
Schedulability Analysis of Distributed Cyber-Physical Applications on
Mixed Time-/Event-Triggered Bus Architectures with Retransmissions

Alejandro Masrur∗, Dip Goswami∗, Reinhard Schneider∗, Harald Voit∗,
Anuradha Annaswamy† and Samarjit Chakraborty∗

∗TU Munich, Germany
†Massachusetts Institute of Technology, USA

Abstract—In this paper we study the setup where multiple
cyber-physical applications are partitioned and mapped onto
spatially distributed electronic control units (ECUs). Further,
applications communicate over a mixed time-/event-triggered bus
like FlexRay. Such a setting commonly arises in automotive and
other distributed cyber-physical systems. All control messages
mapped onto the time-triggered or static segment of the bus
result in negligible/zero communication delays (viz., the bus and
the ECUs can be perfectly synchronized) and hence good control
performance. At the other extreme, all messages scheduled in
the priority-driven dynamic segment often result in poor control
performance because of the intrinsic timing non-determinism of
priority-based protocols. In this paper we are concerned with
the intermediate case – where messages are dynamically moved
between the time- and event-triggered segments in order to
meet performance requirements in the presence of disturbances
– and formally study the schedulability analysis problem on
the bus. In particular, we propose a novel scheduling strategy
that considerably reduces the number of static time-triggered
slots required in such a switching scheme to meet specified
performance requirements. The basic premise of our work is
that time-triggered slots are expensive and, hence, they should
be used sparingly. We further demonstrate the benefits of our
proposed scheme through a number of illustrative examples.

I. INTRODUCTION

Distributed cyber-physical architectures typically consist of
multiple control applications mapped onto spatially distributed
processors or electronic control units (ECUs). In this paper we
are concerned with the case where these ECUs communicate
over a mixed time-/event-triggered bus such as FlexRay [1].
When all control messages are mapped onto the static time-
triggered segment of the bus, the time-triggered slots and the
ECUs may be perfectly synchronized. This results in zero com-
munication delays assuming that the actual transmission times
of messages are negligible. Clearly, this leads to in a semantic
match between the control models and their implementations
and thereby also good control performance. However, it is
widely believed that as application complexity and hence
communication requirements continue to grow, the bandwidth
of the time-triggered segment (in buses like FlexRay) will not
suffice and a purely time-triggered implementation might be
overly expensive. On the other hand, priority-driven event-
triggered implementations suffer from the usual temporal non-
determinism, i.e., the communication delay varies with the
priority and the current scheduling situation on the bus. As a
result, a large semantic gap opens up between control models
and their implementations over the event-triggered segment,
which in the end translates into poor control performance.

Plant in
Steady-

State

Plant in
Transient

Plant in
Transient

Plant in
Steady-

State

After

Time-triggered Event-triggered

�
After

waitt

After)(��dwt

]1[][�� kKxku][][kxKku opt�

Disturbance
at 0tt �

dwwait tttt ��� 0, at

Fig. 1. Switching scheme

In this paper we investigate an intermediate possibility
where the aim is to achieve control performance close to a
purely time-triggered implementation, but using fewer time-
triggered slots than what would be normally necessary. This is
achieved by exploiting the following two observations: (i) the
settling time of a controller (which is a widely used measure
of control performance) is more susceptible to deterioration
during its transient phase, i.e., when there are external dis-
turbances, (ii) it is possible to find an upper bound on the
frequency at which disturbances occur to the control appli-
cations. As a result, an event-triggered implementation might
suffice when the applications are in steady-state. When they
move to a transient phase because of an external disturbance,
we propose to switch the relevant control messages to a time-
triggered slot in order to minimize the response or settling
time. This is illustrated in Fig. 1. The parameters in this figure
are explained later.

In order to guarantee pre-specified control performance in
the above scheme, a schedulability analysis is necessary, since
the number of allocated time-triggered slots is less than what
is required for all control messages to be accommodated.
Hence, in the event of a disturbance, an application might
have to wait (depending on whether its associated time-
triggered slot is occupied or not) before it may switch from
an event-triggered to a time-triggered mode. Designing and
analyzing such a control performance-oriented scheduling is
the topic of this paper.

Our contributions and related work: There are two broad
classes of schedulability analysis techniques within the real-
time systems literature – response time analysis [2] and the
demand-bound criteria [3]. In this paper, we lift the classical
response time analysis technique to a control-theoretic setting.
Towards this we switch the control scheme (in particular,
the controller gain values) when we move the associated
control messages from the event- to the time-triggered scheme.
This, along with the system model, determines the dwell

time (tdw in Fig. 1) for each application (considering all
possible external disturbances and initial system states). The
dwell time dictates the amount of time an application has to
spend in the time-triggered mode in the event of an external
disturbance. Given specified settling times (our measure of
control performance), a mapping of messages to time-triggered
slots and upper bounds on the arrival of disturbances for
each control application, our analysis determines whether the
control performance objectives of all applications may be
satisfied. In addition, we reduce the number of time-triggered
slots for a set of applications to be schedulable (in a control-
theoretic sense).

There has been a considerable amount of work on
schedulability analysis of both time-triggered [4] and a mix
of time- and event-triggered systems [5]. But the questions
addressed were typically: how to compute upper bounds on
communication delays, and how to synthesize time-triggered
schedules (see also [6] for time-triggered schedule synthesis
for FlexRay). In the specific context of hybrid time- and
event-triggered schedules, the focus has been on partitioning
system functionality into time- and event-triggered activities.
However, the schedulability problem arising in the context
of dynamically switching messages between time- and
event-triggered modes, and in particular the schedulability
with control performance objectives has not been sufficiently
addressed so far. Notable exceptions to this are [7] and [8].
The work presented in [7] studied how the performance of
multiple control loops may be optimized while still ensuring
schedulability in CAN networks. Similarly, the schedulability
region that guarantees control performance has been computed
in [8]. Our approach follows this line of work and specifically
addresses the scheduling problem to minimize the required
number of time-triggered slots while maintaining the desired
response times for a set of control applications.

Organization: The rest of this paper is organized as follows.
We first discuss the details of our system model along with
some examples to motivate our setup (Section II). We formally
formulate the problem in Section III. This is followed by the
discussion on the proposed scheduling algorithm in Section
IV. We illustrate the applicability of our algorithm with a case
study in Section V.

II. MOTIVATIONAL BACKGROUND

We consider a discrete-time control application of the form
shown in (1) with constant sampling interval p. x[k] is the
n × 1 vector of state variables and u[k] is the control input.
A is an n × n system matrix, B is an n × 1 vector and we
assume that (A, B) is a controllable pair. In this section, we
intend to capture some motivational facts using an example of
a second-order plant given by (2) with p = 20ms:

x[k + 1] = Ax[k] + Bu[k], (1)

A =
[

0 1.0
−0.56 −1.9

]
, B =

[
0

1.0

]
. (2)

The choice of u[k] is what typically a control engineer is
interested in to ensure a stable regulation:

x[k] → reference as k → ∞.

On top of ensuring a stable system regulation, a control design
aims to bring x[k] close to the reference within a finite amount
of time (which is known as settling time ξ). At a high level,
the settling time essentially indicates the response speed of the
control application, i.e., response time1.

In a feedback control system, u[k] utilizes the system states
x[k] as feedback. In this work, we consider a state-feedback
controller:

u[k] = Kx[k − Δ], (3)

where K is the state-feedback gain [9] and Δ is the
feedback delay measured in number of samples. For example,
considering a sampling period p = 20ms, Δ = 2 implies
a delay of 40ms. Designing a state-feedback controller
u[k] essentially boils down to a problem of finding suitable
controller gains K such that x[k] reaches a specified proximity
of the reference (e.g., 1%) within a given time, i.e., a desired
settling/response time.

Case I - Control with zero feedback delay (Δ = 0): In this
case, u[k] = Kx[k], x1[0] = 20, x2[0] = 15. Without loss
of generality, let us assume that the reference is zero. Given
such a system where all the states x[k] are measurable, it
is possible to adapt well-known optimal control approaches
such as the Linear Quadratic Regulator (LQR) [10] to derive
the optimal feedback gain Kopt. Fig. 2 shows how the state
x1[k] evolves with u[k] = Koptx[k]. We can see that x1[k]
(and similarly, x2[k]) reaches very close to the reference after
4 samples, i.e., 4 × 20ms= 80ms. Hence, the settling time
ξ = 80ms, i.e., the system response time is 80ms for the
given initial conditions (x1[0] = 20 and x2[0] = 15).

Case II - Control with feedback delay (Δ = 1): Here,
u[k] = Kx[k − 1] and we consider identical initial conditions
as in Case I. Unlike the previous case, the feedback control
u[k] does not have the values of the current state x[k]. u[k]
has rather an older state x[k − 1] as feedback. Because of
such restriction in the feedback, the choice of K cannot
be optimized using standard design techniques such as
LQR. We choose K =

[−0.2540 −0.6433
]

by pole
placement technique [10]. Fig. 3 shows how x1[k] evolves
with u[k] = Kx[k − 1]. We can see that the settling time is
ξ = 700ms or 35 samples, i.e., the system response becomes
slower with delayed feedback.

The main motivation of this paper from the control theoretic
perspective is that it is possible to regulate the response
time ξ of the control application by appropriately switching
the controllers u[k] = Koptx[k] and u[k] = Kx[k − 1]. We
support the above observations using the following example.

1The settling time (in the control theory parlance) and the response time
(in the real-time systems parlance) are used interchangeably.

0 0.1 0.2 0.3 0.4 0.5−5

0

5

10

15

20

Fig. 2. Case I

0 0.1 0.2 0.3 0.4 0.5−100

−50

0

50

100

Fig. 3. Case II

0 0.1 0.2 0.3 0.4 0.5−5

0

5

10

15

20

Fig. 4. Case III

0 0.1 0.2 0.3 0.4 0.5−100

−50

0

50

100

twait tdw

ξ

Fig. 5. Case IV

0 0.1 0.2 0.3 0.4 0.5−100

−50

0

50

100

twait tdw

ξ

Fig. 6. Case V

Case III: In this case, we first use u[k] = Koptx[k] for the
first two samples and then switch to u[k] = Kx[k − 1] from
the third sample onwards. We can see that the settling time is
now ξ = 300ms or 15 samples (Fig. 4). Therefore, the system
response can be adjusted by appropriately switching between
the cases where Δ = 0 and Δ = 1, i.e., between the time-
and the event-triggered message communication protocol. This
switching between communication protocols is also associated
with a corresponding switching of controllers.

A. Concepts and Definitions
Let us define the following terminologies to facilitate the

problem statement.

Definition 2.1: The system (1) is said to be in a transient
phase if the system states are such that x[k]T x[k] > Eth where
Eth indicates certain specified energy threshold of the system.
Similarly, the system (1) is said to be in steady-state if the
systems states are such that x[k]T x[k] ≤ Eth.

The state of a system is governed by values of the state
variable vector x[k]. In steady-state, the values of every ele-
ment of the vector x[k] should be small (or close enough to the
reference). Therefore, x[k]T x[k] often acts as a measure of the
system state or energy level of the system. The value of energy
threshold indicates how much deviation from the reference is
tolerated by the designer in steady-state. If the deviation is
more than the energy threshold, the system is considered to
be in transient phase. The occurrence of a transient phase can
either be initiated by an external disturbance (e.g., the norm of
a certain state ‖x[k]‖ suddenly becomes too large) or by initial
conditions. In this work, anything that causes a transient phase
is referred to as a disturbance. In model (1), the disturbance
is not shown explicitly for the sake of simplicity. However,
the model can be modified to take disturbances into account
at any sampling instant:

x[k + 1] = Ax[k] + Bu[k] + D[k], (4)

where D[k] denotes external disturbances. D[k] = 0 for most
of the samples k. D[k] becomes non-zero at the occurrence

of a disturbance, e.g., D[12] =
[

0
10.0

]
indicates that a

disturbance of magnitude 10 occurs in the state x2[k] of our
system at the twelfth sample (i.e., k = 12).

Definition 2.2: The maximum time required by the optimal
controller u[k] = Koptx[k] to bring the system (1) to the

steady-state from any possible transient phase (or initial states
x[0]) is called dwell time and will be denoted by tdw in this
paper.

In a discrete-time representation, the time is computed
in terms of samples, i.e., the absolute time is always a
multiple of samples. Therefore, tdw is always a multiple of
the sampling interval p, e.g., if u[k] = Koptx[k] takes 5
samples to reject a disturbance then tdw = 5 × p. The set of
all possible initial states x[0] is usually known in real-life
applications. Note that a disturbance changes the system
states and it effectively starts from a new initial state after the
occurrence of disturbance. Knowledge of all possible initial
states essentially covers the initial state at the worst-case
disturbance. The worst-case disturbance is usually known to
the designer, e.g., if the current/voltage is one state then worst-
case disturbance is the maximum/minimum voltage/current
available from the source. Based on this assumption, we
compute tdw taking all these initial states into account. Hence,
the optimal controller u[k] = Koptx[k] brings the system
back to steady-state from any such initial condition in tdw

time. The application of u[k] = Koptx[k] for a time interval
t < tdw does not necessarily guarantee a system recovery
(i.e., a transition from transient to steady-state) within a
desired response time ξd. The use of u[k] = Koptx[k]
can wait twait = (ξd − tdw) time units after the initiation
of the transient phase without violating the response time
requirement. For example, in model (1), let us assume that the
system starts with a transient phase, tdw = 100ms (5 samples)
and ξd = 200ms. Intuitively, the system response is identical
to Fig. 2 when twait = 0, i.e., u[k] = Koptx[k] for the first 5
samples and u[k] = Kx[k−1] from the sixth sample onwards.

Case IV: Let us assume that the waiting time is
twait = 100ms, i.e., the system runs with u[k] = Kx[k − 1]
for the first 100ms or 5 samples and the control law changes
to u[k] = Koptx[k] from the sixth sample. In this case, it can
be seen from Fig. 5 that ξ = 180ms < ξd.

Case V: Let us assume that the waiting time is
twait = 200ms. Here it can be seen from Fig. 6 that
ξ = 260ms > ξd.

From the above two cases, we observe that the response
time ξ of an application changes based on twait. Whether
an application is going to meet its response time requirement

Ts,i Tc,i Ta,i

sensori

u[k-]

ECU1 ECU3

actuatori

]

Ts,j Tc,j

sensorj

ECU2

Ta,j

ECU4

actuatorj

Fig. 7. The distributed cyber-physical architecture in this paper

or not depends on twait. In Case IV, twait is less than the
maximum allowed waiting time before u[k] = Koptx[k] is
applied to meet the response time requirement ξd. In Case V,
twait is more than the maximum allowed waiting time and
hence ξ > ξd. Based on this observation, we formulate the
problem addressed in this paper.

III. PROBLEM FORMULATION

We consider multiple control applications of the form of
(1). Such applications are denoted by Ci with sampling period
pi (i ∈ {1, 2 . . . n}) and run on a distributed architecture of
the form shown Fig. 7. Each Ci is composed of three tasks
Ts,i (measures x[k]), Tc,i (computes u[k]) and Ta,i (applies
u[k] to the actuator/plant). Such tasks are then mapped onto
spatially distributed ECUs which are connected via a shared
communication bus.
As an underlying communication medium, we consider a
hybrid communication protocol (e.g., FlexRay) as shown in
Fig. 8 where each communication cycle is divided into time-
triggered (or static) and event-triggered (or dynamic) seg-
ments. On the time-triggered segment, the tasks are given
access to the bus (or allowed to send messages) only at their
predefined slots. On the other hand, the tasks are assigned
priorities in order to arbitrate for the access to the event-
triggered segment. We consider a distributed setup with the
following properties:

• The tasks Ts,i and Tc,i are mapped onto the same ECU
which is attached to the corresponding sensors. Ts,i

triggers Tc,i after measuring the states x[k]. Our analysis
trivially extends to other task mappings as well.

• The tasks Ts,i and Ta,i that belong to a particular control
application are triggered periodically with equal period
(which is the sampling time pi of the application Ci).
The triggering of Ts,i and Ta,i is synchronized with a
given slot on the static segment of the bus.

• The execution times of Ts,i, Tc,i and Ta,i (in the order
of μs) are negligible compared to the sampling period pi

(in the order of ms).
• Every controller task Tc,i can send messages (to Ta,i)

either over the static or the dynamic segment of the bus.
The transmission rate in FlexRay is usually 10 Mbit/s.
As a result, the transmission time of messages over the
bus are generally in the order of μs which is negligible
compared to the sampling periods of common control
applications which are in the order of ms. We further
assume that the slot length on the static segment has been
chosen such that every possible message fits (entirely)

… …

Time-Triggered Event-Triggered Communication Cycle

Slots

1 2 3 1 2 3

Fig. 8. Hybrid communication protocol: time-triggered and event-triggered

Response time if

always applied from t=0

Response time if

always applied from t=0
Desired response

time

Fig. 9. Relation between tdw,i, ξd
i and twait,i

into one slot. Therefore, we can consider that the trans-
mission time of messages is zero (i.e., negligible with
respect to the sampling period). On the dynamic segment,
Tc,i’s messages experience a maximum communication
delay τi. This is due to the contention among messages
with different priorities. The maximum delay experienced
by the control related messages can be computed by
the traditional worst-case response time analysis [11],
[12]. We assume that the priority assigned to every
Tc,i sending over the dynamic segment guarantees that
0 < τi ≤ pi holds for the corresponding Ci. From the
above properties, it is clear that the controller design in
Case II is essentially based on the worst-case delay. The
performance of such controller design is often pessimistic
as we can see in Case II. By switching between the
designs with zero-delay and worst-case delay, we can
avoid the pessimism coming from the design based on the
worst-case delay (discussed in the following paragraphs).

Now, we try to match the above distributed setup with the
control scenario described in the previous section (Sec. II).
More specifically, if a task Tc,i sends a message over the static
segment, the communication delay is zero and we will be able
to implement the optimal control strategy u[k] = Koptx[k]
(Case I). In this work, we neglect the effect of transmission
time for messages and consider Δ = 0 under a time-triggered
communication scheme. On the other hand, if a Tc,i transmits
over the dynamic segment, we can implement the controller
of the form u[k] = Kx[k − 1] since the communication delay
here can be as much as a sampling period pi (Case II).

Based on the above discussion, we consider the following
sequence of events (illustrated in Fig. 1 and 9):

• A control application Ci can either apply u[k] =
Koptx[k] or u[k] = Kx[k − 1]. In both cases, the
asymptotic stability is guaranteed, i.e., x[k] → reference
as k → ∞.

• The implementation of u[k] = Koptx[k] needs zero-
delay feedback, which can only be achieved using the
static segment for sending the control-related messages
(from Tc,i). On the other hand, u[k] = Kx[k− 1] can be
implemented using the dynamic segment.

• The system response time ξ is lower in the case of using
u[k] = Koptx[k] and higher with u[k] = Kx[k − 1].

• Every control application is associated with a desired
response time ξd

i within which it must get back to steady-
state after the occurrence of any disturbance.

• To meet the response time requirement ξd
i in the presence

of disturbances, the control application Ci needs to apply
u[k] = Koptx[k] for tdw,i time. That is, Ci requires to
send tdw,i

pi
consecutive messages with zero delay. The

application of only u[k] = Kx[k − 1] causes a violation
of the response time requirement ξd

i .
• For a given Ci, the transmission of tdw,i

pi
consecutive zero-

delay messages can wait at most for twait,i = (ξd
i −tdw,i).

Switched control/communication scheme (Fig. 1): In the
context of the above setup, the proposed switching scheme
behaves as follows:

(i) A control application is running in steady-state and
utilizes u[k] = Kx[k − 1] implemented over the
dynamic segment.

(ii) A disturbance occurs at t = t0 which changes the
system state to transient phase.

(iii) The control application may continue applying
u[k] = Kx[k − 1] for at most twait,i time.

(iv) At the latest at t = t0 + twait,i, the controller and
the communication are switched to u[k] = Koptx[k]
and the static segment respectively.

(v) The control application keeps on applying u[k] =
Koptx[k] for another tdw,i time.

(vi) At t = t0 + twait,i + tdw,i (the latest), the controller
and the communication are switched back to u[k] =
Kx[k−1] and the dynamic segment respectively. The
control application Ci remains in this configuration
until another disturbance occurs.

Clearly, if every Ci has its own slot on the static segment,
then all of them will be able to meet their response time
requirements ξd

i because there will be no contention for
the static segment. However, this leads to a poor overall
bus utilization and an expensive design. Hence, we propose
allocating multiple applications to the same time-triggered
slot. Now, the access to these shared slots needs to be
arbitrated which leads us to the following schedulability
problem.

Problem statement: We consider n control applications Ci

with tdw,i and ξd
i (i ∈ {1, 2 . . . n}). Given a bound on the

disturbances for each application, we intend to compute the
minimum number of static segment slots m (m ≤ n) to
ensure that all control applications meet their response time
requirements ξd

i .

IV. NUMBER OF STATIC SEGMENT SLOTS

The computation of the number of slots on the static or
time-triggered segment consists of two interlocked steps:

• The schedulability analysis on one static segment slot
shared by multiple control applications.

Schedulability Analysis with Retransmissions

Desired Settling Time
d
i�

idwt ,

Dwell Time

'
ib

Allowable Blocking Time

irt ,
Retransmission Cost

Controller Design

Performance
Requirements ir

Disturbance Inter-Arrival Time

iw
Worst-Case Response Time

Fig. 10. Control/scheduling co-design

• The allocation of applications to one or more static seg-
ment slots, which is based on the schedulability analysis
for one slot.

A. Schedulability Analysis

In this section, we first analyze the schedulability of control
messages on one shared time-triggered slot according the
switched control/communication scheme described in the pre-
vious section. As shown in Fig. 10, the schedulability analysis
requires two inputs: (i) the performance-related requirements
derived from the control design, (ii) the disturbance arrival
pattern.

In principle, a time-triggered slot behaves as a processor
with a certain processing capacity. The control applications Ci

requesting for zero-delay transmission behave like tasks run-
ning on the time-triggered slot or processor. At the occurrence
of a disturbance, a control application requests access to zero-
delay transmission for a given amount of time tdw,i. tdw,i here
behaves as the execution time of Ci. A time-triggered slot or
processor must provide tdw,i amount of uninterrupted service
to a task Ci within ξd

i , which acts as a deadline for Ci.
A request for zero-delay communication tdw,i coming from

a Ci depends on the disturbance arrival pattern of Ci, which
we characterize in the next paragraph.

Disturbance model: For a control application Ci, disturbances
may arrive sporadically with a minimum inter-arrival time
denoted by ri. In this paper, we consider the case where
ξd
i ≤ ri holds for every Ci in the system. That is, any control

application is assumed to have enough time to recover from
a disturbance before the next one arrives. The sources of
disturbance are assumed to be independent of each other. Con-
sequently, the worst-case disturbance arrival pattern happens
when disturbances occur simultaneously with their respective
minimum inter-arrival times ri for all Ci in the system.

From the previous discussion, we know that Ci needs to
recover from disturbances within ξd

i time units. For this pur-
pose, a Ci has to send tdw,i

pi
consecutive zero-delay messages

(i.e., it requires uninterrupted access to the time-triggered slot
for at least tdw,i time units).

In order to schedule a number of control applications Ci

on the same static segment/time-triggered slot, we propose
a priority-based slot sharing. All Ci sharing one slot on
the static segment are assigned priorities according to their
criticality. For this purpose, we make use of the Deadline

Monotonic (DM) policy [13], i.e., the shorter the deadline of
a Ci, the higher its priority on the given slot. As mentioned
before, the deadline of a Ci here is given by its desired
response time ξd

i .

Considering retransmissions: Although a communication
bus is intrinsically non-preemptive, the setting studied in
this paper allows aborting the transmission of a sequence
of lower-priority messages and hence reducing the blocking
time suffered by higher-priority applications. This is possible
because, in every communication cycle, we can decide again
which of the applications sharing a slot may have access to it
and start transmitting next.

On the other hand, as discussed previously, an application
Ci needs to transmit at least tdw,i

pi
consecutive zero-delay mes-

sages to guarantee control performance requirements. Thus, if
an ongoing transmission sequence is canceled, we will need to
retransmit the whole sequence of Ci’s messages (irrespective
of how many Ci’s messages could have been transmitted
previously). This results in retransmission cost which needs
to be considered in the schedulability analysis.

To find a balance between blocking time and retransmission
cost, a higher-priority Cj is only allowed to interrupt a lower-
priority Ci after a configurable blocking time b′j . This is
similar to implementing a limited-preemption scheme [14].
However, our analysis differs from the known techniques in
a non-trivial manner, since we also consider the effect of
retransmitting messages.

In what follows, we denote by wi the worst-case response
time of a control application Ci. That is, the maximum
time that it takes Ci to finish transmitting tdw,i

pi
consecutive

messages over the shared slot. If wi is less than or equal to
the desired system response ξd

i , Ci is going to be schedulable
on the given shared slot.

Since a Ci can be blocked by a lower-priority application,
computing wi here has some similarities with computing the
worst-case response time in a fixed-priority non-preemptive
scheduling like the one of CAN [11], [12]. To find the worst-
case response time of a task under a fixed-priority non-
preemptive scheduling, we need to compute the response times
of all jobs of that task within its maximum busy period [12].

In our case, the task is given by a control application Ci

sending a certain number of consecutive messages over a
shared slot. The maximum busy period of a Ci is then the
largest time interval in which the shared slot is constantly
being used by higher-priority control applications and by Ci

itself. Ci’s maximum busy period denoted by tmax,i results
when all higher-priority control applications (that share the
same slot) require sending their message sequences at the same
time and can be computed as follows:

tmax,i = bi +
⌈

tmax,i

ri

⌉
tdw,i +

∑
Cj

⌈
tmax,i

rj

⌉
tdw,j , (5)

where Cj ∈ HP (i) and HP (i) denotes the subset of control
applications with higher priority than Ci (i.e., for every Cj

in HP (i), ξd
j ≤ ξd

i must hold under the DM policy). bi is

the maximum blocking time suffered by Ci due to lower
priority applications. (5) can also be solved in an iterative
manner starting from t

(1)
max,i = tdw,i + bi and proceeding until

t
(κ+1)
max,i = t

(κ)
max,i holds where κ is an integer number indicating

the iteration step. The resulting value is Ci’s maximum busy
period.

In this paper, we consider that tmax,i ≤ ri holds, i.e., there
is only one transmission of tdw,i

pi
messages of Ci within its

busy period tmax,i. So we can compute wi in the following
manner:

wi = bi + tdw,i +
∑
Cj

⌈
wi

rj

⌉
tdw,j , (6)

where Cj ∈ HP (i) and again HP (i) is the set of all higher-
priority control applications. (6) can be solved iteratively
starting from w

(1)
i = tdw,i + bi and proceeding as above.

Now, we first compute the maximum admissible blocking
time b̂i of a control application Ci. b̂i is the blocking time
for which the worst-case response time of a Ci is equal to its
deadline, i.e., wi = ξd

i holds. Using (6), we can obtain a b̂i:

b̂i = ξd
i − tdw,i −

∑
Cj

⌈
ξd
i

rj

⌉
tdw,j . (7)

Now, for every control application Ci, we configure a
blocking time b′i such that b′i ≤ b̂i holds. This means that
Ci can be blocked by a lower-priority application for at most
b′i time units after which it cancels the transmission of any
lower-priority application.

In the same way, a higher-priority Cj can cancel the
transmission of Ci after b′j time units. Hence, Ci may have
to retransmit a certain number of messages and incurs in a
retransmission cost that is given by b′j (i.e., the configured
blocking time of the higher-priority Cj). Notice that if b′j ≥
tdw,i holds, Ci has enough time to finish sending its message
sequence before b′j expires (and it will not incur in retransmis-
sion). Further, to obtain the maximum retransmission cost tr,i
for a Ci, we need to consider the fact that Ci’s transmission
can be canceled by any higher-priority Cj :

tr,i = max
Cj ,b′j<tdw,i

(
b′j

)
, (8)

where Cj ∈ HP (i) and HP (i) is the set of all applications
with higher-priority than Ci. Clearly, if b′j < tdw,i does not
hold for at least one Cj , tr,i will be zero.

Now, for a lower-priority Ci, if the transmission of any
of its higher-priority Cj is interrupted by another higher-
priority application, the retransmission cost of Cj needs to be
considered as blocking time for Ci. In worst case, all higher-
priority tasks of Ci may need retransmission. As a result, we
can configure any positive blocking time for Ci that is at most
equal to:

b′i = b̂i − tr,i −
∑
Cj

tr,j , (9)

where Cj ∈ HP (i) and HP (i) is the set of all control ap-
plications with higher-priority than Ci. Clearly, if no positive

Algorithm 1 Computation of the number of slots
Require: Set of control applications Ci with ξd

i and tdw,i

Require: The minimum disturbance inter-arrival time ri for every Ci

1: slot number=1
2: Sort Ci according to ξd

i
3: for i = 1 to n do
4: for s = 1 to slot number do
5: if Schedulable(Ci,slot(s)) then
6: Allocate Ci to slot(s)
7: else if s==slot number then
8: slot number = slot number + 1
9: Allocate Ci to slot(slot number)

10: end if
11: end for
12: end for

13: Return slot number

b′i can be found, Ci cannot be scheduled. Furthermore, the
schedulability on one slot can be guaranteed if a positive b′i
can be found for every Ci running on the slot. To this end,
we need to compute b′i in order of decreasing priorities from
the highest to the lowest priority.

In the proposed scheme, the blocking time of a higher-
priority Cj is the maximum time that Cj waits for a lower-
priority Ci to free the shared slot. If more than one Cj are
waiting for a Ci, Ci will be canceled after the minimum b′j
greater than zero among all waiting Cj . However, once this
minimum b′j elapses and Ci gets interrupted, the Cj with the
highest priority prevails over the other waiting applications
(independently of whether this has the minimum b′j or not).

B. Allocation Algorithm

The problem of finding the minimum number of slots (that
guarantees the response time requirements of all Ci) is clearly
an allocation problem. Often such problems are NP-hard in
the strong sense, i.e., finding an optimal solution results in
exponential complexity.

In this paper, we propose an algorithm based on the well-
known First Fit (FF) heuristic, since it leads to a number
of slots that is acceptably close to the optimum and has
polynomial complexity. Our algorithm (Alg. 1) first sorts the
control applications Ci according to increasing urgency, i.e.,
increasing values of ξd

i . Then, it iterates over the sorted set of
Ci and tries to allocate them in the minimum possible number
of slots.

The algorithm we propose starts with only one slot and
allocates the control applications Ci to it as long as they are
schedulable on that slot (line 5). A Ci is schedulable on one
slot if it can meet its timing requirement ξd

i when assigned to
that slot. To test this, the proposed algorithm makes use of the
schedulability analysis presented in the previous section.

Our algorithm tries to allocate all Ci to one or more slots
in the list of existing slots (line 4 to 11). It then adds a slot
to the list (line 8), only if a Ci could not be scheduled on
any of the exiting slots. The algorithm finishes when all Ci

have been allocated and returns the number of slots that were
necessary for accommodating all Ci (line 13).

TABLE I
CONTROL APPLICATIONS

Ci ri(ms) ξd
i (ms) tdw,i(ms)

C1 2000 300 100
C2 2000 400 120
C3 1500 450 150
C4 2000 1000 300
C5 5000 3000 800
C6 500 500 50

C1

b1 tdw,1
C2

C2

b2 tdw,2tdw,1

C1 C2

tdw,1 tdw,6tdw,2

C6

C6 C1 C1 C2
Fig. 11. Response times wi under the non-preemptive scheme (for the
applications allocated to the first slot) - C1 : w1 = b1 + tdw,1 = 220ms,
C2 : w2 = b2 + tdw,1 + tdw,2 = 270ms and C6 : w6 = tdw,6 + tdw,1 +
tdw,2 = 270ms.

V. RESULTS AND EVALUATION

In this section, we evaluate the proposed switching scheme
through an illustrative example. We consider six control
applications with the parameters shown in Table I. All
these applications are distributed as shown in Fig. 7. The
communication protocol is assumed to be FlexRay with a
cycle length of 5ms. The static segment has 2ms length and
it is divided into 10 slots. The rest of the cycle is assigned to
the dynamic segment.

Non-preemptive scheduling: For the sake of comparison,
we first utilize fixed-priority non-preemptive scheduling
such as that of CAN for arbitrating the access to the shared
time-triggered slots. We use the known schedulability analysis
for non-preemptive scheduling [11], [12] in combination
with Alg. 1 to determine the minimum number of slots that
guarantee all response time requirements. For the considered
example, we obtained three slots under the non-preemptive
scheme: C1, C2 and C6 are schedulable in one slot; C3 and
C4 are schedulable in a second slot; and finally, C5 needs a
separate third slot.

Fig. 11 shows a graphical representation of the response
times of C1, C2 and C6 (i.e., the control applications that are
allocated to the first slot) in the worst case. This results from
considering that for every application the maximum blocking
time may occur (e.g., C1’s worst-case response time occurs
when C1 is blocked by C2 as shown in Fig. 11).

Our proposed slot sharing with retransmissions: The
second option is the one presented in this paper, which
consists of implementing a limited preemption on the shared
slots and retransmissions as explained in Section IV. In
this case, Alg. 1 leads to two slots (one slot less than in
the non-preemptive case, but four slots less than in the
case of a purely time-triggered scheme): C1, C2, C3, C4

and C6 are now schedulable in one slot, whereas C5 still
needs a slot on its own. In the case of limited preemption
with retransmissions, Fig. 12 illustrates the response times
of the control applications assigned to the first slot (i.e.,
C1, C2, C3, C4 and C6). This results from considering the

C1

b’1 tdw,1

C2

b’2 tdw,2tdw,1

C1 C3

b’3 tdw,3tdw,1

C1

C1 C1

tdw,2
C2

C2

C6

b’6 tdw,6tdw,1

C1

tdw,2

C2

tdw,3

C3 C4

tr,4 tdw,6tdw,1

C1

tdw,2

C2

tdw,3

C3

C1 C2 C3

tdw,4

C6

C1 C2 C3 C6
Fig. 12. Response times wi under the limited preemptive scheme with
retransmissions (for the applications allocated to the first slot) - C1 : w1 =
b′1 + tdw,1 = 300ms, C2 : w2 = b′2 + tdw,1 + tdw,2 = 400ms, C3 :
w3 = b′3 + tdw,1 + tdw,2 + tdw,3 = 450ms, C6 : w4 = b′6 + tdw,1 +
tdw,2 + tdw,3 + tdw,6 = 500ms and C4 : w4 = tr,4 + tdw,1 + tdw,2 +
tdw,3 + tdw,4 + tdw,6 = 920ms.

blocking time obtained with (9) for every application. The
maximum admissible blocking time of the highest-priority
C1 is b′1 = 200. Since C2, C3 and C6 can finish transmitting
their sequences of messages within b′1, they do not suffer
from any retransmission cost as shown in Fig. 12. On the
other hand, C4 can start transmitting its messages when C1

requires access to the slot. C1 then decides to wait up to
200ms and preempts C4, which has to retransmit its whole
sequence of messages (since it cannot finish within b′1). Thus,
C4 suffers from a retransmission cost of 200ms.

Finally, Fig. 13 shows the schedulability region for the
considered set of applications. For C4, C5 and C6 given
as in Table I, we vary the disturbance arrival rates of C1,
C2 and C3. As it can be noticed, for r1 = r2 = 400ms,
the applications of Table I are only schedulable for an
r3 = 650ms. Further, an r3 = 400ms is then possible if we
increase r1 and r2 to 600ms or more.

Discussion: We observe the following from the above results:
(i) Under the limited-preemption scheme with retransmissions,
the blocking time of higher-priority applications is reduced
compared to the traditional non-preemptive scheme. On the
other hand, the lower-priority applications incur into retrans-
mission delay due to interruptions by higher-priority tasks.
Since, with the DM scheduling, the lower-priority applica-
tions have longer response time requirements (i.e., deadlines),
they normally tolerate this additional delay. In general, the
limited-preemption scheme leads to a smaller number of slots
and, hence, to a more efficient use of the bandwidth in the
communication bus. (ii) As a consequence of (i), the limited-
preemption scheme is more suitable when some of the control
applications have lower tdw,i

ξd
i

ratios, e.g., C6 in the above

example. The ratio tdw,i

ξd
i

is a measure for the “communication
demand” of a Ci (similar to the concept of density in the
schedulability theory). We expect the non-preemptive and the
limited-preemption schemes to have identical behavior for
higher tdw,i

ξd
i

.

VI. CONCLUDING REMARKS

In this paper we proposed a scheduling strategy for dis-
tributed control applications, where control messages are dy-
namically switched between event- and time-triggered com-

Fig. 13. Schedulability region under limited preemption and retransmissions

munication slots in response to external disturbances. In or-
der to trade off between the response times of higher- and
lower-priority applications, we proposed a limited-preemption
scheme with retransmissions which reduces the number of
time-triggered slots that are necessary. The novelty of our work
stems from formulating the schedulability analysis problem in
the context of a control-theoretic setting and also from our
control-performance driven scheduling technique. As a part of
future work, we plan to distinguish between different kinds
of disturbances (rather than always assuming the worst-case
disturbance) and extend our analysis to handle them in a
conservative fashion.

REFERENCES

[1] “The FlexRay Communications System Specifications,” Ver. 2.1,
www.flexray.com.

[2] K. Tindell, A. Burns, and A. J. Wellings, “An extendible approach for
analyzing fixed priority hard real-time tasks,” Real-Time Systems, vol. 6,
no. 2, pp. 133–151, 1994.

[3] S. Baruah, “Dynamic- and static-priority scheduling of recurring real-
time tasks,” Real-Time Systems, vol. 24, no. 1, pp. 93–128, 2003.

[4] P. Pop, P. Eles, and Z. Peng, “Schedulability-driven communication
synthesis for time triggered embedded systems,” Real-Time Systems,
vol. 26, no. 3, pp. 297–325, 2004.

[5] T. Pop, P. Eles, and Z. Peng, “Design optimization of mixed time/event-
triggered distributed embedded systems,” in Proceedings of the Interna-
tional Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2003, pp. 83–89.

[6] M. Lukasiewycz, M. Glaß, J. Teich, and P. Milbredt, “Flexray schedule
optimization of the static segment,” in Proceedings of the Interna-
tional Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2009, pp. 363–372.

[7] A. Martinez and P. Tabuada, “On the benefits of relaxing the periodicity
assumption for networked control systems over CAN,” in Proceedings
of the Real-Time Systems Symposium (RTSS), 2009, pp. 3–12.

[8] F. Zhang, K. Szwaykowska, W. Wolf, and V. J. M. III, “Task scheduling
for control oriented requirements for cyber-physical systems,” in Pro-
ceedings of the Real-Time Systems Symposium (RTSS), 2008, pp. 47–56.

[9] W. Jiang, E. Fridman, A. Kruszewski, and J. Richard, “Switching
controller for stabilization of linear systems with switched time-varying
delays,” in Proceedings of the IEEE Conference on Decision and Control
(CDC), 2009.

[10] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control.
Prentice Hall, New Jersey, 1996.

[11] K. Tindell, H. Hansson, and A. Wellings, “Analysing real-time com-
munications: Controller area network (CAN),” in Proceedings of the
Real-Time Systems Symposium (RTSS), December 1994, pp. 259–263.

[12] R. Davis, A. Burns, R. Bril, and J. Lukkien, “Controller area network
(CAN) schedulability analysis: Refuted, revisited and revised,” Real-
Time Systems, vol. 35, no. 3, pp. 239–272, 2007.

[13] J. Leung and J. Whitehead, “On the complexity of fixed-priority schedul-
ing of periodic, real-time tasks,” Performance Evaluation, vol. 2, no. 4,
pp. 237–250, 1982.

[14] S. Baruah, “The limited-preemption uniprocessor scheduling of sporadic
task systems,” in Proceedings of the Euromicro Conference on Real-Time
Systems (ECRTS), 2005, pp. 137–144.

