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ABSTRACT
This paper is concerned with mixed-criticality systems where a

set of low-criticality (LO) and high-criticality (HI) tasks share one

processor and are scheduled under the EDF algorithm. Basically, the

system operates in twomodes: LO and HI mode. In LOmode, one HI

task may exceed its execution budget, which then causes a change

to HI mode in the system. HI tasks are assigned larger execution

budgets in HI mode at the cost of the LO tasks — which are assumed

to be discarded. Since these mode changes may happen at arbitrary

points in time, it is difficult to find an accurate bound on the amount

of carry-over execution demand. That is the execution demand by

HI jobs that were released before, but did not finish executing at the

point of changing to HI mode. As a consequence, the resulting char-

acterization of the overall execution demand becomes pessimistic.

In this paper, to overcome this problem, a technique is proposed

that works around the computation of carry-over execution de-

mand and results in a more accurate bound on execution demand

under mixed-criticality EDF. In principle, the proposed technique

consists in separating the schedulability analysis of stable HI mode

from that of the transition between modes and deriving a separate

demand bound function for the latter case. The proposed technique

results not only in a considerably simpler, but also tighter bound

on execution demand under mixed-criticality EDF, in particular, as

the number of HI tasks increases. We illustrate this analytically and

by a large set of experiments based on synthetic data.
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1 INTRODUCTION
There is a trend towards consolidating software functions onto

fewer processors in different domains such as automotive systems

and avionics. Hence applications with different levels of criticality

that used to run in isolation now start sharing processors. As a

result, there is a need for techniques that allow designing such

mixed-criticality (MC) systems and, at the same time, complying

with certification requirements in the different domains.

In this paper, we study the problem of scheduling MC systems

under the earliest deadline first (EDF) algorithm. In particular, we

consider that a mix of low-criticality (LO) and high-criticality (HI)

tasks are scheduled on one processor. While LO tasks can be mod-

eled by minimum inter-arrival time, deadline, and worst-case ex-

ecution time (WCET), HI tasks are characterized by two WCET

parameters: an optimistic and a conservative one.

The system then distinguishes between two operation modes:

HI and LO mode. In LO mode, HI tasks require executing for no

longer than their optimistic WCETs and are scheduled together

with the LO tasks. A switch to HI mode occurs when one HI task

executes for longer than its optimistic WCET (but still less than its

conservative one). Similar to other approaches from the literature,

we consider that LO tasks are immediately discarded in HI mode,

which then allows accommodating this increase in HI execution

demand.

According to EDF, HI tasks can be scheduled arbitrarily close

to their deadlines in LO mode. As a result, they may miss their

deadlines after switching to HI mode in spite of discarding LO tasks.

To overcome this problem, a common approach is to assign HI tasks

virtual deadlines xi · Di that are shorter than their real deadlines

Di , where xi is in (0, 1]. This way, HI tasks are scheduled within

their virtual deadlines in LO mode such that they can always meet

their real deadlines after switching to HI mode.

The problem of testing schedulability in this setting reduces to

finding valid xi for each of the HI tasks in the system. So far, there

have been different approaches to this, which are usually based

on approximating the execution demand by MC task sets [1][2][3].

However, since a switch from LO to HI mode may occur at an ar-

bitrary point in time, it remains difficult to accurately bound the

execution demand by so-called carry-over jobs, i.e., HI jobs that
have been released before but have not finished executing at the

point in time of switching. As a result, known demand bound for

mixed-criticality EDF are pessimistic.

Contributions. In this paper we address the above problem and

propose a technique that allows better bounding the execution

demand under mixed-criticality EDF. The proposed technique is

based on separating the schedulability analysis of transitions to

HI mode from that of stable HI mode. If the system switches to

HI mode at an arbitrary t ′, the transition to HI mode happens in

https://doi.org/10.1145/3273905.3273930
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the interval [t ′, t ′′], where t ′′ is the point in time at which the

processor first idles after t ′. In contrast, stable HI mode starts from

t ′′ onwards. Our contributions can be summarized as follows:

• Based on the above idea, we derive a separate demand bound

function for transitions from LO to HI mode and prove its

validity. This technique allows us to work around the compu-

tation of carry-over execution demand and, hence, to reduce

the amount of pessimism in characterizing mixed-criticality

EDF.

• We further show that the proposed technique strictly domi-

nates the one by Ekberg and Yi [2], i.e., it leads to a tighter

bound on the execution demand under mixed-criticality EDF.

In addition, this is provably tighter than that of Easwaran

[3] for most cases.

• Based on the proposed technique, we derive a schedulability

test for mixed-criticality systems based on EDF. The result-

ing schedulability test is considerably simpler than those by

Ekberg and Yi [2] and Easwaran [3]. This makes it particu-

larly interesting for design space exploration, where often a

large set of different configurations needs to be tested.

• We present evaluation results by a large set of experiments

based on synthetic data illustrating the benefits of the pro-

posed technique.

Structure of the paper. The rest of this paper is structured as

follows. Related work is discussed in Section 2. Section 3 introduces

the task model and assumptions used, whereas the principles of

the proposed technique are explained in Section 4. In Section 5, we

perform an analytical comparison of the proposed technique with

those of [2] and [3]. Our schedulability test for mixed-criticality

EDF is discussed in Section 6. In Section 7 we present experimental

results, whereas Section 8 concludes the paper.

2 RELATEDWORK
MC scheduling was first proposed under this name by Vestal [4].

Baruah et al. later analyzed per-task priority assignments and the re-

sulting worst-case response times [5]. In [6], Baruah et al. proposed
the EDF-VD algorithm to schedule a mix of HI and LO tasks. EDF-

VD introduces two operation modes and uses a priority-promotion
scheme by uniformly scaling deadlines of HI tasks.

A speed-up factor for EDF-VD was first obtained in [6] as (
√
5 +

1)/2. Later this speed-up factor was improved to 4/3 [1]. Baruah et
al. further proposed extensions to EDF-VD, where, in particular, a

per-task deadline scaling is used [7]. However, they also concluded

that the speed-up factor of 4/3 cannot be improved [7].

A more flexible approach with per-task deadline scaling was

presented by Ekberg and Yi [2][8]. Ekberg and Yi characterized the

execution demand of MC systems under EDF by deriving demand

bound functions for the LO and the HI mode. In [3], Easwaran

presented a similar technique and showed that it strictly dominates

that of Ekberg and Yi.

This paper follows this line of work. In particular, we propose

separating the analysis of transitions from stable HI mode. Based on

this, we derive the corresponding demand bound functions, which

are shown to be more accurate than the ones by Ekberg and Yi and

of Easwaran.

Recently, Huang et al. proposed speeding up processors to ac-

count for increases in HI execution demand when switching to

HI mode [9]. Huang et al. made use of Ekberg and Yi’s demand

bound functions to compute the necessary speed-up factors that

guarantee meeting all deadlines. It should be noted that the pro-

posed technique of this paper can also be combined with that of

[9] to compute more accurate speed-up factors.

Improvements to the original EDF-VD have also been proposed

by other authors. In [10], Su and Zhu used an elastic task model

[11] to improve resource utilization in MC systems. In [12], Zhao

et al. applied preemption thresholds [13] in MC scheduling in order

to better utilize the processing unit. In [14], a technique consisting

of two scaling factors is proposed for a admission control in MC

systems.

For multiprocessors, a partitioned and a global scheduling ap-

proach both based on EDF-VD were proposed in [15]. According to

this work, partitioned behaves better than global scheduling in the

context of MC systems.

Further, in [16], Pathan studies global MC scheduling with task-

level fixed priorities and gives a schedulability test based on re-

sponse time analysis for more than two criticality levels. Finally,

a comprehensive overview of mixed-criticality systems is further

given in [17].

3 MODELS AND ASSUMPTIONS
We basically adopt the task model originally used in [2]. We denote

by τ the set of n independent sporadic tasks τi that run on one

processor under preemptive EDF scheduling.

The minimum separation between any two jobs or instances

of a τi is denoted by Ti . We assume constrained deadlines, i.e., ∀i :
Di ≤ Ti where Di denotes a task’s relative deadline. There is no

self-suspension, and context-switch overheads are assumed to be

negligible.

As already stated, we are concerned with dual-criticality systems

with two levels of criticality, namely LO and HI. The criticality of a

task τi is denoted by χi with:

χi ∈ {LO,HI }.

A LO task is associated with only its WCET CLO
i . Opposed to

this, a HI task is characterized by its optimistic WCET estimate

CLO
i and its conservative WCET estimate CHI

i with:

CLO
i ≤ CHI

i ≤ Di ≤ Ti .

Basically, the system operates in two modes denoted bym: LO

and HI mode. In LO mode, HI tasks execute for no longer thanCLO
i ,

whereas these might require executing for up to CHI
i in HI mode.

The system initializes in LO mode where all LO and HI tasks need

to meet their deadlines. As soon as one job of a HI task executes

for longer than its CLO
i , the system switches to HI mode where

only the HI tasks are allowed to run – LO tasks are immediately

discarded.

We denote the utilization by LO and HI tasks in the LO and HI

mode respectively as follows:

Um
χ :=

∑
χi=χ

Cmi
Ti
,
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where again χ and m can assume values in {LO,HI }. Note that

only U LO
LO , U LO

HI and UHI
H I exist. UHI

LO is effectively zero, since LO

tasks are dropped and, hence, do not run in HI mode.

Finally, in contrast to [2], we are not constrained to integer num-

bers, but rather use real numbers for all above parameters which

gives us more flexibility in modeling MC workloads.

Mixed-Criticality EDF. A common approach when scheduling

MC systems is to shorten the deadlines of HI jobs in LO mode. This

way, processor capacity can be reserved for a potential switch to HI

mode — where HI tasks require more execution demand. In other

words, we assign a virtual deadline equal to xi · Di with xi ∈ (0, 1]

to all τi where χi = HI .
This virtual deadline is used instead of Di — the real deadline —

to schedule HI tasks in LO mode. The parameter xi is the so-called
deadline scaling factor. There is no deadline scaling for LO tasks

such that they are scheduled (only in LO mode) using their Di .

When the system switches to HI mode, HI tasks start being

scheduled according to their real deadlines Di whereas LO tasks

are discarded immediately. In this paper, we consider that tasks are

scheduled under EDF in both modes and refer to this scheme as

mixed-criticality EDF.

Clearly, whereas schedulability of separated modes can be easily

tested, i.e., when the system is stable in either LO or HI mode, it

is difficult to test schedulability of transitions between modes. In

particular, careful analysis is required when the system switches

from LO to HI mode.

In this paper, similar to other approaches from the literature,

transitions from HI back to LO mode are disregarded. The reason is

that, in contrast to changes from LO to HI, a change from HI to LO

mode can be programmed or postponed to a suitable point in time,

e.g., at which the processor idles after all HI tasks have run again

for their optimistic WCETs, and does not require further analysis.

4 BOUNDING EXECUTION DEMAND
In this section, we introduce the proposed technique. Basically,

similar to [2] and [3], we characterize the execution demand of τ
by applying the concept of demand bound function [18]. In [2] and

[3], a demand bound function was derived for each mode in the

system, i.e., one for the LO mode and one for the HI mode.

In contrast to this, as mentioned above, we derive a third de-

mand bound function for the transition between modes. This allows

working around the computation of carry-over execution demand,

reducing the amount of pessimism and, hence, relaxing schedula-

bility conditions in HI mode as we illustrate later.

Schedulability in LOmode. In LO mode, LO tasks need to sched-

uled together with HI tasks, while the latter are assigned virtual

deadlines xi · Di . As a consequence, the demand bound function

dbfLO (t) in LO mode is given by:

dbfLO (t) =
∑

χi=LO

(⌊
t − Di
Ti

⌋
+ 1

)
CLO
i

+
∑

χi=HI

(⌊
t − xi · Di

Ti

⌋
+ 1

)
CLO
i . (1)

Here t ≥ 0 is a real number representing time, i.e., dbfLO (t)
returns a τ ’s maximum execution demand in LOmode in an interval

of length t . Note that dbfLO (t) is always greater than or equal to

zero, since Di ≤ Ti holds for all τi and xi has values in (0, 1].

The system is schedulable in LO mode, if dbfLO (t) ≤ t holds
for all possible t until the processor first idles [18], i.e., until a

point in time t̂LO by which dbfLO (t̂LO ) = t̂LO holds. Following the

technique in [18], we can remove the floor function in (1) to obtain

an upper bound on t̂LO :

t̂LO ≤

∑
χi=LO

(Ti − Di )
CLO
i
Ti

1 −U LO
LO −U LO

HI

+

∑
χi=HI

(Ti − xi · Di )
CLO
i
Ti

1 −U LO
LO −U LO

HI

. (2)

The bound in (2) depends on the values of xi , which need to

be computed and are not known a priori. On the other hand, to

resolve this dependency, note that this bound maximizes for all

xi = 0 which then leads to the following:

t̂LO ≤

∑
χi=LO

(Ti − Di )
CLO
i
Ti

1 −U LO
LO −U LO

HI

+

∑
χi=HI

CLO
i

1 −U LO
LO −U LO

HI

, (3)

Clearly, U LO
LO + U

LO
HI — the utilization in LO mode — must be

strictly less than one in order that (2) and (3) return valid and finite

values.

Schedulability in HI mode. In HI mode, again, LO tasks do not

run and HI tasks run for their corresponding CHI
i leading to the

following demand bound function:

dbfHI (t) =
∑

χi=HI

(⌊
t − Di
Ti

⌋
+ 1

)
CHI
i , (4)

where again t ≥ 0 is a real number representing time, i.e., dbfHI (t)
returns the maximum execution demand in a time interval of length

t .
The system is schedulable in stable HI mode, if dbfHI (t) ≤ t for

all possible t until the processor first idles, i.e., until a point in time

t̂HI is reached where dbfHI (t̂HI ) = t̂HI . We again can remove the

floor function in (4) to obtain an upper bound on t̂HI :

t̂HI ≤

∑
χi=HI

(Ti − Di )
CHI
i
Ti

1 −UHI
H I

. (5)

UHI
H I — the utilization in HI mode — must be strictly less than

one in order that (5) returns a valid and finite upper bound on t̂HI .

Schedulability in the transition from LO to HI mode. The
transition from LO to HI mode may happen at an arbitrary point

in time when one HI job exceeds its LO execution budget CLO
i .
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Unfinished LO jobs are discarded at that time; however, the problem

arises with HI jobs that are released but have not finished executing

their CLO
i , i.e., carry-over jobs. Since it is difficult to accurately

bound the execution demand by carry-over jobs, usually, pessimistic

assumptions need to taken.

The following theorem is a generalization of a theorem in [14]

and allows us to work around carry-over jobs constituting the main

contribution by this paper. In other words, this theorem allows us to

guarantee schedulability without computing carry-over execution

demand at the point of switching from LO to HI mode, which

considerably reduces the amount of pessimism.

Theorem 1. Given a set τ of MC tasks, let us assume that the
following two conditions hold: (i) dbfLO (t) ≤ t and (ii) dbfHI (t) ≤
t hold for 0 < t ≤ t̂LO and 0 < t ≤ t̂HI respectively, i.e., τ is
schedulable in LO and stable HI mode. The transition from LO to HI
mode is schedulable under mixed-criticality EDF, if dbfSW (t) ≤ t
also holds for 0 < t ≤ t̂SW , where dbfSW (t) is given by:

dbfSW (t) =
∑

χi=HI

(⌊
t − ∆Di

Ti

⌋
+ 1

)
∆Ci , (6)

with ∆Di = Di − xi · Di , ∆Ci = CHI
i − CLO

i , and t̂SW is upper
bounded by the following expression:

t̂SW ≤

∑
χi=HI

∆Ci

1 −U SW
HI

, (7)

whereU SW
HI is given by

∑
χi=HI

∆Ci
Ti .

Proof. Let us consider that the system switches to HI mode at

time t ′ and that the processor idles for the first time thereafter at

t ′′ with t ′ < t ′′, i.e., all jobs released prior to t ′′ finish executing at

latest by t ′′. Clearly, jobs that are released after t ′′ are guaranteed
schedulable by assumption (ii).

Let us now assume that a deadline is missed for the first time

at tmiss by a job of any τi that we denote τmiss . Clearly, tmiss
must be in the interval [t ′, t ′′] and the following must hold for

δmiss = tmiss − t ′:

δmiss < CO +
∑

χi=HI

(⌊
δmiss − ϕi − Di

Ti

⌋
+ 1

)
CHI
i ,

where ϕi = r ′i − t ′ is the phase of a τi at t ′, i.e., the release time

r ′i of its first job after t ′ minus t ′. Note that ϕi is in the interval

[0,Ti ). In addition, CO denotes the carry-over execution demand at

t ′. This is the amount of execution in [t ′, tmiss ] by HI jobs that are

released prior to t ′, but have not finished executing at t ′.
As already discussed, it is difficult to determineCO in an accurate

manner. Hence, to work aroundCO , let us first divide each τi , whose
jobs have both release times and deadlines in [t ′, tmiss ], into two

subtasks. The first subtask — denoted by τ LOi — is released for the

first time at ϕi and requires executing CLO
i within xi · Di every Ti

time, i.e., this represents τi ’s execution demand in LO mode. The

second subtask — denoted by τ SWi — is released for the first time

at ϕ ′i = ϕi + xi · Di and requires executing ∆Ci = CHI
i − CLO

i
within ∆Di = Di − xi · Di every Ti time, i.e., this presents τi ’s
increase in execution demand incurred in HI mode. Note that, in

spite of this modification, the total amount of execution demand in

[t ′, tmiss ] does not change, i.e., a deadline is still missed at tmiss as

per assumption, and we can reshape the above inequality to:

δmiss < CO +
∑

χi=HI

(⌊
δmiss − ϕi − xi · Di

Ti

⌋
+ 1

)
CLO
i

+
∑

χi=HI

(⌊
δmiss − ϕ ′i − ∆Di

Ti

⌋
+ 1

)
∆Ci . (8)

Note that tmiss coincides with the deadline of the corresponding

job of τ SWmiss , which misses its deadline. (Recall that τmiss is now

divided into the subtasks τ LOmiss and τ
SW
miss .) Now, there are two pos-

sible cases to consider in order to prove this theorem: The set of

only subtasks τ SWi is either (1) unschedulable or (2) schedulable in

isolation.

Case (1): This is a rather trivial case. If the set of only τ SWi is

unschedulable in isolation, i.e., when scheduled alone on a single

processor, dbfSW (t) > t must hold for some t in [0, t̂SW ] with

dbfSW (t) given as per (6). As a result, we will be able to detect a

deadline miss in the transition between LO and HI mode by only

testing the set of all τ SWi .

To this end, we need to find an upper bound on t̂SW making

dbfSW (t̂SW ) = t̂SW and removing the floor function as before:

t̂SW ≤

∑
χi=HI

(Ti − ∆Di )
∆Ci
Ti

1 −U SW
HI

.

Here, U SW
HI =

∑
χi=HI

∆Ci
Ti is the utilization of the set of only

τ SWi . SinceU SW
HI < 1 holds by assumption (ii), the above inequality

returns a valid bound on t̂SW . This depends on ∆Di = Di − xi · Di
and, therefore, on the values of xi , which we do not know in ad-

vance. However, we can make xi = 1 for all i leading to the upper

bound in (7). The theorem follows.

Case (2): If dbfSW (t) ≤ t holds for all t in [0, t̂SW ], we show that

assuming that a deadline is missed at tmiss leads to a contradiction.

We have assumed that a deadline is missed for the first time at

tmiss , hence, all previous jobs in [t ′, tmiss ) can actually finish exe-

cuting in time. Since now τmiss is divided into the subtasks τ LOmiss
and τ SWmiss , the τ

LO
miss ’s job with a deadline equal to tmiss − ∆Dmiss

must push carry-over τ SWi ’s jobs (i.e., those that are released prior

to and have not finished executing at tmiss − ∆Dmiss and that

have deadlines prior to tmiss ) by at least ∆miss (being ∆miss the

amount of the deadline miss at tmiss ). Otherwise, no deadline

can be missed at tmiss , since again dbfSW (t) ≤ t is assumed to

hold for all t . In addition, note that the processor does not idle in

[tmiss − ∆Dmiss , tmiss ].

Case (2.a): Let us assume that there is only one carry-over job

of an arbitrary τ SWi and that ∆Di ≤ ∆Dmiss holds. Note that,

after moving this job forward to force its release time to coincide at

tmiss −∆Dmiss , τ
SW
miss ’s job continues to miss its deadline by ∆miss

at tmiss , since the deadline of this carry-over τ
SW
i ’s job remains

within the interval [tmiss −∆Dmiss , tmiss ]. As a result, the amount

of execution demand in [tmiss − ∆Dmiss , tmiss ] does not change

after this displacement.
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The above analysis leads to a contradiction, since τ SWmiss ’s job

and its carry-over τ SWi ’s job are now released in synchrony at

tmiss − ∆Dmiss . Consequently, τ
LO
miss cannot push any additional

execution demand into [tmiss − ∆Dmiss , tmiss ] and, hence, if a

deadline is missed at tmiss , dbfSW (t) ≤ t cannot hold for all t .

Case (2.b): Let us now assume that there is again only one carry-

over job of an arbitrary τ SWi , however, ∆Di > ∆Dmiss holds this

time. Note that we can displace this carry-over τ SWi ’s job forward

until its deadline occurs at tmiss + ε , where ε is an infinitesimally

small number greater than zero. As a result, this τ SWi ’s job starts

missing its deadline by an amount equal to ∆miss −ε , since now the

original execution demand in [tmiss − ∆Dmiss , tmiss ] starts being

executed in [tmiss − ∆Dmiss , tmiss + ε].
It is easy to see that we can now apply the analysis of Case (2.a)

where the carry-over τ SWi ’s job of this case misses its deadline at

tmiss +ε by an amount equal to ∆miss −ε and the τ
SW
miss ’s job of this

case becomes the carry-over job in Case (2.a). As a result, Case (2.b)

also leads to a contradiction, i.e., if a deadline is missed at tmiss ,

dbfSW (t) ≤ t cannot hold for all t .
Clearly, there can be several carry-over jobs whose execution

demands are pushed (at least partially) by τ LOmiss into [tmiss −

∆Dmiss , tmiss ], however, the total amount of execution demand

pushed by τ LOmiss remains ∆miss . In this latter case, again, it is easy

to see that we can apply the analysis of Case (2.a) and Case (2.b)

to each individual carry-over job. Consequently, if a deadline is

missed at tmiss , dbfSW (t) > t must hold for some t and the theorem
follows. �

Theorem 1 allows characterizing the additional execution de-

mand in the transitions from LO to HI mode in a more accurate

manner. Based on it, we test whether deadlines are met or not in

[t ′, t ′′], i.e., from the time t ′ of switching to HI mode to the time t ′′

at which the processor first idles after switching. Next we perform

an analytical comparison with the known approaches from the

literature.

5 ANALYTICAL COMPARISON
In this section, we compare the proposed demand bound functions

for mixed-criticality EDF with those used by Ekberg and Yi in the

GREEDY algorithm [2] and by Easwaran in the ECDF algorithm

[3]. We show, for most cases, that the proposed ones result in

tighter bounds on the execution demand than the other mentioned

approaches.

5.1 The GREEDY algorithm
In LO mode, note that dbfLO (t) in (1) is identical to that of Ekberg

and Yi — denoted by gdbfLO (t) in this paper. That is, dbfLO (t) =
gdbfLO (t) for all 0 < t ≤ t̂LO .

In HI mode, Ekberg and Yi proposed a demand bound function —

denoted gdbfHI (t) in this paper — which is given by the following

expression [2]:

gdbfHI (t) =
∑

χi=HI

(⌊
t − ∆Di

Ti

⌋
+ 1

)
CHI
i

−
∑

χi=HI
donei (t), (9)

with ∆Di = Di − xi · Di and donei (t) is given by:

donei (t) =


max

(
0,CLO

i − mod

(
t
Ti

)
+ ∆Di

)
,

if Di > mod

(
t
Ti

)
≥ ∆Di ,

0, otherwise.

Note that gdbfHI (t) bounds the execution demand in HI mode

taking transitions into account. In our case, as discussed above, we

derive different bounds on the execution demand at transitions and

in stable HI mode, viz., dbfSW (t) and dbfHI (t) respectively.
Now, since donei (t) ≤ CLO

i holds for all valid values of t and
xi , dbfSW (t) ≤ gdbfHI (t) also holds for all t . In other words, if the

transition to HI mode is safe by gdbfHI (t), it will also be safe by

the proposed dbfSW (t). However, this does not hold the other way

around, i.e., dbfSW (t) results in a tighter bound on the execution

demand at transitions from LO to HI mode than gdbfHI (t).
On the other hand, if transitions are safe, it is guaranteed that

no deadlines are missed after switching to HI mode at a t ′ and until
the processor first idles at a t ′′. From t ′′ onwards, it is easy to see

that our proposed dbfHI (t) is sufficient and necessary. That is, if

dbfHI (t) ≤ t does not hold for some t with 0 ≤ t ≤ t̂HI , then the

system is not feasible, i.e., it will be neither be feasible by gdbfHI (t).

5.2 The ECDF algorithm
Similar to the case of the GREEDY algorithm, note that dbfLO (t)
in (1) is identical to that used in the ECDF algorithm in LO mode.

We denote this latter by edbfLO (t) in this paper. That is, dbfLO (t) =
edbfLO (t) for all 0 < t ≤ t̂LO .

In HI mode, the ECDF algorithm uses a demand bound function

— denoted edbfHI (t) in this paper — which is given by the following

expression [3]:

edbfHI (t1, t2) = min

©«t1,
3∑
j=1

dbfLj (t1, t2)
ª®¬

+
∑

χi=HI
and case 2 or 3

dbf
HI
i (t1, t2)

+
∑

χi=HI
and case 2

(CO(t2 − t1) + ∆Ci ) , (10)

where ∆Ci is defined as CHI
i −CLO

i . In addition, 0 ≤ t2 ≤ t̂HI and

0 ≤ t1 ≤ t2 − min

χi=HI
(∆Di ) hold with again ∆Di = Di − xi · Di .

Here t1 represents the point in time at which the system switches

to HI mode (i.e., t1 = t ′ in this paper’s notation) and t2 is the point in
time at which a deadline is potentially missed (i.e., t2 = tmiss ≤ t ′′

in this paper). Note that dbf
HI
i (·) is a τi ’s contribution to dbfHI (·)

shown in (4). HI tasks in (10) are classified into three cases: case

1 which plays a role in computing dbfLj (·), case 2, and case 3. For

details on how to compute dbfLj (·) for 1 ≤ j ≤ 3 and how to

compute CO(·) we refer to [3].

The system is schedulable in HI mode, if edbfHI (t1, t2) ≤ t2
holds. (Here again no distinction is made between transition and

stable HI mode.) Let us now consider that t1 is less than or equal to
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Algorithm 1 Schedulability test for mixed-criticality EDF

Require: τ

Require: τHI /* subset of HI tasks */

1: XLW =testLO(τ )

2: if testHI(τHI )=’Passed’ and XLW ,∅ then

3: XUP=testSW(τHI )

4: if XUP ,∅ and XLW ≤ 1 − XUP then

5: Return (’Passed’)

6: else

7: Return (’Not passed’)

8: end if

9: end if

∑
3

j=1 dbfLj (t1, t2), such that the schedulability condition by ECDF

now becomes: ∑
χi=HI

and case 2 or 3

dbf
HI
i (t1, t2)

+
∑

χi=HI
and case 2

(CO(t2 − t1) + ∆Ci ) ≤ t2 − t1. (11)

Easwaran proved that the left-hand side of the above condition

is equal to gdbfHI (t2 − t1) [3]. As a consequence, the proposed

dbfSW (t) results in a tighter bound than (11), since dbfSW (t) ≤

gdbfHI (t) holds for all t — see again the above Section 5.1.

In the case where t1 is greater than
∑
3

j=1 dbfLj (t1, t2), the analyt-

ical comparison between edbfHI (·) and dbfSW (·) becomes difficult.

This is the case where some amount of the execution demand given

by edbfHI (·) starts being executed before t1, at t1−
∑
3

j=1 dbfLj (t1, t2)

to be more precise. Whether a proof of dominance exists (in either

way) remains an open problem.

At least, from the above discussion, we can assert that the pro-

posed dbfSW (·) is tighter for the more stringent case, i.e., when

none of the execution demand by edbfHI (·) can be executed before

t1. Our experiments, based on a large number of synthetic task

sets, present evidence that this also holds on average, i.e., dbfSW (·)

usually results in tighter bounds, particularly, when the number of

HI task increases.

6 FINDING VALID xi
In this section, we propose an algorithm to find valid values of xi
for each HI task in τ . Clearly, this is closely related to the technique
used to tighten deadlines in LO mode. In this paper, we do not aim

to improve deadline tightening. The contribution is rather a new

technique for bounding demand execution, which can be combined

with existing deadline tightening techniques, e.g., from [2] or [3].

The proposed algorithm shown in Alg. 1 essentially tests τ ’s
schedulability in the LO mode (line 1), and in HI mode (line 2). If τ
is schedulable in LO mode, the function testLO() returns a vector

Algorithm 2 Function testLO()

Require: τ

1: Compute t̂LO by (3)

2: XLW = 1

3: while t ≤ t̂LO do

4: if dbfLO (t) > t then

5: if χi =LO or dbfLO (t)− ri >Di then

6: XLW = ∅

7: Return

8: end if

9: end if

10: if χi =HI then

11: if Computed(i)=’false’ or XLW (i)<dbfLO (t )−ri
Di

then

12: XLW (i) = dbfLO (t )−ri
Di

/* ri = job’s release time */

13: end if

14: end if

15: (t, i)=getNextDeadline()

16: end while

17: Return

XLW with the minimum values of xi that could be found to be

valid. If this vector is not empty, i.e., valid xi values could be found,

and τ is schedulable in HI mode, Alg. 1 tests schedulability at the

transitions from LO to HI mode (line 3).

Further, if the set of HI tasks in τ — denoted by τHI — is schedu-

lable at transitions from LO to HI, the function testSW() returns a

vector XUP with the minimum values of 1 − xi that are also valid.

That is, if XUP is neither empty, the whole τ will be schedulable

under mixed-criticality EDF provided that XLW ≤ 1 − XUP holds

(line 4). Here, 1 denotes a unity vector (where all elements are equal

to one). That is, for each element in the vectors XLW and XUP , the

following condition has to hold:

XLW (i) ≤ xi ,

XUP (i) ≤ 1 − xi ,

=⇒ xi ≤ 1 − XUP (i).

As already mentioned, the functions testLO() and testSW() —

shown in Alg. 2 and Alg. 3 — test schedulability in LO mode and

at the transitions from LO to HI mode. These two functions are

very similar — apart from testLO() dealing with the whole τ and

testSW() with the subset τHI — and return lower bounds on xi and
on 1 − xi respectively. Thus, the following discussion of testLO()

also applies to testSW().

Basically, testLO() computes dbfLO (t) for all 0 ≤ t ≤ t̂LO starting

from xi = 1 for all HI tasks. If the current t corresponds to a deadline
of a HI task (lines 10 to 14), its (relative) virtual deadline xi · Di



On Bounding Execution Demand under Mixed-Criticality EDF RTNS ’18, October 10–12, 2018, Chasseneuil-du-Poitou, France

Algorithm 3 Function testSW()

Require: τHI

1: Compute t̂SW by (7)

2: XUP = 1

3: while t ≤ t̂SW do

4: if dbfSW (t) > t and dbfSW (t)− ri >Di then

5: XUP = ∅

6: Return

7: end if

8: if Computed(i)=’false’ or XUP (i)<
dbfSW (t )−ri

Di
then

9: XUP (i) =
dbfSW (t )−ri

Di
/* ri = job’s release time */

10: end if

11: (t, i)=getNextDeadline()

12: end while

13: Return

is adjusted such that its absolute deadline ri + xi · Di is equal to

dbfLO (t) (i.e., the total execution demand at t ).
Note that the execution demand of jobs with prior deadlines

to t is contained in dbfLO (t). As a result, the computed xi in line

12 can never compromise schedulability of these previous jobs. In

addition, the currently computed xi can only replace a previously

computed xi , if it is greater than this latter (lines 11 to 13). This

deadline tightening reduces the number of possibilities for xi , but
it also reduces the complexity of the algorithm.

Computed(i) in line 11 returns ’false’, if no xi has been computed

yet for the current i . The function getNextDeadline() in line 15

returns the point in time t at which the next deadline occurs and

the index i of the task corresponding to that deadline. Clearly, this

function has to take the computed values of xi into account.

The function testLO() succeeds if it finishes testing dbfLO (t) for
0 ≤ t ≤ t̂LO and it could find a value of xi in (0, 1] for each HI task

in τ . On the other hand, testLO() fails, if dbfLO (t) > t holds for
some t and either t corresponds to a deadline of a LO task — whose

deadline cannot be adjusted by the used tightening technique — or

the resulting xi becomes greater than 1 (lines 4 to 8).

Analogous to testLO(), testSW() computes dbfSW (t) for all 0 ≤

t ≤ t̂SW starting from 1 − xi = 1 for all HI tasks – recall that

deadlines in dbfSW (t) are equal to (1 − xi ) · Di . Otherwise, as

mentioned above, testLO() and testSW() are very similar and, hence,

the above explanation for testLO() also applies to testSW(). Finally,

the function testHI() in Alg. 1 is the known schedulability test for

EDF from the literature [18] and, hence, does not require further

discussion.

7 EXPERIMENTAL EVALUATION
In this section, we evaluate the proposed technique from Section 4

based on synthetic data and compare it to the most prominent

approaches from the literature. The intention of this section is to

show how the different algorithms roughly behave with respect to

each other (and not to prove any particular behavior, in contrast,

to the previous sections).

In particular, we compare the proposed technique in form of

Alg. 1 with EDF-VD [1], with the GREEDY algorithm by Ekberg

and Yi [2], and with ECDF by Easwaran [3].

It should be noted that the proposed Alg. 1 as well as GREEDY

and ECDF essentially perform two inter-related functions: (i) selec-

tion of xi parameters by some deadline tightening technique, (ii)

schedulability test for a given set of xi . Clearly, the more accurate

the schedulability test is, the better the selection of xi is and vice

versa.

As discussed above, the aim of this paper is not to improve the

deadline tightening, but to propose a new technique to bound exe-

cution demand of mixed-criticality EDF. As a result, the proposed

Alg. 1 makes use of a rather rudimentary (though less complex)

tightening technique compared to those of the GREEDY and the

ECDF algorithms. However, on average, experimental results evi-

dence that benefits overcome drawbacks by the proposed Alg. 1.

Finally, note that we had to modify EDF-VD to consider the

deadlines Di of tasks instead of their inter-arrival times or periods

Ti , i.e., to consider the tasks’ densities instead of their utilizations,

to account for the case of constrained deadlines Di ≤ Ti and be

meaningfully compared with the other algorithms in this section.

Obtaining test data. Now, we explain how we obtained test data

for our experiments. The description below is common to all curves

presented in the paper. Details concerning a specific curve will be

given as it becomes necessary.

Basically, we used the algorithm UUniFast [19][20] to generate

sets of 10 and 20 tasks for a varying LO utilization, i.e., for a varying
U LO
LO +U

LO
HI . For each curve, a total number of 5, 000 different task

sets were created.

For a given value of LO utilization, UUniFast returns a vector of

(individual) task utilizations. We then generate periodsTi randomly

and use the task utilization to obtain the values ofCLO
i . Now, given

a percentage of HI tasks, which we vary in our experiments, we

assumed that HI task experience a random increase in execution

demand in HI mode of either 10% or 100% more of their

CLO
i
Ti . With

this, we then obtained the values of CHI
i . Further we randomly

selected Di in [CHI
i ,Ti ] for HI tasks and in [CLO

i ,Ti ] for LO tasks.

7.1 Comparison for sets of 10 tasks
Fig. 1 to Fig. 6 show the results of our experiments for 10 tasks and

a varying number of HI tasks. In Fig. 1, Fig. 2 and Fig. 3, only one

HI task was considered (10% of n) for an increasing amount of HI

execution demand.

As we can see, in this case, the proposed algorithm and ECDF

behave almost the same with ECDF being slightly better for an

increase in HI execution demand that goes from 10% in Fig. 1 to

100% in Fig. 3, i.e., the HI task doubles its execution demand in HI

mode. The GREEDY algorithm is outperformed by the proposed

algorithm and by ECDF by around 10%, i.e., the proposed algorithm

and ECDF constantly find around 10% more tasks sets that are

feasible under mixed-criticality EDF than the GREEDY algorithm.
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Figure 1: Schedulability vs. LO utilization for n = 10 and 10% of HI
tasks with 10% increase of HI execution demand
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Figure 2: Schedulability vs. LO utilization for n = 10 and 10% of HI
tasks with 50% increase of HI execution demand
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Figure 3: Schedulability vs. LO utilization for n = 10 and 10% of HI
tasks with 100% increase of HI execution demand

In Fig. 4, Fig. 5 and Fig. 6, three HI tasks were considered (30% of

n) again for an increasing amount of HI execution demand. In this

case, the proposed algorithm and ECDF behave almost the same;

however, the proposed algorithm is most of the time slightly better

than ECDF for an increase in HI execution demand that goes from
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Figure 4: Schedulability vs. LO utilization for n = 10 and 30% of HI
tasks with 10% increase of HI execution demand
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Figure 5: Schedulability vs. LO utilization for n = 10 and 30% of HI
tasks with 50% increase of HI execution demand
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Figure 6: Schedulability vs. LO utilization for n = 10 and 30% of HI
tasks with 100% increase of HI execution demand

10% in Fig. 4 to 100% in Fig. 6, i.e., the three HI tasks double their

execution demand in HI mode.

The GREEDY algorithm is outperformed by the proposed and

ECDF by around 20% this time, i.e., the proposed algorithm and
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Figure 7: Schedulability vs. LO utilization for n = 20 and 10% of HI
tasks with 10% increase of HI execution demand

ECDF constantly find around 20% more tasks sets that are feasible

under mixed-criticality EDF.

Even though there is not much difference between the proposed

algorithm and ECDF, it should be noted that ECDF has a more

sophisticated deadline tightening technique than Alg. 1. Tightening

deadlines in more efficient manner will certainly improve Alg. 1’s

performance.

7.2 Comparison for sets of 20 tasks
Fig. 7 to Fig. 12 show the results of our experiments for 20 tasks

and a varying number of HI tasks. In Fig. 7, Fig. 8 and Fig. 9, two

HI tasks were considered (10% of n) for an increasing amount of HI

execution demand.

Here, it can be seen that the proposed algorithm and ECDF

behave almost the same with ECDF being again slightly better for

an increase in HI execution demand that goes from 10% in Fig. 7

to 100% in Fig. 9. The GREEDY algorithm is again outperformed

by the proposed and the ECDF algorithm by around 10%, i.e., these

latter find around 10%more tasks sets that are feasible under mixed-

criticality EDF.

In Fig. 10, Fig. 11 and Fig. 12, six HI tasks were considered (30%

of n) for an increasing amount of HI execution demand. This time

the proposed algorithm considerably outperforms ECDF by around

10% to 20% more accepted task sets. The GREEDY algorithm is still

outperformed by ECDF and the proposed one.

The performance of the proposed algorithm is the highest for

the experiments in Fig. 10, i.e., where there are a relatively big

number of HI tasks, each of which experiences a relatively small

increase in execution demand in HI mode. Again, the performance

of the proposed Alg. 1 can be further improved by using a more

sophisticated deadline tightening scheme.

8 CONCLUDING REMARKS
In this paper, we studied the problem of mixed-criticality scheduling

under EDF, where a mix of low-criticality (LO) and high-criticality

(HI) tasks share the processor. Similar to the literature, we char-

acterize the execution demand of a mixed-criticality task set by

deriving demand bound functions in the different operation modes,

viz., HI and LO mode.
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Figure 8: Schedulability vs. LO utilization for n = 20 and 10% of HI
tasks with 50% increase of HI execution demand
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Figure 9: Schedulability vs. LO utilization for n = 20 and 10% of HI
tasks with 100% increase of HI execution demand
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Figure 10: Schedulability vs. LO utilization for n = 20 and 30% of HI
tasks with 10% increase of HI execution demand

However, it was shown that treating the transitions from LO to

HI mode separately from the stable HI mode allows working around

carry-over jobs and, therefore, reducing pessimism in estimating the

execution demand under mixed-criticality EDF. Carry-over jobs are
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Figure 11: Schedulability vs. LO utilization for n = 20 and 30% of HI
tasks with 50% increase of HI execution demand
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Figure 12: Schedulability vs. LO utilization for n = 20 and 30% of HI
tasks with 100% increase of HI execution demand

those HI jobs that start prior to, but have not yet finished executing

at the moment of switching from LO mode to HI mode.

It is interesting to notice that the proposed technique reduces

the problem of testing schedulability under mixed-criticality EDF

to testing schedulability of three almost unrelated task sets: the one
in LO mode, the one in HI mode and the equivalent task set for

transitions between LO and HI mode. This leads to a considerably

simpler schedulability test and improves our understanding of this

problem.

We illustrated the performance of the proposed technique by

an analytical comparison with the known approaches from the

literature and by means of experiments based on a large number of

synthetic task sets.
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