,i), i.e.,

Di = sup
{
inf

{
τ ≥ 0 | αu

i (t) ≤ βl
r,i(t+τ)

} | t ≥ 0
}

Next, we check if Di respects the deadline and in case
Di ≤ di (line 8) we lock the priority assignment πi = pmin

Authorized licensed use limited to: UNIVERSITAETSBIBLIOTHEK CHEMNITZ. Downloaded on April 13,2022 at 15:06:21 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 computeDelay()

1: βl′ = βl′
r

2: for all {j ∈ I | πj < πi} do
3: βl′ =

(
βl′ − αu

j

) ⊗ 0
4: end for
5: βl

r,i = βl′

6: Di = hdist(αu
i , β

l
r,i)

7: return (Di)

Algorithm 3 selectControlTask()
1: stable = false
2: for all {i ∈ Ic | πi = 0} do
3: πi = πmin

4: Di = computeDelay()
5: if (|λmax(Acl(hi, Di))| < 1) then
6: stable = true
7: Pi = QoCGradient()
8: end if
9: end for

10: if (stable == true) then
11: for all {i ∈ Ic | (|λmax(Acl(hi, Di))| < 1)} do
12: if (Pi = mini Pi) then
13: πi = πmin

14: else
15: πi = 0
16: end if
17: end for
18: return (stable)
19: else
20: return (unstable)
21: end if

(line 9). In case the deadline is violated, we reset the priority
πi = 0 (line 11) because Ti requires a higher priority to
guarantee its deadline. Further, in case there exists at least
one unscheduled control task (line 12) we call the function
selectControlTask() (line 13) which is responsible for the
priority assignment to the control tasks. In case no control
task is available the task set τ is not schedulable (line 19).
Function selectControlTask() involves the following steps
outlined in Alg. 3:

• Computation of worst-case delay Di (line 4) (see
Alg. 2), check for stability according to (16) (line 5),
and computation of the QoC gradient Pi (line 7).

• Check if at least one control task is stable (line 10) and
return unstable otherwise. Note that if Alg. 3 returns
unstable, Alg. 1 declares the task set τ as unschedulable
(lines 16 and 28) and the algorithm will stop. Next, the
task with minimum Pi (lines 11-17) is assigned πmin.
Note that if there are two tasks with minimum QoC,
then πmin is assigned to one of them arbitrarily.

In case a feasible priority assignment was found for a real-
time task (line 9) or a control task (line 13), πmin is
decremented for the next iteration (line 14, line 22 of Alg. 1,

respectively). Note that lines 24 - 30 again represent the
priority assignment algorithm for the control tasks in case
all real-time tasks already have been scheduled and there are
only control tasks left.

III-E. Complexity Analysis
In Section III-C we analyzed the complexity of finding

and optimal schedule for mixed control/real-time tasks set-
tings. In this section we are concerned with analyzing the
complexity of our proposed schedule synthesis algorithm.

As discussed previously, it is meaningful to assign prior-
ities to real-time tasks in the system according to DM. For
this purpose, the set of real-time tasks τrt needs to be sorted
in order of decreasing deadlines (see Line 1 in Alg. 1). Recall
that our schedule synthesis algorithm starts assigning prior-
ities from the lowest to the highest. This way, if real-time
tasks are schedulable at lower priority levels, the algorithm
can use higher priority levels to accommodate control tasks
and, hence, improve QoC. Such sorting can be performed
in O(|τrt| log |τrt|) time where |τrt| represents the number
of elements in τrt. Further, our proposed algorithm outlined
in Alg. 1 has to assign n different priorities, i.e., for each
priority level, there will be either one real-time or one control
task – multiple tasks per priority level are not allowed in
our setting. For each priority level, there is one iteration of
the while-loop (line 4). Hence, this loop is executed n times
starting by πmin = n (see Line 2) until πmin = 0 is reached
(see Line 4).
In each iteration of the while-loop, the algorithm tries to
accommodate a real-time task (from the sorted task set τrt)
in the current priority level given by πmin (see for-loop,
Line 5). For this, the delay incurred by the real-time task at
the current πmin needs to be computed (see computeDelay(),
Line 7). The function computeDelay() (shown in Alg. 2)
computes the minimum service βl

r,i which results from
subtracting the arrival curves αu

j of higher-priority events
to the resource’s service curve. It has been proven that if a
deadline is missed by a given schedule, this always happens
within the so-called busy period, i.e., within the time interval
in which the resource is busy without idle time [11]. As
a consequence, the computation of βl

r,i can be limited to
the busy period on the resource. Hence, computeDelay()’s
complexity is pseudo-polynomial in the form O(n × Z),
where n is the total number of tasks in the system and Z is
the length of the busy period on the shared resource [2].

The function selectControlTask() (shown in Alg. 3) calls
computeDelay(). Since selectControlTask() iterates over the
set of control tasks, its complexity is O(|τc| × n × Z) <
O(n2 × Z), where |τc| denotes the number of tasks in
τc. Note that the function QoCGradient() in Alg. 3 has
constant complexity and hence does not influence select-
ControlTask()’s complexity.

The for-loop’s body in Alg. 1 can be executed at most n
times (once for each priority level). (Note that, if a real-time
task is not be schedulable for a given priority level πmin,
it will require another iteration of the for-loop. However,
the number of iterations in the for-loop is upper-bounded

Authorized licensed use limited to: UNIVERSITAETSBIBLIOTHEK CHEMNITZ. Downloaded on April 13,2022 at 15:06:21 UTC from IEEE Xplore. Restrictions apply.

Table I. Task set specification
Ti α := (p, j, d) execution demand ei deadline di

T1 ∈ τrt (50,7,1) (1.5 0.2) 50
T2 ∈ τrt (30,4,1) (1.3 0.2) 30
T3 ∈ τrt (20,10,1) (0.6 0.2) 20
T4 ∈ τrt (20,25,1) (0.8 0.3) 15
T5 ∈ τrt (10,55,1) (1.0 0.5) 10
T6 ∈ τrt (10,19,1) (1.2 0.1) 10
T7 ∈ τc (30,0,1) (1.4 0.2) (14)
T8 ∈ τc (40,0,1) (1.2 0.3) (32)
T9 ∈ τc (40,0,1) (0.7 0.1) (27)
T10 ∈ τc (30,0,1) (1.0 0.2) (21)

Table II. Results for DM and QoC-oriented scheduling
Task Ti Deadline Monotonic: (πi) QoC Gradient: P : (πi)

T1 π1 = 10 π1 = 10
T2 π2 = 8 π2 = 9
T3 π3 = 5 π3 = 7
T4 π4 = 4 π4 = 4
T5 π5 = 2 π5 = 3
T6 π6 = 1 π6 = 2
T7 π7 = 3 π7 = 1
T8 π8 = 9 π8 = 8
T9 π9 = 7 π9 = 6
T10 π10 = 6 π10 = 5

P∗ 2.7297 1.427235

J∗ 0.32799 0.875653

by n.) The complexity of executing the for-loop in Alg. 1 is
given by O (

n× (n× Z + n2 × Z
)

which can be expressed

as O (
n3 × Z

)
, i.e., also pseudo-polynomial as a result of

the complexity of computeDelay(). Finally, since the while-
loop’s body is also executed n times, the overall complexity
of our proposed algorithm is pseudo-polynomial in the form
O (

n4 × Z
)
. This is a useful result since, as discussed

before, the problem has exponential complexity.

III-F. Illustrative Examples
Let us consider the task set τ that consists of real-

time tasks τrt and control tasks τc with the specification
of Tab. I. The deadlines (in brackets) of the control tasks
T7, T8, T9, T10 represent the maximum delay at which the
inequality in (16) is fulfilled. Further, we consider a resource
r with a total initial service βr. We compare the results of
our proposed approach with classical DM scheduling. Tab. II
shows the priorities πi assigned to each task Ti and the total
QoC defined as J∗ =

∑
i Ji and the overall QoC gradient

P∗ =
∑

i Pi, for all i ∈ Ic. It can be observed that the
overall QoC for classical deadline monotonic scheduling is
significantly worse compared to the QoC-oriented approach.

IV. CONCLUDING REMARKS
This paper presents a QoC-oriented schedule synthesis

algorithm for mixed-criticality systems. The proposed ap-
proach integrates RTC-based performance analysis tech-
niques in a QoC-oriented multi-layered scheduling frame-
work where task sets of different criticality are scheduled at
different layers. We compare our results to classical DM
scheduling, and we show that our approach significantly

improves overall QoC while guaranteeing schedulability.
Future work envisages to extend the scheduling framework
by adding additional layers, e.g., for soft real-time tasks, and
integrating further QoC metrics for schedule synthesis.

V. REFERENCES
[1] S. Baruah, Haohan Li, and L. Stougie. Towards the

design of certifiable mixed-criticality systems. In RTAS,
2010.

[2] S. Baruah, A. Mok, and L. Rosier. Preemptively
scheduling hard-real-time sporadic tasks on one pro-
cessor. In RTSS, 1990.

[3] S.K. Baruah, A. Burns, and R.I. Davis. Response-time
analysis for mixed criticality systems. In RTSS, 2011.

[4] A. Y. Bhave and B. H. Krogh. Performance bounds on
state-feedback controller with network delay. In CDC,
2008.

[5] J.-Y. Le Boudec and P. Thiran. Network Calculus -
A Theory of Deterministic Queuing Systems for the
Internet. LNCS 2050, 2001.

[6] S. Chakraborty, S. Künzli, and L. Thiele. A general
framework for analysing system properties in platform-
based embedded system designs. In DATE, 2003.

[7] D. de Niz, K. Lakshmanan, and R. Rajkumar. On the
scheduling of mixed-criticality real-time task sets. In
RTSS, 2009.

[8] S. Islam, R. Lindstrom, and N. Suri. Dependability
driven integration of mixed criticality SW components.
In ISORC, 2006.

[9] K. Lakshmanan, D. de Niz, and R. Rajkumar. Mixed-
criticality task synchronization in zero-slack schedul-
ing. In RTAS, 2011.

[10] J. Y Leung. On the complexity of fixed-priority
scheduling of periodic, real-time tasks. In Performance
Evaluation, 1982.

[11] C. Liu and J. Layland. Scheduling algorithms for
multiprogramming in hard real-time environments. In
Journal of the Association for Computing Machinery.

[12] A. Mayr, R. Ploesch, and M Saft. Towards an
operational safety standard for software: Modelling
IEC61508 part 3. In ECBS, 2011.

[13] OSEK OS specification v2.2.3. www.osek-vdx.org.
[14] R. Palin, D. Ward, I. Habli, and R. Rivett. ISO26262

safety cases: Compliance and assurance. In System
Safety, 2011.

[15] A. Quagli, D. Fontanelli, L. Greco, L. Palopoli, and
A. Bicchi. Designing real-time embedded controllers
using the anytime computing paradigm. In ETFA, 2009.

[16] J. Rushby. New challenges in certification for aircraft
software. In EMSOFT, 2011.

[17] S. Samii, A. Cervin, P. Eles, and Z. Peng. Integrated
scheduling and synthesis of control applications on
distributed embedded systems. In DATE, 2009.

[18] S. Samii, P. Eles, Z. Peng, P. Tabuada, and A. Cervin.
Dynamic scheduling and control-quality optimization
of self-triggered control applications. In RTSS, 2010.

Authorized licensed use limited to: UNIVERSITAETSBIBLIOTHEK CHEMNITZ. Downloaded on April 13,2022 at 15:06:21 UTC from IEEE Xplore. Restrictions apply.

