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Abstract In this paper, we are concerned with scheduling a mix of high-criticality
(HI) and low-criticality (LO) tasks under Earliest Deadline First (EDF) on one
processor. To this end, the system implements two operation modes, LO and HI
mode. In LO mode, HI tasks execute for no longer than their optimistic execution
budgets and are scheduled together with the LO tasks. The system switches to HI
mode, where all LO tasks are prevented from running, when one or more HI tasks
run for longer than expected. Since these mode changes may happen at arbitrary
points in time, it is di�cult to �nd an accurate bound on carry-over jobs, i.e.,
those HI jobs that were released before, but did not �nish executing at the point
of the transition. To overcome this problem, we propose a technique that works
around the computation of carry-over execution demand. Basically, the proposed
technique separates the schedulability analysis of the transition between LO and
HI mode from that of stable HI mode. We prove that a transition from LO to HI
mode is feasible, if an equivalent task set derived from the original is schedulable
under plain EDF. On this basis, we can apply approximation techniques such
as, e.g., the well-known Devi's test to derive further tests that trade o� accuracy
versus complexity/runtime. Finally, we perform a detailed comparison with respect
to weighted schedulability on synthetic data illustrating bene�ts by the proposed
technique.

1 Introduction

There is increasingly important trend in domains such as automotive systems,
avionics, and medical engineering towards integrating functions with di�erent lev-
els of criticality onto a common hardware platform. This allows for a reduction
of costs and complexity, however, it leads to mixed-criticality (MC) systems that
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require careful design and analysis. In particular, it must be guaranteed that high-
criticality (HI) functions/tasks are not a�ected by low-criticality (LO) tasks that
share the same resources.

In this paper, we are concerned with scheduling a mix of HI and LO tasks
under EDF and on one processor � however, a discussion for more levels of crit-
icality is presented in the appendix. In particular, we make use of Vestal's task
model [20]. That is, LO tasks are modeled by only one worst-case execution time
(WCET) (apart from inter-arrival time and deadline), while HI tasks are char-
acterized by an optimistic and by a conservative WCET to account for potential
increases in execution demand [20]. In this context, a standard real-time scheduling
requires guaranteeing that LO and HI tasks meet their deadlines when HI tasks'
conservative WCETs are considered. However, since HI tasks run for at most their
optimistic WCETs almost all the time, this leads to an ine�cient design. On the
other hand, if only optimistic WCETs are considered, HI tasks may occasionally
miss their deadlines.

To overcome this predicament, a common approach is to implement two op-
eration modes.1 In LO mode, HI tasks run for their optimistic WCETs and are
scheduled within virtual deadlines together with all LO tasks. Virtual deadlines
are given by xi ·Di and are usually shorter than real deadlines Di with xi ∈ (0, 1]
being referred to as deadline scaling factor. The system switches to HI mode, when
one or more HI tasks require running for longer (up to their conservative WCETs).
HI tasks are then scheduled within their real deadlines and LO tasks are stopped
from running (i.e., discarded).

In such a setting, apart from guaranteeing schedulability of individual modes,
it is necessary to guarantee schedulability of transitions between modes. However,
since transitions between LO and HI mode can happen at arbitrary points in time,
carry-over jobs cannot be avoided, i.e., HI jobs that are released prior to, but have
not �nished executing at the moment of the transition.

Approaches from the literature such as GREEDY [12] and ECDF [11] focus
on bounding execution demand by carry-over jobs, resulting in relatively complex
algorithms. In this paper, we propose a novel technique that works around the
computation of carry-over execution demand. We prove that transitions between
LO and HI mode are feasible, if an equivalent task set derived from the original
one is schedulable under plain EDF. This not only reduces the overall complex-
ity, but it also improves our understanding on MC scheduling. Moreover, we can
apply well-known approximation techniques such as Devi's test [10] to trade o�
accuracy for complexity/runtime. We present a large set of experiments based
on synthetic data illustrating the bene�ts of the proposed approach in term of
weighted schedulability and runtime compared to the most prominent approaches
from the literature.

The rest of the paper is structured as follows. Related work is brie�y discussed
in Section 2. Section 3 introduces the task model and assumptions used, whereas
Section 4 deals with the proposed technique for bounding execution demand under
mixed-criticality EDF and perform an analytical comparison with the GREEDY
and the ECDF algorithm in Section 5. Further, we apply Devi's test in Section 6 to
derive two approximated variants of our proposed approach, i.e., based on per-task

1 If more than two criticality levels are to be regarded, there will be one operation mode per
criticality level.
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and on uniform deadline scaling. In Section 7, we present extensive experimental
results evaluating the proposed technique, whereas Section 8 concludes the pa-
per. Finally, in the appendix, we brie�y investigate how to extend the proposed
technique to more than two levels of criticality.

2 Related Work

In this section, we brie�y revise the rich literature concerning scheduling MC tasks
on one processor and, in particular, under EDF � a complete overview can be
found in [8].

The problem around MC systems was �rst addressed by Vestal in [20], who
proposed modeling HI tasks with multiple WCET parameters to account for po-
tential increases in execution demand. Based on this model, Baruah et al. later
analyzed per-task priority assignments and the resulting worst-case response times
[3].

In [2], Baruah et al. also proposed the EDF-VD algorithm to schedule a mix of
HI and LO tasks. EDF-VD introduces two operation modes and uses a priority-
promotion scheme by uniformly scaling deadlines of HI tasks. The resulting speed-
up factor was shown to be equal to (

√
5 + 1)/2 [2]. Later this speed-up factor

was improved to 4/3 [4]. Baruah et al. further proposed extensions to EDF-VD,
where, in particular, a per-task deadline scaling is used [5]. However, they also
concluded that the speed-up factor of 4/3 cannot be improved [5]. Similarly, Müller
presented a more general per-task deadline scaling technique that allows improving
schedulability [18].

Improvements to the original EDF-VD have also been proposed by other au-
thors. In [19], Su and Zhu used an elastic task model [15] to improve resource
utilization in MC systems. In [22], Zhao et al. applied preemption thresholds [21]
in MC scheduling in order to better utilize the processing unit. In [17], a technique
consisting of two scaling factors is proposed for admission control in MC systems.

A more �exible approach referred to as GREEDY with per-task deadline scal-
ing was presented by Ekberg and Yi for the case of two criticality levels [12]. Ekberg
and Yi characterized the execution demand of MC systems under EDF by deriving
demand bound functions for the LO and the HI mode. Later, they extended this
work to the case of more than two criticality levels [13]. In [11], Easwaran pre-
sented a similar technique called ECDF also for the case of two criticality levels
and showed that it strictly dominates the GREEDY approach.

In contrast to GREEDY and ECDF, in [16], we proposed working around the
computation of carry-over execution demand at transitions between LO and HI
mode. In particular, testing schedulability of transitions from LO to HI reduces to
testing schedulability of an equivalent task set under plain EDF [16]. In this paper,
we extend this work and propose using approximation techniques, particularly,
Devi's test to derive schedulability tests for MC systems under EDF that trade o�
accuracy versus performance as discussed later in detail.
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3 Models and Assumptions

In this section, we discuss most of our notation. Similar to [12] and [11], we basically
adopt the task model originally proposed in [20]. We consider a set τ of MC tasks
that are independent, preemptable and sporadic running on one processor under
preemptive EDF scheduling. Each individual task τi in τ is characterized by its
minimum inter-release time Ti, i.e., the minimum distance between two consecutive
jobs or instances of a task, and by its relative deadline Di with Di ≤ Ti∀i. Further,
we assume that tasks do not self-suspend and that the overhead by context switches
has been accounted for in tasks' WCETs or can be neglected.

As already stated, we are concerned with dual-criticality systems with two
levels of criticality, namely LO and HI.2 The criticality of a task τi is denoted by
χi with:

χi ∈ {LO,HI}.

A LO task is associated with only one WCET value/estimate denoted by CLOi .
Opposed to this, a HI task is characterized by its optimistic WCET estimate CLOi
and its conservative WCET estimate CHIi with:3

CLOi < CHIi ≤ Di ≤ Ti.

The system basically distinguishes two operation modes denoted bym: LO and
HI mode. In LO mode, HI tasks execute for no longer than CLOi , whereas these
might require executing for up to CHIi in HI mode. The system initializes in LO
mode where all LO and HI tasks need to meet their deadlines. As soon as one job
of a HI task executes for longer than its CLOi , the system switches to HI mode
discarding all LO tasks. Similar to context switches, we assume that the overhead
by mode switches has been accounted for in CHIi .

Finally, we denote the utilization by LO and HI tasks in the LO and HI mode
respectively as follows:

Umχ :=
∑
χi=χ

Cmi
Ti

,

where again χ and m can assume values in {LO,HI}. Note that only ULOLO , ULOHI
and UHIHI exist. UHILO is e�ectively zero, since LO tasks are dropped and, hence, do
not run in HI mode.

Mixed-Criticality EDF. A common approach when scheduling MC systems is
to shorten the deadlines of HI jobs in LO mode. This way, processor capacity can
be reserved for a potential switch to HI mode � where HI tasks require more
execution demand. In other words, we assign a virtual deadline equal to xi · Di
with xi ∈ (0, 1] to all τi with χi = HI.

This virtual deadline is used instead of Di � the real deadline � to schedule
HI tasks in LO mode. The parameter xi is the so-called deadline scaling factor.
There is no deadline scaling for LO tasks such that they are scheduled (only in
LO mode) using their Di.

When the system switches to HI mode, HI tasks start being scheduled according
to their real deadlines Di whereas LO tasks are discarded immediately. In this

2 See the appendix for an extension to more than two levels of criticality.
3 Note that either real or integer numbers can be used for CLOi , CHIi , Di and Ti.



A Novel View on Bounding Execution Demand under Mixed-Criticality EDF 5

paper, we consider that tasks are scheduled under EDF in both modes and refer
to this scheme as mixed-criticality EDF.

Clearly, whereas schedulability of separated modes can be easily tested, i.e.,
when the system is stable in either LO or HI mode, it is di�cult to test schedula-
bility of transitions between modes. In particular, careful analysis is required when
the system switches from LO to HI mode.

In this paper, similar to other approaches from the literature, transitions from
HI back to LO mode are disregarded. The reason is that, in contrast to changes
from LO to HI, a change from HI to LO mode can be programmed or postponed
to a suitable point in time, e.g., at which the processor idles, and does not require
further analysis.

The EDF-VD Algorithm. EDF with Virtual Deadlines (EDF-VD) is a special
case of mixed-criticality EDF for the case Di = Ti ∀i. Under EDF-VD, virtual
deadlines are obtained by x · Di, where x ∈ (0, 1] is a uniform deadline scaling
factor for all HI tasks [2].

Under EDF-VD, the LO and HI tasks need to be schedulable with their corre-
sponding CLOi under EDF in LO mode. Similarly, in HI mode, the HI tasks also
need to be schedulable with their corresponding CHIi under EDF. As a result, the
following two schedulability conditions are necessary:

ULOLO + ULOHI ≤ 1 (1)

UHIHI ≤ 1 (2)

Note that these two conditions do not ensure schedulability in the transition
phase. Hence, they are indeed only necessary, but not su�cient conditions. In [4],
Baruah et al. also obtained a su�cient schedulability condition for EDF-VD in the
form of a utilization bound: max

(
ULOLO + ULOHI , U

HI
HI

)
≤ 3/4. They also proposed

a more accurate schedulability test based on whether feasible lower and upper
bounds can be obtained on x [4]:

ULOHI
1− ULOLO

≤ x, (3)

x ≤ 1− UHIHI
ULOLO

. (4)

That is, if the value of x obtained with (3) is less than or equal to the value
obtained with (4), then it is possible to �nd a valid x for the considered system
rendering it schedulable under EDF-VD.

4 Bounding Execution Demand

In this section, we are concerned with characterizing execution demand by τ under
mixed-criticality EDF. In [12] and [11], a demand bound function was presented
for each mode in the system, i.e., one for the LO mode and one for the HI mode.
As mentioned above, we derive a third demand bound function for the transition
between modes. This allows working around the computation of carry-over execu-
tion demand, reducing the amount of pessimism and, hence, relaxing schedulability
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conditions in HI mode [16].

Schedulability in LO mode. In LO mode, LO tasks need to scheduled together
with HI tasks, while the latter are assigned virtual deadlines xi · Di. As a con-
sequence, the resulting demand bound function dbfLO(t) in LO mode is given
by:

dbfLO(t) =
∑

χi=LO

(⌊
t−Di
Ti

⌋
+ 1

)
CLOi

+
∑

χi=HI

(⌊
t− xi ·Di

Ti

⌋
+ 1

)
CLOi . (5)

Here t ≥ 0 is a (real) number representing time, i.e., dbfLO(t) returns a τ 's
maximum execution demand in LO mode in an interval of length t. Note that
dbfLO(t) is always greater than or equal to zero, since Di ≤ Ti holds for all τi and
xi has values in (0, 1].

The system is schedulable in LO mode, if dbfLO(t) ≤ t holds for all possible t
until the processor �rst idles [1]. That is, until a point in time t̂LO for which the
following holds:

t̂LO =
∑

χi=LO

(⌊
t̂LO −Di

Ti

⌋
+ 1

)
CLOi

+
∑

χi=HI

(⌊
t̂LO − xi ·Di

Ti

⌋
+ 1

)
CLOi ,

where removing the �oor function leads to:

t̂LO ≤
∑

χi=LO

(
t̂LO −Di

Ti
+ 1

)
CLOi

+
∑

χi=HI

(
t̂LO − xi ·Di

Ti
+ 1

)
CLOi ,

and reshaping to:

t̂LO ≤ t̂LO

 ∑
χi=LO

CLOi
Ti

+
∑

χi=HI

CLOi
Ti


+

∑
χi=LO

(Ti −Di)
CLOi
Ti

+
∑

χi=HI

(Ti − xi ·Di)
CLOi
Ti

.

Finally, considering that ULOLO =
∑
χi=LO

CLO
i

Ti
and ULOHI =

∑
χi=HI

CLO
i

Ti
, we

obtain an upper bound on t̂LO:

t̂LO ≤

∑
χi=LO

(Ti −Di)C
LO
i

Ti

1− ULOLO − ULOHI
+

∑
χi=HI

(Ti − xi ·Di)C
LO
i

Ti

1− ULOLO − ULOHI
. (6)
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The bound in (6) depends on the values of xi, which are not known a priori.
On the other hand, note that this bound maximizes when all xi tend to 0, which
then leads to the following:

t̂LO ≤

∑
χi=LO

(Ti −Di)C
LO
i

Ti

1− ULOLO − ULOHI
+

∑
χi=HI

CLOi

1− ULOLO − ULOHI
, (7)

Clearly, ULOLO + ULOHI � the utilization in LO mode � must be strictly less
than one in order that (6) and (7) return valid and �nite values.

Schedulability in stable HI mode. In this case LO tasks do not run and HI
tasks run for their corresponding CHIi leading to the following demand bound
function:

dbfHI(t) =
∑

χi=HI

(⌊
t−Di
Ti

⌋
+ 1

)
CHIi , (8)

where again t ≥ 0 is a (real) number representing time, i.e., dbfHI(t) returns the
maximum execution demand in a time interval of length t.

The system is schedulable in stable HI mode, if dbfHI(t) ≤ t for all possible
t until the processor �rst idles, i.e., until a point in time t̂HI is reached where
dbfHI(t̂HI) = t̂HI . We again can remove the �oor function in (8) to obtain an
upper bound on t̂HI :

t̂HI ≤

∑
χi=HI

(Ti −Di)C
HI
i

Ti

1− UHIHI
. (9)

UHIHI � the utilization in HI mode � must be strictly less than one in order
that (9) returns a valid and �nite upper bound on t̂HI .

Schedulability in the transition from LO to HI mode. The transition from
LO to HI mode may happen at an arbitrary point in time when one HI job exceeds
its LO execution budget CLOi . Un�nished LO jobs are discarded at that time;
however, the problem arises with HI jobs that were released before but have not
�nished executing their CLOi , i.e., carry-over jobs. Since it is di�cult to accurately
bound the execution demand by carry-over jobs, usually, pessimistic assumptions
need to taken.

The following theorem, is a generalization of a theorem in [17] and allows work-
ing around carry-over jobs and characterizing the additional execution demand in
the transitions from LO to HI mode in a more e�ective manner. In other words,
this theorem allows us to guarantee schedulability without computing carry-over
execution demand at the point of switching from LO to HI mode.

Theorem 1 Given a set τ of MC tasks, let us assume that (i) dbfLO(t) ≤ t and
(ii) dbfHI(t) ≤ t hold for 0 < t ≤ t̂LO and 0 < t ≤ t̂HI respectively, i.e., τ is
schedulable in LO and stable HI mode. The transition from LO to HI mode is
schedulable under mixed-criticality EDF, if dbfSW (t) ≤ t also holds for 0 < t ≤
t̂SW , where dbfSW (t) is given by:

dbfSW (t) =
∑

χi=HI

(⌊
t−∆Di

Ti

⌋
+ 1

)
∆Ci, (10)
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with ∆Di = Di − xi ·Di, ∆Ci = CHIi − CLOi , and t̂SW is upper bounded by the
following expression:

t̂SW ≤

∑
χi=HI

∆Ci

1− USWHI
, (11)

where USWHI is given by
∑

χi=HI

∆Ci

Ti
.

Proof Let us consider that the system switches to HI mode at time t′ and that the
processor idles for the �rst time thereafter at t′′ with t′ < t′′, i.e., all jobs released
prior to t′′ �nish executing at latest by t′′. Clearly, jobs that are released after t′′

are guaranteed schedulable by assumption (ii).
Let us now assume that a deadline is missed for the �rst time at tmiss by a

job of any τi that we denote τmiss. Clearly, tmiss must be in the interval [t′, t′′]
and the following must hold for δmiss = tmiss − t′:

δmiss < CO +
∑

χi=HI

(⌊
δmiss − φi −Di

Ti

⌋
+ 1

)
CHIi ,

where φi = r′i − t′ is the phase of a τi at t′, i.e., the release time r′i of its �rst job
after t′ minus t′. Note that φi is in the interval [0, Ti). In addition, CO denotes the
carry-over execution demand at t′. This is the amount of execution in [t′, tmiss]
by HI jobs that are released prior to t′, but have not �nished executing at t′.

As already discussed, it is di�cult to determine CO in an accurate manner.
Hence, to work around CO, let us �rst divide each τi, whose jobs have both release
times and deadlines in [t′, tmiss], into two subtasks. The �rst subtask � denoted by
τLOi � is released for the �rst time at φi and requires executing C

LO
i within xi ·Di

every Ti time, i.e., this represents τi's execution demand in LO mode. The second
subtask � denoted by τSWi � is released for the �rst time at φ′i = φi+xi ·Di and
requires executing ∆Ci = CHIi −CLOi within ∆Di = Di−xi ·Di every Ti time, i.e.,
this presents τi's increase in execution demand incurred in HI mode. Note that,
in spite of this modi�cation, the total amount of execution demand in [t′, tmiss]
does not change, i.e., a deadline is still missed at tmiss as per assumption, and we
can reshape the above inequality to:

δmiss < CO +
∑

χi=HI

(⌊
δmiss − φi − xi ·Di

Ti

⌋
+ 1

)
CLOi

+
∑

χi=HI

(⌊
δmiss − φ′i −∆Di

Ti

⌋
+ 1

)
∆Ci. (12)

Note that tmiss coincides with the deadline of the corresponding job of τSWmiss,
which misses its deadline. (Recall that τmiss is now divided into the subtasks τLOmiss
and τSWmiss.) Now, there are two possible cases to consider in order to prove this
theorem: The set of only subtasks τSWi is either (1) unschedulable or (2) schedu-
lable in isolation.

Case (1): This is a rather trivial case. If the set of only τSWi is unschedulable
in isolation, i.e., when scheduled alone on a single processor, dbfSW (t) > t must
hold for some t in [0, t̂SW ] with dbfSW (t) given as per (10). As a result, we will
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be able to detect a deadline miss in the transition between LO and HI mode by
only testing the set of all τSWi .

To this end, we need to �nd an upper bound on t̂SW making dbfSW (t̂SW ) =
t̂SW and removing the �oor function as before:

t̂SW ≤

∑
χi=HI

(Ti −∆Di)∆Ci

Ti

1− USWHI
.

Here, USWHI =
∑
χi=HI

∆Ci

Ti
is the utilization of the set of only τSWi . Since

USWHI < 1 holds by assumption (ii), the above inequality returns a valid bound
on t̂SW . This depends on ∆Di = Di − xi ·Di and, therefore, on the values of xi,
which we do not know in advance. However, we can make xi = 1 for all i leading
to the upper bound in (11).

Case (2): We show that this case leads to a contradiction. To this end, recall
that we assumed that a deadline is missed for the �rst time at tmiss, hence, all
previous jobs in [t′, tmiss) can actually �nish executing in time. Since now τmiss
is divided into the subtasks τLOmiss and τ

SW
miss, the τ

LO
miss's job with a deadline equal

to tmiss −∆Dmiss must push carry-over τSWi 's jobs (i.e., those that are released
prior to and have not �nished executing at tmiss −∆Dmiss and that have dead-
lines prior to tmiss) by at least ∆miss being ∆miss the amount of the deadline
miss at tmiss. Otherwise, no deadline can be missed at tmiss, since dbfSW (t) ≤ t
is assumed to hold for all t. In addition, note that the processor does not idle in
[tmiss −∆Dmiss, tmiss].

tmiss-ΔDmiss

tmiss
Δmiss

tmiss-ΔDmiss

tmiss
≥ Δmiss

synchronous

Before displacing

After displacing

Figure 1: Illustration of Case (2.a) with ∆Di ≤ ∆Dmiss: The carry-over τ
SW
i 's job is illus-

trated in green and τSWmiss is illustrated in red. The light green and red shading represent τLOi
and τLOmiss respectively, whereas a light gray shading represents any previous higher-priority
execution (i.e., of jobs with shorter deadlines). Solid upward arrows stand for the release times
of τLOi and τLOmiss, while dashed upward arrows represent the release times of τSWi and τSWmiss
(which are also the (virtual) deadlines of τLOi and τLOmiss). Solid downward arrows stand for

the (real) deadlines of τSWi and τSWmiss.
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tmiss-ΔDmiss

tmiss
Δmiss

Before displacing

≥ Δmiss-ϵ

tmiss-ΔDmiss

tmiss

ϵ

After displacing

Figure 2: Illustration of Case (2.b) with ∆Di > ∆Dmiss: The carry-over τSWi 's job is

illustrated in green and τSWmiss is illustrated in red. The light green and red shading represent

τLOi and τLOmiss respectively, whereas a light gray shading represents any previous higher-
priority execution (i.e., of jobs with shorter deadlines). Solid upward arrows stand for the
release times of τLOi and τLOmiss, while dashed upward arrows represent the release times of

τSWi and τSWmiss (which are also the (virtual) deadlines of τLOi and τLOmiss). Solid downward

arrows stand for the (real) deadlines of τSWi and τSWmiss.

Case (2.a): Let us assume that there is only one carry-over job of an arbitrary
τSWi and that ∆Di ≤ ∆Dmiss holds. Note that, after moving this job forward to
force its release time to coincide at tmiss −∆Dmiss, τSWmiss's job continues to miss
its deadline by at least ∆miss at tmiss, since the deadline of this carry-over τ

SW
i 's

job remains within the interval [tmiss−∆Dmiss, tmiss]. As a result, the amount of
execution demand in [tmiss −∆Dmiss, tmiss] remains the same or even increases
after this displacement � see Fig. 1.

The above analysis leads to a contradiction, since τSWmiss's job and its carry-over
τSWi 's job are now released in synchrony at tmiss −∆Dmiss. Consequently, τLOmiss
cannot push any additional execution demand into [tmiss − ∆Dmiss, tmiss] and,
hence, if a deadline is missed at tmiss, dbfSW (t) ≤ t cannot hold for all t.

Case (2.b): Let us now assume that there is again only one carry-over job of
an arbitrary τSWi , however, ∆Di > ∆Dmiss holds this time. Note that we can
displace this carry-over τSWi 's job forward until its deadline occurs at tmiss + ε,
where ε is an in�nitesimally small number greater than zero. As a result, this
τSWi 's job starts missing its deadline by an amount equal to at least ∆miss − ε,
since at least the original execution demand in [tmiss−∆Dmiss, tmiss] is executed
in [tmiss −∆Dmiss, tmiss + ε] � see Fig. 2.

It is easy to see that we can now apply the analysis of Case (2.a) where the
carry-over τSWi 's job of this case misses its deadline at tmiss+ ε (by an amount of
at least ∆miss − ε) and the τSWmiss's job of this case becomes the carry-over job in
Case (2.a). As a result, Case (2.b) also leads to a contradiction, i.e., if a deadline
is missed at tmiss, dbfSW (t) ≤ t cannot hold for all t.

Clearly, there can be several carry-over jobs whose execution demands are
pushed (at least partially) by τLOmiss into [tmiss − ∆Dmiss, tmiss], however, the
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Algorithm 1 Schedulability test for mixed-criticality EDF

Require: τ

Require: τHI /* subset of HI tasks */

1: XLW=testLO(τ)

2: if testHI(τHI) = 'passed ' and XLW 6=∅ then

3: XUP = testSW(τHI)

4: if XUP 6=∅ and XLW ≤ 1−XUP then

5: Return 'passed '

6: else

7: Return 'not passed '

8: end if

9: end if

total amount of execution demand pushed by τLOmiss remains ∆miss. In this latter
case, again, it is easy to see that we can apply the analysis of Case (2.a) and
Case (2.b) to each individual carry-over job. Consequently, if a deadline is missed
at tmiss, dbfSW (t) > t must hold for some t. The theorem follows. ut

Theorem 1 allows characterizing the additional execution demand in the tran-
sitions from LO to HI mode independent of carry-over jobs. Based on it, we test
whether deadlines are met or not in [t′, t′′], i.e., from the time t′ of switching to
HI mode to the time t′′ at which the processor �rst idles after switching.

Finding deadline scaling factors. Now, we propose an algorithm to �nd valid
values of xi for each HI task in τ . Clearly, this is closely related to the technique
used to tighten deadlines in LO mode. In this paper, however, we do not aim to
improve deadline tightening. The contribution is rather a new technique for bound-
ing demand execution, which can be combined with existing deadline tightening
techniques, e.g., from [12] or [11].

The proposed algorithm shown in Alg. 1 essentially tests τ 's schedulability in
the LO mode (line 1), and in HI mode (line 2). If τ is schedulable in LO mode, the
function testLO() returns a vector XLW with the minimum values of xi that could
be found to be valid. If this vector is not empty, i.e., valid xi values could be found,
and τ is schedulable in HI mode, Alg. 1 tests schedulability at the transitions from
LO to HI mode (line 3).

Further, if the set of HI tasks in τ � denoted by τHI � is schedulable at
transitions from LO to HI, the function testSW() returns a vector XUP with the
minimum values of 1−xi that are also valid. That is, if XUP is neither empty, the
whole τ will be schedulable under mixed-criticality EDF provided that XLW ≤
1 − XUP holds (line 4). Here, 1 denotes a unity vector (where all elements are
equal to one). That is, for each element in the vectors XLW and XUP , the following
condition must hold:
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Algorithm 2 Function testLO()

Require: τ

1: Compute t̂LO by (7)

2: XLW = 1

3: while t ≤ max(Dmax, t̂LO) do

4: if dbfLO(t) > t then

5: if χi=LO or dbfLO(t)− ri>Di then

6: XLW = ∅

7: Return

8: end if

9: end if

10: if χi=HI then

11: if Computed(i) = 'false' or XLW (i)<dbfLO(t)−ri
Di

then

12: XLW (i) = dbfLO(t)−ri
Di

/* ri = job's release time */

13: end if

14: end if

15: (t, i)=getNextDeadline()

16: end while

17: Return

XLW (i) ≤ xi,
XUP (i) ≤ 1− xi,

=⇒ xi ≤ 1−XUP (i).

As already mentioned, the functions testLO() and testSW() � shown in Alg. 2
and Alg. 3 � test schedulability in LO mode and at the transitions from LO to HI
mode. These two functions are very similar � apart from testLO() dealing with
the whole τ and testSW() with the subset τHI � and return lower bounds on xi
and on 1− xi respectively. Thus, the following discussion of testLO() also applies
to testSW().

Basically, testLO() computes dbfLO(t) for all 0 ≤ t ≤ t̂LO starting from xi = 1
for all HI tasks. However, at least the �rst deadline of each task should be checked,
since we need to compute each xi. That is, we need to compute dbfLO(t) at least
until Dmax = max

∀i
(Di) � see line 3 in Alg. 2. If the current t corresponds to

a deadline of a HI task (lines 10 to 14), its (relative) virtual deadline xi · Di is
adjusted such that its absolute deadline ri + xi ·Di is equal to dbfLO(t) (i.e., the
total execution demand at t).
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Algorithm 3 Function testSW()

Require: τHI

1: Compute t̂SW by (11)

2: XUP = 1

3: while t ≤ max(Dmax, t̂SW ) do

4: if dbfSW (t) > t and dbfSW (t)− ri>Di then

5: XUP = ∅

6: Return

7: end if

8: if Computed(i) = 'false' or XUP (i)<dbfSW (t)−ri
Di

then

9: XUP (i) = dbfSW (t)−ri
Di

/* ri = job's release time */

10: end if

11: (t, i)=getNextDeadline()

12: end while

13: Return

Note that the execution demand of jobs with prior deadlines to t is contained
in dbfLO(t). As a result, the computed xi in line 12 can never compromise schedu-
lability of these previous jobs. In addition, an xi currently being computed can
only replace a previously computed xi, if either this is the �rst value of xi com-
puted for the corresponding τi, i.e., t coincides with the �rst deadline of τi, or
this is greater than the previous value of xi (lines 11 to 13). In other words, after
initialization, the values of xi that are selected never shorten τi's virtual deadline
xi ·Di. As a result, we do not need to test τi's past deadlines anew. This deadline
tightening technique reduces the number of possibilities for xi, but it also keeps
the algorithm simple.

Computed(i) in line 11 returns 'false', if no xi has been computed yet for the
current i, which we need to �ag whether a value of xi has been already computed
for the current τi or not. The function getNextDeadline() in line 15 returns the
point in time t at which the next deadline occurs and the index i of the task
corresponding to that deadline. Clearly, this function has to take the computed
values of xi into account.

The function testLO() succeeds if it �nishes testing dbfLO(t) for 0 ≤ t ≤
max(Dmax, t̂LO)4 and it could �nd a value of xi in (0, 1] for each HI task in τ .
On the other hand, testLO() fails, if dbfLO(t) > t holds for some t and either t
corresponds to a deadline of a LO task � whose deadline cannot be adjusted by
the used tightening technique � or the resulting xi becomes greater than 1 (lines
4 to 8).

4 As values of xi start being known, we can update this bound in order to reduce runtime
by testLO(). However, we did not implement this behavior in the current version.
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Analogous to testLO(), testSW() computes dbfSW (t) for all deadlines in the
interval 0 ≤ t ≤ max(Dmax, t̂SW ) starting from 1 − xi = 1 for all HI tasks �
recall that deadlines in dbfSW (t) are equal to (1−xi)Di. Otherwise, as mentioned
above, testLO() and testSW() are very similar and, hence, the above explanation
for testLO() also applies to testSW(). Finally, the function testHI() in Alg. 1 is
the known schedulability test for EDF from the literature [1] and, hence, does not
require further discussion.

5 Analytical Comparison

In this section, let us �rst compare the proposed demand bound functions from
Section 4 with those used by Ekberg and Yi in the GREEDY algorithm [12] and by
Easwaran in the ECDF algorithm [11]. We show, for most cases, that the proposed
ones result in tighter bounds on the execution demand than the other mentioned
approaches.

5.1 The GREEDY algorithm

In LO mode, note that dbfLO(t) in (5) is identical to that of Ekberg and Yi
� denoted by gdbfLO(t) in this paper. That is, dbfLO(t) = gdbfLO(t) for all
0 < t ≤ t̂LO.

In HI mode, Ekberg and Yi proposed a demand bound function � denoted
gdbfHI(t) in this paper � which is given by the following expression [12]:

gdbfHI(t) =
∑

χi=HI

(⌊
t−∆Di

Ti

⌋
+ 1

)
CHIi −

∑
χi=HI

donei(t), (13)

with ∆Di = Di − xi ·Di and donei(t) is given by:

donei(t) =

{
max

(
0, CLOi − mod

(
t
Ti

)
+∆Di

)
, if Di > mod

(
t
Ti

)
≥ ∆Di,

0, otherwise.

Note that gdbfHI(t) bounds the execution demand in HI mode taking tran-
sitions into account. In our case, as discussed above, we derive di�erent bounds
on the execution demand at transitions and in stable HI mode, i.e., dbfSW (t) and
dbfHI(t) respectively.

Now, since donei(t) ≤ CLOi holds for all valid values of t and xi, dbfSW (t) ≤
gdbfHI(t) also holds for all t. In other words, if the transition to HI mode is safe
by gdbfHI(t), it will also be safe by the proposed dbfSW (t). However, this does
not hold the other way around, i.e., dbfSW (t) results in a tighter bound on the
execution demand at transitions from LO to HI mode than gdbfHI(t).

On the other hand, if transitions are safe, it is guaranteed that no deadlines
are missed after switching to HI mode at a t′ and until the processor �rst idles at
a t′′. From t′′ onwards, it is easy to see that our proposed dbfHI(t) is su�cient
and necessary. That is, if dbfHI(t) ≤ t does not hold for some t with 0 ≤ t ≤ t̂HI ,
then the system is not feasible, i.e., it will be neither be feasible by gdbfHI(t).
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5.2 The ECDF algorithm

Similar to the case of the GREEDY algorithm, note that dbfLO(t) in (5) is iden-
tical to that used in the ECDF algorithm in LO mode. We denote this latter by
edbfLO(t) in this paper. That is, dbfLO(t) = edbfLO(t) for all 0 < t ≤ t̂LO.

In HI mode, the ECDF algorithm uses a demand bound function � denoted
edbfHI(t) in this paper � which is given by the following expression [11]:

edbfHI(t1, t2) = min

t1, 3∑
j=1

dbfLj
(t1, t2)


+

∑
χi=HI

and case 2 or 3

dbfHIi (t1, t2)

+
∑

χi=HI
and case 2

(CO(t2 − t1) +∆Ci) , (14)

where ∆Ci is de�ned as CHIi − CLOi . In addition, 0 ≤ t2 ≤ t̂HI and 0 ≤ t1 ≤
t2 − min

χi=HI
(∆Di) hold with again ∆Di = Di − xi ·Di.

Here t1 represents the point in time at which the system switches to HI mode
(i.e., t1 = t′ in our notation) and t2 is the point in time at which a deadline is
potentially missed (i.e., t2 = tmiss ≤ t′′ in this paper). Note that dbfHIi (·) is a
τi's contribution to dbfHI(·) shown in (8). HI tasks in (14) are classi�ed into three
cases: case 1 which plays a role in computing dbfLj

(·), case 2, and case 3. For
details on how to compute dbfLj

(·) for 1 ≤ j ≤ 3 and how to compute CO(·) we
refer to [11].

The system is schedulable in HI mode, if edbfHI(t1, t2) ≤ t2 holds. (Here again
no distinction is made between transition and stable HI mode.) Let us now consider
that t1 is less than or equal to

∑3
j=1 dbfLj

(t1, t2), such that the schedulability
condition by ECDF now becomes:∑

χi=HI
and case 2 or 3

dbfHIi (t1, t2) +
∑

χi=HI
and case 2

(CO(t2 − t1) +∆Ci) ≤ t2 − t1. (15)

Easwaran proved that the left-hand side of the above condition is equal to
gdbfHI(t2− t1) [11]. As a consequence, the proposed dbfSW (t) results in a tighter
bound than (15), since dbfSW (t) ≤ gdbfHI(t) holds for all t� see again the above
Section 5.1.

In the case where t1 is greater than
∑3
j=1 dbfLj

(t1, t2), the analytical compari-
son between edbfHI(·) and dbfSW (·) becomes di�cult. This is the case where some
amount of the execution demand given by edbfHI(·) starts being executed before
t1, at t1 −

∑3
j=1 dbfLj

(t1, t2) to be more precise. Whether a proof of dominance
exists (in either way) remains an open problem.

At least, from the above discussion, we can assert that the proposed dbfSW (·)
is tighter for the more stringent case, i.e., when no execution demand by edbfHI(·)
can be executed before t1. Our experiments in the following section present ev-
idence that this also holds on average, i.e., dbfSW (·) usually results in tighter
bounds, particularly, when the number of HI task increases.
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6 Applying Approximation Techniques

In this section, we apply approximation techniques, particularly, Devi's test [10] to
derive two variants of the proposed approach trading o� accuracy for the sake of
lesser complexity/runtime. The �rst variant computes one deadline scaling factor
per HI task, similar to the proposed approach, but with less accuracy to reduce
complexity. In contrast to it, the second variant computes only one deadline scal-
ing factor for all HI tasks requiring, in principle, less computation. However, as
discussed later in detail, this does not necessarily lead to a lower complexity.

6.1 Revisiting Devi's test

Let us consider a set τ̄ of non-MC tasks that are independent, preemptable and
sporadic. Similar to tasks in τ de�ned in Section 3, each individual τi in τ̄ is
de�ned by its minimum inter-release time Ti and its relative deadline Di being
Di ≤ Ti. However, in contrast to tasks in τ , tasks in τ̄ are characterized by only
one WCET parameter denoted by Ci.

In addition, let us assume that tasks in τ̄ are sorted in the order of non-
decreasing deadlines, i.e., Di ≤ Dj holds, if i < j holds where i and j are indices
identifying tasks. Devi's test states that τ̄ is feasible on one processor under pre-
emptive EDF scheduling, if the following condition holds for 1 ≤ k ≤ |τ̄ | (where
|τ̄ | denotes the number of tasks in τ̄) [10]:

k∑
i=1

Ci
Ti

+
1

Dk

(
k∑
i=1

Ti −Di
Ti

Ci

)
≤ 1, (16)

resulting in a su�cient, but not necessary test with polynomial complexity. As
opposed to it, an exact test for τ̄ � based on the concept of demand bound
function � leads to a higher, pseudo-polynomial complexity [1].

6.2 Per-task deadline scaling

We can now derive the �rst approximated variant of our proposed approach com-
puting a scaling factor for each individual HI task in τ . To this end, we use Devi's
test to analyze each mode and the transition between them.

Schedulability in LO mode. When applying Devi's test in LO mode, the de-
mand bound function in (5) reduces to the following condition:

k∑
i=1

CLOi
Ti

+
1

xk ·Dk

 k∑
i=1

χi=LO

Ti −Di
Ti

CLOi

+

k∑
i=1

χi=HI

Ti − xi ·Di
Ti

CLOi

 ≤ 1, (17)
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where 1 ≤ k ≤ |τ | and |τ | denotes the total number of tasks in τ . Tasks in (17)
need to be sorted in order of non-decreasing real deadlines Di for χi = LO or
virtual deadlines xi ·Di for χi = HI. Note that the order of tasks might change
depending on the values of xi. As a result, (17) might need to be recomputed for
the corresponding tasks, if their relative order changes.

Further, in (17), we have considered that the current τk (i.e., for the current
value of k) is a HI task. As a result, a deadline scaling factor xk needs to be
computed. If τk is a LO task, the second term of (17) is divided by Dk instead of
xk ·Dk, since LO tasks are scheduled within their real deadlines. In this case, no
xk needs to be computed.

Schedulability in stable HI mode. Now, when applying Devi's test in HI mode,
the demand bound function in (8) reduces to the following condition:

k∑
i=1

χi=HI

CHIi
Ti

+
1

Dk

 k∑
i=1

χi=HI

Ti −Di
Ti

CHIi

 ≤ 1, (18)

where again 1 ≤ k ≤ |τ | holds. Note that only HI tasks are considered in (18),
which need to be sorted in order of non-decreasing Di.

Schedulability in the transition from LO to HI mode. The demand bound
function in (10) reduces to the following condition after applying Devi's test:

k∑
i=1

χi=HI

∆Ci
Ti

+
1

(1− xk)Dk

 k∑
i=1

χi=HI

Ti −∆Di
Ti

∆Ci

 ≤ 1, (19)

with 1 ≤ k ≤ |τ | as before, ∆Ci = CHIi −CLOi , and ∆Di = (1− xi)Di. Similar to
stable HI mode, only HI tasks are considered in (19). However, this time, tasks are
sorted in the order of non-decreasing ∆Di instead. Similar to the LO mode, the or-
der of tasks might change depending on the values of xi. In this case, (19) needs to
be recomputed for all tasks whose relative order changes for a newly computed xk.

Finding deadline scaling factors. As already discussed, (17) needs to hold for
all k in 1 ≤ k ≤ |τ |, which is tested in an iterative manner. Clearly, xk only needs
to be computed for χk = HI. To this end, let us �rst reshape (17) to the following:

k∑
i=1

CLOi
Ti

+
1

xk ·Dk

 k∑
i=1

χi=LO

Ti −Di
Ti

CLOi

+

k−1∑
i=1

χi=HI

Ti − xi ·Di
Ti

CLOi +
Tk − xk ·Dk

Tk
CLOk

 ≤ 1,

which we can then solve for xk leading to:
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k∑
i=1

χi=LO

Ti−Di

Ti
CLOi +

k−1∑
i=1

χi=HI

Ti−xi·Di

Ti
CLOi + CLOk

Dk

(
1−

∑k
i=1

CLO
i

Ti

)
+Dk

CLO
k

Tk

≤ xk.

Note that we can change the upper limit of the �rst summation in the numer-
ator to k−1, since χk = HI holds. Further, reshaping the denominator, we �nally
obtain:

k−1∑
i=1

χi=LO

Ti−Di

Ti
CLOi +

k−1∑
i=1

χi=HI

Ti−xi·Di

Ti
CLOi + CLOk

Dk

(
1−

∑k−1
i=1

CLO
i

Ti

) ≤ xk. (20)

As already mentioned, we might need to recompute (17) for all tasks whose
relative order changes depending on the value of xk. To avoid this complication,
we derive the following lower bound for xk:

DLOk−1

Dk
≤ xk, (21)

where DLOk−1 = Dk−1 or D
LO
k−1 = xk−1 ·Dk−1 depending on whether χk−1 = LO or

χk−1 = HI respectively. In words, (21) guarantees that the selected xk does not
change the order of tasks in LO mode to avoid having to recompute (17), clearly,
at the cost of a lesser accuracy.

Now, we can obtain an upper bound on xk reshaping (19) to:

k∑
i=1

χi=HI

∆Ci
Ti

+
1

(1− xk)Dk

 k−1∑
i=1

χi=HI

Ti −∆Di
Ti

∆Ci +
Tk − (1− xk)Dk

Tk
∆Ck

 ≤ 1.

Solving for 1− xk and reshaping as before, we obtain:

1−

k−1∑
i=1

χi=HI

Ti−∆Di

Ti
∆Ci +∆Ck

Dk

(
1−

∑k−1
i=1

∆Ci

Ti

) ≥ xk. (22)

Similar to before, to avoid having to recompute (19), we need to prevent that
the order of tasks changes, for which we derive the following upper bound on xk:

1− (1− xk−1)Dk−1

Dk
≥ xk. (23)

Finally, a system is feasible under mixed-criticality EDF, if (17) holds for all
k and (18) holds for all k with χk = HI. In addition, we need to �nd a valid
xk for every τk with χk = HI. That is, xk must be greater than or equal to the
maximum between (20) and (21). Simultaneously, xk must be less than or equal
to the minimum between (22) and (23).
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6.3 Uniform deadline scaling

We can also apply Devi's test to derive a second approximated variant of our pro-
posed approach, computing only one deadline scaling factor for all HI tasks in τ .
In principle, this requires less computation than our �rst approximated variant.
However, in contrast to what is expected, this second variant does not result in
a lower complexity, since it cannot prevent the order of tasks from changing as
discussed below.

Schedulability in LO mode. We again apply Devi's test to the demand bound
function in (5), but considering this time a uniform deadline scaling factor x:

k∑
i=1

CLOi
Ti

+
1

x ·Dk

 k∑
i=1

χi=LO

Ti −Di
Ti

CLOi

+
k∑
i=1

χi=HI

Ti − x ·Di
Ti

CLOi

 ≤ 1, (24)

where 1 ≤ k ≤ |τ | and |τ | denote the total number of tasks in τ . Just as before,
tasks in (24) need to be sorted in order of non-decreasing real deadlines Di for
χi = LO or virtual deadlines x ·Di for χi = HI. Although the relative order of HI
tasks (among themselves) never changes, the order of LO tasks with respect to HI
tasks might still change for some x. If that happens, (24) needs to be recomputed
for the corresponding tasks.

In (24), note that the current τk is considered to be a HI task and, hence, x
needs to be computed. If τk is a LO task, the second term of (24) is divided by
Dk instead of x ·Dk, since LO tasks are scheduled within their real deadline. In
this case, no x is computed; however, (24) still needs to hold for the previously
selected x.

Schedulability in stable HI mode. When considering a uniform deadline scal-
ing factor x, we still obtain (18) as a result of applying Devi's test to (9). Hence,
this case requires no further discussion.

Schedulability in the transition from LO to HI mode. The demand bound
function in (11) reduces to the following condition after applying Devi's test for a
uniform deadline scaling factor x:

k∑
i=1

χi=HI

∆Ci
Ti

+
1

(1− x)Dk

 k∑
i=1

χi=HI

Ti − (1− x)Di
Ti

∆Ci

 ≤ 1, (25)

with 1 ≤ k ≤ |τ |, and ∆Ci is de�ned as before. Only HI task are considered in
(25) and tasks are sorted in the order of non-decreasing (1 − x)Di. This time,
however, the order of tasks cannot change for di�erent values of x, since x a�ects
all deadlines the same.
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Finding a uniform deadline scaling factor. Proceeding as before, we can
obtain a lower bound on x from (24):

k∑
i=1

χi=LO

Ti−Di

Ti
CLOi +

k∑
i=1

χi=HI

CLOi

Dk

(
1−

∑k
i=1

CLO
i

Ti

)
+

k∑
i=1

χi=HI

Di
CLO

i

Ti

≤ x. (26)

Note that the order between some HI and LO tasks might change for a given
x, requiring us to recompute (24). As mentioned above, in contrast to the per-task
deadline scaling, it becomes di�cult to derive an additional lower bound on x that
prevents this from happening. We can, of course, select an x for the current τk
such that DLOk−1 ≤ x·Dk holds, where DLOk−1 represents τk−1's deadline in LO mode
(independent of whether this is a LO or HI task). However, this is not su�cient,
since a new value of x also a�ects all previously tested HI tasks, whose deadlines
might become smaller than some deadline of a LO task.

An upper bound on x can be obtained from (25), which leads to:

x ≤ 1−

k∑
i=1

χi=HI

∆Ci

Dk

1−
k∑
i=1

χi=HI

∆Ci

Ti

+
k∑
i=1

χi=HI

Di
∆Ci

Ti

. (27)

According to this second variant of our proposed approach, the system is fea-
sible under mixed-criticality EDF, if (24) holds for all k and (18) holds for all k
with χk = HI. In addition, none of the values of x obtained with (27) should be
less than any value obtained by (26) for 1 ≤ k ≤ |τ | with χk = HI.

6.4 Complexity

Similar to GREEDY [12] and ECDF [11], the proposed approach of Section 4 is
based on computing demand bound functions and, hence, has a pseudo-polynomial
complexity O(Kn ·n) for task sets with a total utilization that is strictly less than
1 [1]. Note that n represents the number of tasks in the given task set and Kn is
a factor that depends on task parameters and, therefore, on n. In contrast to this,
EDF-VD [4] has a linear complexity O(n).

The approximated variant in Section 6.2, based on computing per-task deadline
scaling factors, has a polynomial complexity O(n · logn), when the bounds in (21)
and (23) are considered. As explained above, these prevent that the order of tasks
changes for a newly computed deadline scaling factor. If (21) and (23) are not
considered, the order of tasks might change requiring us to retest some of the
(previously tested) tasks and, hence, leading to a quadratic complexity O(n2)
instead.

On the other hand, the complexity of our second approximated variant of
Section 6.3 is quadratic O(n2), since, in the general case, i.e., with at least one LO
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task in the system, it cannot guarantee that the order of tasks does not change.
As a result, retesting cannot be avoided.

7 Experimental Evaluation

In this section, we present evaluation results based on synthetic data. The intention
is to show how the di�erent algorithms behave with respect to each other and not
to provide any absolute performance metrics.

In particular, we compare the proposed approach of Section 4 with EDF-VD
[4], with the GREEDY algorithm by Ekberg and Yi [12], and with ECDF by
Easwaran [11]. Note that we had to modify EDF-VD to consider the deadlines
Di of tasks instead of their inter-arrival times or periods Ti, i.e., to consider the
tasks' densities instead of their utilizations, to account for the case of constrained
deadlines Di ≤ Ti and be compared with the other algorithms in a meaningful
manner.

In addition, we include our �rst approximated variant from Section 6.2 in this
comparison. As discussed in Section 6.4, this is the one with the lowest complexity
and helps illustrating how much performance can be attained with the proposed
technique at the least possible cost.

Schedulability curves. Fig. 3 shows schedulability curves, i.e., the percentage
of feasible task sets by the above algorithms, versus LO utilization. For every
increase in LO utilization, a total number of 1000 di�erent sets of 20 tasks each
were randomly generated � 10,000 task sets in total. We made use of UUniFast
[7] to generate individual task utilizations.

Further, we used the log-uniform distribution proposed by Emberson et al.
[14] to create the task periods Ti in the range of 1ms to 1000ms. The log-uniform
distribution guarantees that task periods are equally spread into the time bands
1− 10ms, 10− 100ms, etc.

With Ti and the task utilization, we obtained the values of CLOi . We assumed
that 30% of the tasks are HI tasks, i.e., 6 out of 20 tasks. Further, for each HI
task, we randomly selected an increase in HI execution demand of at most 50% of
CLO

i

Ti
. With this, we then obtained the values of CHIi . Deadlines Di are constrained

and chosen from a uniform distribution in the range [CHIi , Ti] for HI tasks and in
[CLOi , Ti] for LO tasks.

As depicted in Fig. 3, expectedly, the percentage of schedulable task sets de-
creases with an increasing LO utilization. On the other hand, whereas all algo-
rithms perform similarly for a LO utilization below 50%, they exhibit di�erent
behaviors for higher LO utilizations. In particular, the proposed approach out-
performs ECDF by around 10% to 20% more accepted task sets in the range of
60% to 100% LO utilization. Interestingly, in spite of having a lesser complexity,
our approximated variant shows a similar performance to the GREEDY algorithm.

Weighted schedulability. Next, we make use of the concept of weighted schedu-
lability [6][9] to analyze the performance by the above algorithms. That is, for
a schedulability test A whose accuracy on testing a task set τ is a function of
parameter p, its weighted schedulability WA(p) is given by:
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Figure 3: Schedulability vs. LO utilization for |τ | = 20, 30% HI tasks and 50% increase of HI
execution demand

WA(p) =

∑
∀τ
U(τ) · SA(τ, p)∑
∀τ
U(τ)

, (28)

where U(τ) is the utilization of a given τ and SA(τ, p) is A's binary result (1 if
schedulable and 0 if not) for a task set τ with parameter value p. In other words,
individual schedulability results by A are weighted according to the utilization of
the task sets tested, putting more emphasis on higher-utilization ones.

We created weighted schedulability curves varying following parameters: (i)
total number of tasks, (ii) percentage of HI tasks, (iii) increase of HI execution
demand and (iv) range of task periods. Every time we varied one of these param-
eters, we generated 1000 di�erent task sets for each LO utilization value between
0 and 100% at steps of 10%, i.e., a total of 10,000 task sets per marker on the
shown curves. To this end, we proceeded as described previously to obtain task
parameters.

Fig. 4 shows weighted schedulability curves for a varying total number of tasks
where we selected the number of HI tasks to be equal to 30% of the total (i.e., it
also varies proportionally) and the increase of HI execution demand to be 50% of
the LO execution demand for each HI task. The proposed approach outperforms all
other algorithms by around 10% to 20% depending on the total number of tasks.
In general, the more the tasks, the better the proposed algorithm performs with
respect to the others. It is interesting to note that ECDF performs better than
GREEDY up to 30 tasks per set, after which GREEDY performs better. Further,
ECDF seems to stagnate at around 80% weighted schedulability, in contrast to
GREEDY and the proposed approach.

Our approximated variant has a good performance up to around 40 tasks, af-
ter which it decays pronouncedly, even becoming worse than EDF-VD from 80
tasks onwards. The reason is that this algorithm is based on Devi's test, which
requires tasks to be sorted by deadline. Since the order of tasks may change with
every new deadline scaling factor, some tasks may need to be retested as explained
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Figure 4:Weighted schedulability vs. total number of tasks for 30% HI tasks and 50% increase
of HI execution demand

in Section 6.2. Clearly, the more tasks there are, the more likely it is that their
order changes (when scaling one deadline). To avoid this and reduce complexity,
we introduced conditions (21) and (23), which truncate the valid range of dead-
line scaling factors. This has the downside, however, that the number of wrongly
rejected task sets increases disproportionally as the total number of tasks grows.
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Figure 5: Weighted schedulability vs. percentage of HI tasks for |τ | = 20 and 50% increase
of HI execution demand

Weighted schedulability curves for a varying percentage of HI tasks are shown
in Fig. 5. This time, we selected the total number of tasks to be 20, whereas the
increase of HI execution demand continues to be 50% as in the previous case. We
can see that the performance of all approaches decreases with an increasing number
of HI tasks. Up to around 20% HI tasks (i.e., 4 out of 20), the proposed approach
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and ECDF behave similarly. However, ECDF's performance then decreases rapidly,
becoming worse than GREEDY and even EDF-VD at 50% and 60% HI tasks
respectively.

At around 80% HI tasks (16 out of 20 tasks), the proposed approach still allows
for around 80% schedulable task sets independent of the LO utilization, whereas
all other algorithms are at or below 40% schedulable task sets. This evidences
the e�ectiveness of the proposed approach over GREEDY and ECDF for general
cases. In particular, GREEDY and ECDF are based on estimating the worst-case
contributions by carry-over jobs at the moment of switching from LO to HI mode.
This inevitably becomes pessimistic as the number of carry-over jobs grows, which
directly depends on the number of HI tasks.

In the case of our approximated variant, again, conditions (21) and (23) start
dominating in Fig. 5. Even though the total number of tasks remains constant,
these two conditions are evaluated for each HI task. As a result, if the number of
HI tasks increases, they start playing a bigger role and, hence, accentuating the
decrease in performance.
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Figure 6: Weighted schedulability vs. increase of HI execution demand for |τ | = 20 and 30%
HI tasks

In Fig. 6, we further present weighted schedulability curves for a varying in-
crease of HI execution demand. We again selected the total number of tasks to
be 20 and the number of HI tasks is set to 30%. In this case, the behavior of
algorithms slightly worsens for a growing HI execution demand with exception of
ECDF, whose behavior slightly improves. In spite of this, the proposed algorithm
outperforms all others by around 10% more schedulable task sets in the range
of 10% to 80% increase in HI execution demand. Interestingly, our approximated
variant also shows a good performance in this range, which is even better than
that of the GREEDY algorithm up to 60% increase in HI execution demand.

Last, Fig. 7 shows weighted schedulability curves for a varying range of task
periods with the total number of tasks being again 20, out of which 30% are HI
tasks with a 50% increase in HI execution demand. In this case, the performance
of all algorithms rapidly goes down for an increasing range of task periods. The
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Figure 7: Weighted schedulability vs. range of task periods for |τ | = 20, 30% HI tasks and
50% increase of HI execution demand
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Figure 8: Runtime vs. LO utilization for |τ | = 20, 30% HI tasks and 50% increase of HI
execution demand

proposed approach outperforms ECDF by 10% to 20% more schedulable task sets
when the minimum and the maximum task period are 3 to 4 orders of magni-
tude apart. Note that our approximated variant outperforms GREEDY for period
ranges of 2.5 orders of magnitude upwards and has a comparable performance to
that of ECDF between 3.5 to 4 orders of magnitude.

Runtime comparison. Fig. 8, Fig. 9 to Fig. 10 show a comparison of runtime
versus LO utilization, total number of tasks and range of task periods respectively.
However, note that we have implemented the di�erent algorithms in Matlab and,
hence, they can be further optimized, potentially changing their behavior with
respect to runtime.
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Figure 9: Runtime vs. total number of tasks for 30% HI tasks and 50% increase of HI execution
demand

Now, ECDF is around one to two orders of magnitude faster than GREEDY
and the proposed approach depending on LO utilization as shown in Fig. 8. Our
approximated variant is around one order of magnitude slower than EDF-VD and
around one to two orders of magnitude faster than ECDF. This behavior remains
almost unchanged as the number of tasks increases towards 100 tasks per set �
see Fig. 9. Here we maintained the percentage of HI tasks and the increase of HI
execution demand equal to 30% and 50% respectively. Only for 10 tasks per set,
GREEDY and the proposed algorithm are as fast as ECDF.

Fig. 10, shows runtime curves for an increasing range of task periods. We again
kept the total number of tasks at 20, the percentage of HI tasks at 30% and the
increase of HI execution demand at 50%. As expected, our approximated variant
and EDF-VD have a constant runtime for an increasing range of periods, since both
have polynomial complexity. All other algorithms experience an increasing runtime
for greater period ranges. ECDF continues to be around one order of magnitude
faster than GREEDY and the proposed algorithm. However, this di�erence reduces
as the range of task periods grows. At 4 orders of magnitude between the minimum
and the maximum period, all these algorithms show the same runtime.

It should be noted that Fig. 9 and Fig. 10 are independent of LO utilization.
For each marker on these curves, we generated 1000 di�erent task sets for each
LO utilization value between 0 and 100% at steps of 10%, i.e., a total of 10,000
task sets per marker.

8 Concluding Remarks

In this paper, we studied the problem of mixed-criticality scheduling under EDF,
where a set of low-criticality (LO) and high-criticality (HI) tasks share the pro-
cessor. Similar to the literature, we characterize execution demand in a mixed-
criticality task set by deriving demand bound functions in the di�erent operation
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Figure 10: Runtime vs. range of task periods for |τ | = 20, 30% HI tasks and 50% increase of
HI execution demand

modes, i.e., HI and LO mode. Particularly, we handle transitions from LO to HI
mode separately from the stable HI mode, which allows us to work around carry-
over jobs and, therefore, to reduce pessimism in estimating execution demand
under mixed-criticality EDF.

It is interesting to notice that the proposed approach reduces the problem
of testing schedulability under mixed-criticality EDF to testing schedulability of
three almost unrelated task sets: the one in LO mode, the one in HI mode and the
equivalent task set for transitions between LO and HI mode. This allows applying
well-known approximation techniques that trade o� accuracy for the sake of a
lesser complexity/runtime as illustrated for the case of Devi's test.

Further, we conducted a large set of experiments on synthetic data showing the
e�ectiveness of the proposed approach and of its approximated variant in terms
of (weighted) schedulability and runtime respectively. This is particularly notable
as the number of HI tasks increases.

Which algorithm should be used depends very much on the context. If we are
testing o�ine, we believe, there is no harm in using all three algorithms (GREEDY,
ECDF and the proposed test). If tests are to be performed online, it is probably
better to used the approximated variant of the proposed test � with a O(n · logn)
rather than pseudo-polynomial complexity.

Finally, in the appendix, we show how to extend the proposed approach to
more than two levels of criticality considering ordered (i.e., where criticality levels
cannot be skipped) and unordered modes switches.
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A Multiple Levels of Criticality

In practice, usually more than two levels of criticality are common, e.g., four di�erent automo-

tive safety integrity levels (ASIL) are de�ned in the ISO 26262 standards. To account for this,
we illustrate how to apply the proposed approach to add a third level of criticality between
LO and HI: the mid-criticality (MI) level. Note that additional levels of criticality can also be
added in an straightforward manner based on the presented analysis.

Just as before, the system implements a mode of operation per criticality level resulting
now in three modes: LO, MI, and HI mode. Further, tasks are classi�ed according to their
criticality χi into LO, MI and HI tasks. LO tasks only run in LO mode and are discarded in
MI and HI mode. MI tasks run in LO and MI mode, but are discarded in HI mode, whereas
HI tasks run in all modes.

All tasks are de�ned by their minimum inter-release times Ti and their relative deadlines
Di. LO task are characterized by their WCET parameter CLOi , whereas MI tasks have a CLOi
and a CMI

i parameter, which denote their WCET in LO and MI mode respectively. HI tasks

now have three WCET parameters, i.e., CLOi , CMI
i , and CHIi where CLOi < CMI

i < CHIi ≤
Di ≤ Ti holds.

A.1 Ordered mode switches

We �rst consider ordered mode switches. That is, the system switches from LO to MI, if either
a MI or a HI task runs for more than its CLOi in LO mode, and from MI to HI mode, if a

HI task runs for more than its CMI
i in MI mode. Note that there is no direct transition from

LO and HI mode, i.e., the system �rst switches to MI and then to HI mode. The necessary
extensions for unordered mode switches, i.e., when the system switches from LO directly to HI
mode, are discussed below. Next, for ease of exposition, we �rst analyze schedulability in MI
mode, then in HI mode, and last in LO mode.

Schedulability in stable MI mode. In MI mode, LO tasks are discarded and MI tasks are
scheduled together with HI tasks. MI tasks are scheduled within their real deadline, however,
HI tasks are assigned virtual deadlines yi · Di. Here, yi ∈ (0, 1] denotes the per-task scaling
factor in MI mode. Both MI and HI run for their corresponding CMI

i leading to the following
demand bound function � which resembles (5):

dbfMI(t) =
∑

χi=MI

(⌊
t−Di
Ti

⌋
+ 1

)
CMI
i

+
∑

χi=HI

(⌊
t− yi ·Di

Ti

⌋
+ 1

)
CMI
i . (29)
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Now, proceeding as before, we obtain an upper bound on t̂MI , i.e., the point in time until

which we need to check feasibility, i.e., that dbfMI(t) < t holds. With UMI
MI =

∑
χi=MI

CMI
i
Ti

,

UMI
HI =

∑
χi=HI

CMI
i
Ti

and letting yi tend to 0, we obtain:

t̂MI ≤

∑
χi=MI

(Ti −Di)
CMI

i
Ti

1− UMI
MI − U

MI
HI

+

∑
χi=HI

CMI
i

1− UMI
MI − U

MI
HI

. (30)

Schedulability in stable HI mode. Only HI tasks are allowed to run and they are scheduled
within their real deadlines in HI mode. Hence, dbfHI(t) is given by (8) and the upper bound
on t̂HI is given by (9), which requires no further discussion.

Schedulability in the transition from MI to HI mode. We can apply Theorem 1 to
obtain the demand bound function at transitions from MI to HI mode. Note that this also
resembles (10):

dbfSW1(t) =
∑

χi=HI

(⌊
t−∆DSW1

i

Ti

⌋
+ 1

)
∆CSW1

i , (31)

with ∆DSW1
i = Di − yi ·Di, and ∆CSW1

i = CHIi −CMI
i . Similarly, we proceed to obtain an

upper bound on t̂SW1, i.e., the point in time until which dbfSW1(t) < t needs to be checked.

The resulting expression resembles (11) with USW1
HI given by

∑
χi=HI

∆CSW1
i
Ti

:

t̂SW1 ≤

∑
χi=HI

∆CSW1
i

1− USW1
HI

. (32)

Schedulability in LO mode. In LO mode, LO tasks need to be scheduled together with
MI and HI tasks. MI tasks are assigned virtual deadlines xi ·Di, while HI tasks are assigned
virtual deadlines xi · yi ·Di. That is, their virtual deadlines in MI mode (i.e., yi ·Di) are again
scaled by xi ∈ (0, 1]. As a consequence, the resulting demand bound function dbfLO(t) in LO
mode is given by:

dbfLO(t) =
∑

χi=LO

(⌊
t−Di
Ti

⌋
+ 1

)
CLOi

+
∑

χi=MI

(⌊
t− xi ·Di

Ti

⌋
+ 1

)
CLOi ,

+
∑

χi=HI

(⌊
t− xi · yi ·Di

Ti

⌋
+ 1

)
CLOi . (33)

We can proceed as before to obtain an upper bound on t̂LO. That is, the point in time until
which we need to check that dbfLO(t) < t holds. In addition to ULOLO and ULOHI , considering

ULOMI =
∑

χi=MI

CLO
i
Ti

and letting xi tend to 0, we obtain:

t̂LO ≤

∑
χi=LO

(Ti −Di)
CLO

i
Ti

1− ULOLO − U
LO
MI − U

LO
HI

+

∑
χi=MI∨HI

CLOi

1− ULOLO − U
LO
MI − U

LO
HI

, (34)

where it should be noted that the second summation on the right-hand side applies to both
MI and HI tasks in the system.
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Schedulability in the transition from LO to MI mode. We can again apply Theorem 1
to obtain the demand bound function for transitions from LO to MI mode:

dbfSW2(t) =
∑

χi=MI

(⌊
t−∆DSW2

i

Ti

⌋
+ 1

)
∆CSW2

i

+
∑

χi=HI

(⌊
t− ∆̂DSW2

i

Ti

⌋
+ 1

)
∆CSW2

i , (35)

with ∆DSW2
i = Di − xi · Di, ∆̂DSW2

i = Di − xi · yi · Di, and ∆CSW2
i = CMI

i − CLOi .

Similarly, we proceed to obtain an upper bound on t̂SW2, i.e., the point in time until which
dbfSW2(t) < t needs to be checked:

t̂SW2 ≤

∑
χi=MI∨HI

∆CSW2
i

1− USW2
MI − USW2

HI

, (36)

where USW2
MI is given by

∑
χi=MI

∆CSW2
i
Ti

and USW2
HI is given by

∑
χi=HI

∆CSW2
i
Ti

.

Finding deadline scaling factors. In contrast to the case of two levels of criticality, we
now have to compute two deadline scaling factors yi and xi. We can still use the proposed ap-
proach from Section 4, but in an iterative manner. That is, we �rst use the proposed approach
to obtain yi, i.e., the deadline scaling factor in MI mode. Once we have the values of yi, we
can apply this approach again to �nd xi, i.e., the deadline scaling factor in LO mode.

A.2 Unordered mode switches

If we were to allow for unordered mode switches, i.e., from LO directly to HI mode in the
above setting with three levels of criticality, we need to consider it separately. To this end, we
assume that a subset of the HI tasks cause a direct transition to HI mode (instead of MI mode
as assumed so far) when running for more than CLOi in LO mode.5 As a result, in LO mode,
we now have:

dbfLO(t) =
∑

χi=LO

(⌊
t−Di
Ti

⌋
+ 1

)
CLOi

+
∑

χi=MI

(⌊
t− xi ·Di

Ti

⌋
+ 1

)
CLOi ,

+
∑

χi=HI

(⌊
t− zi ·Di

Ti

⌋
+ 1

)
CLOi , (37)

where zi is a deadline scaling factor that guarantees schedulability for the direct transition
from LO to HI mode. In HI mode, again, dbfHI(t) given by (8) continues to be valid. As a
result, with all xi obtained as discussed for the case of ordered mode switches, we can compute
each zi in (37) also based on the approach from Section 4.

Finally, to guarantee safety independent of whether the system switches to MI or HI mode,
HI task will now have to be scheduled in LO mode using the minimum between xi · yi that
covers ordered transitions and zi that accounts for the unordered case. For more than three
levels of criticality, note that all possible unordered mode switches will have to be analyzed as
shown here to determine suitable deadline scaling factors for the tasks involved.

5 In principle, any HI task can be allowed to switch either to MI or to HI mode too. However,
in this case, we will need to extend our task model such that mode switches can be triggered
independent of the tasks' execution budgets.
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Figure 11: Schedulability vs. LO utilization for |τ | = 20, 30% HI tasks and 50% increase of
HI execution demand � uniform distribution of task periods

B Uniform Distribution for Task Periods

In Section 7, we used the log-uniform distribution proposed by Emberson et al.[14] to generate
task periods in [1, Tmax], where Tmax was set to 1000 in the default case. The log-uniform
distribution equally spreads task periods into the time bands 1− 10, 10− 100, etc. and, hence,
the resulting task sets have an equal number of tasks in each such bands.

In contrast to this, a uniform distribution tends to concentrate task periods in the middle of
[1, Tmax], resulting in task sets where most tasks have periods of the same order of magnitude
around 500 for Tmax = 1000. Task sets generated this way lead to di�erent performance by
algorithms as shown below in Fig. 11 for schedulability and in Fig. 12 to Fig. 15 for weighted
schedulability. In particular, the algorithms' behavior changes with respect to runtime as shown
in Fig. 16 to Fig. 18.
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Figure 12: Weighted schedulability vs. total number of tasks for 30% HI tasks and 50%
increase of HI execution demand � uniform distribution of task periods
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Figure 13: Weighted schedulability vs. percentage of HI tasks for |τ | = 20 and 50% increase
of HI execution demand � uniform distribution of task periods
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Figure 14: Weighted schedulability vs. increase of HI execution demand for |τ | = 20 and 30%
HI tasks � uniform distribution of task periods
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Figure 15: Weighted schedulability vs. range of task periods for |τ | = 20, 30% HI tasks and
50% increase of HI execution demand � uniform distribution of task periods
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Figure 16: Runtime vs. LO utilization for |τ | = 20, 30% HI tasks and 50% increase of HI
execution demand � uniform distribution of task periods
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Figure 17: Runtime vs. total number of tasks for 30% HI tasks and 50% increase of HI
execution demand � uniform distribution of task periods
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Figure 18: Runtime vs. range of task periods for |τ | = 20, 30% HI tasks and 50% increase of
HI execution demand � uniform distribution of task periods
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