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Abstract—We are concerned with mixed-criticality systems
where a set of low-criticality (LO) and high-criticality (HI) tasks
share one processor and are scheduled under EDF-VD algorithm.
EDF-VD implements two operation modes: LO and HI. In LO
mode, one or more HI tasks may exceed their execution budgets,
which then causes a change to HI mode in the system. In HI
mode, HI tasks are assigned larger execution budgets at the cost
of the LO tasks, which often need to be discarded. In some
cases, however, we would like to allow some LO tasks to continue
running on the processor in spite of switching to HI mode. To
this end, we incorporate utilization caps into the original EDF-
VD algorithm. The idea is to partition tasks on the processor, for
example, according to functional dependencies, and assign them a
portion the total utilization. EDF-VD then applies to each of these
partitions individually and up to their corresponding utilization
caps. If one HI task exceeds its execution budget in LO mode,
this only affects the LO tasks in the same partition, but not LO
tasks in other partitions which can continue running. We present
a technique to optimally choose utilization caps for each partition
and perform a large set of experiments based on synthetic data
illustrating benefits of the proposed technique.

I. INTRODUCTION

In safety-critical domains such as avionics and automotive
systems, embedded software has to pass a strict certification
process. This is usually regulated according to different criti-
cality levels which are specified for the particular domains [1]
[2]. Clearly, the certification of high-criticality (HI) tasks is
more rigorous and well-regulated than that of low-criticality
(LO) tasks and, hence, LO task are usually more error-prone
than HI tasks.1

This is of concern when consolidating software functions
onto fewer processing units, since functions or tasks with
different levels of criticality start being executed on the same
processor. It may happen that failures of any kind in a LO task
affect one or more HI task. As a result, in particular, there
is a need for methods and techniques that allow designing
such mixed-criticality (MC) systems and, at the same time,
complying with safety and certification requirements.

In this paper, we assume that earliest deadline first with
virtual deadlines (EDF-VD) is used to schedule a mix of high-
criticality (HI) and low-criticality (LO) tasks on one processor
[3]. In principle, EDF-VD introduces two operation modes: HI
and LO. In LO mode, HI tasks run for no longer than their
optimistic execution budgets and are scheduled together with
the LO tasks. The system switches to HI mode when one or
more HI tasks run for their conservative execution budgets.

1Although aerospace and automotive safety regulations define around five
levels of criticality, for ease of exposition, we consider only two such levels in
this paper. However, the proposed technique remains valid for multiple levels
of criticality.

To accommodate the increase in HI execution demand,
EDF-VD in its original form discards all LO tasks in HI mode.
In practice, however, we would often require some LO tasks
to continue running even if one or more HI tasks switch to HI
mode. To this end, existing approaches from the literature are
based on degrading LO tasks in HI mode [4], i.e., whatever
computation capacity is left by HI tasks in HI mode is used
to provide some reduced service for the LO tasks.

Another approach is based on servers that enforce temporal
isolation being restricted to pre-configured execution budgets
and replenishment periods [5]. The idea is that LO tasks are
not affected by HI tasks running on different servers. The
advantage of this latter approach is that LO tasks in the servers
that are not affected by a switch to HI mode can continue
running without being degraded.

Contributions. In this paper, we follow the above line of
work and propose a technique that allows LO tasks to continue
running without degradation (in spite of some HI tasks having
switched to HI mode). Our technique extends EDF-VD by
introducing utilization caps.

In principle, tasks are partitioned following some functional
criteria. In particular, if a HI task switches to HI mode and,
hence, it does not make sense that some LO task continues
running, e.g., it becomes unnecessary or superfluous, then
these two tasks should belong to the same partition or subset.
Each of such partitions is assigned a utilization cap, i.e., a
portion of the total processor utilization.

If one HI task switches to HI mode, then only those LO
task within the same partition or subset will be discarded,
whereas LO tasks in other partitions continue running. The
main advantage over the sever-based approach is that there
is no starvation period, i.e., the time interval between two
runs/repetitions where no service is provided to tasks within
the server.

In contrast to this, tasks in a partition run as long as they
have not used up their assigned utilization, i.e., as long as
they are below their utilization cap. This is a decisive property
that allows reducing pessimism with respect to server-based
approaches.

The proposed technique does not require modifying EDF-
VD algorithm, which remains unchanged within a parti-
tion/subset of tasks. It hence facilitates a compositional design
of MC systems. Our experimental evaluation based on syn-
thetic data evidences the benefits of the proposed technique.

Structure of the Paper. The rest of this paper is structured
as follows. Related work is discussed in Section II. Next,
Section III explains the task model and assumptions used.
We briefly revisit the algorithm EDF-VD in Section IV and



introduce our proposed extension to it in Section V. Section VI
presents experimental results and Section VII wraps up and
concludes the paper.

II. RELATED WORK

In this section, we briefly revise the rich literature con-
cerning MC systems — a complete overview can be found
in [6]. The problem around MC systems was first addressed
by Vestal in [7]. In particular, Vestal showed that the well-
known deadline monotonic (DM) policy is not optimal for
MC systems, where HI tasks may temporarily increase their
execution demands. Since then, different approaches have been
proposed for MC systems under both fixed and dynamic
priorities.

For single processors, Baruah et al. analyzed different
priority assignments and the resulting response times under
fixed priorities [8]. In [9], Baruah et al. presented a further
priority assignment with a partially better performance than
those in [8]. Burns and Davis proposed another fixed-priority
scheme where non-preemptive regions are added to tasks and
showed that this leads to an even better performance than
previously published schemes [10].

Under EDF, in [3], Baruah et al. proposed the EDF-VD
algorithm to schedule a mix of HI and LO tasks. EDF-VD
introduces two operation modes and uses a priority-promotion
scheme by uniformly scaling deadlines of HI tasks. A speed-
up factor for EDF-VD was first obtained in [3] as (

√
5+1)/2.

Later this speed-up factor was improved to 4/3 [11]. A more
flexible approach with per-task deadline scaling was presented
by Ekberg and Yi [12] [13]. Ekberg and Yi characterized the
execution demand of MC systems under EDF by deriving
demand bound functions for the LO and the HI mode.

Improvements to the original EDF-VD have also been
proposed. In [14], Su and Zhu used an elastic task model [15]
to improve resource utilization in MC systems. In [16], Zhao
et al. applied preemption thresholds [17] to MC scheduling
in order to better utilize the processor. Recently, Huang et al.
proposed speeding up processors to account for increases in
HI execution demand when switching to HI mode [18]. Huang
et al. made use of Ekberg and Yi’s demand bound functions to
compute the necessary speed-up factors that guarantee meeting
all deadlines.

For multiprocessors, a partitioned and a global scheduling
approach both based on EDF-VD were proposed in [19].
According to this work, partitioned behaves better than global
scheduling in the context of MC systems. Further, in [20],
Pathan studies global MC scheduling under fixed priorities and
gives a schedulability test based on response time analysis for
more than two criticality levels. Another approach is proposed
by Lee et al. with their MC-Fluid model [21], which has been
improved later in [22]. The MC-Fluid model executes each task
at a rate proportional to its utilization improving efficiency.

Whereas, in the above approaches, LO tasks are discarded
to accommodate an increase in HI execution demand, Huang
et al. rather proposed degrading LO tasks [4], for which they
derive degraded timing guarantees. Recently, Ren and Phan
proposed task grouping and a server-based approach to provide
guarantees to both HI and LO tasks on multiprocessors [5].
This paper follows this line of work. Similar to [4] and [5],
we propose not to discard LO tasks in case HI execution

demand increases. As already mentioned, our technique allows
LO tasks to continue running without degradation in contrast
to [4], and is less pessimistic than a server-based approach as
the one in [5], since it does not incur any starvation period.

III. MODELS AND ASSUMPTIONS

In this section, we discuss most of our notation. Note that
further nomenclature will be introduced as it gets necessary
along the paper. We consider a one-processor system where
a set of MC tasks are scheduled and basically adopt the task
model originally proposed in [3].

We denote by τ the set of n independent — with respect
to timing — sporadic tasks that run under preemptive unipro-
cessor scheduling. The minimum separation between any two
jobs or instances of a task is denoted by Ti and we assume
implicit deadlines, i.e., ∀i : Di = Ti where Di is a task’s
relative deadline. There is no self-suspension, and context-
switch overheads are assumed to be negligible on the different
processors.

As already stated, we are concerned with dual-criticality
systems with two levels of criticality, namely LO and HI. The
criticality of a task i is denoted by χi ∈ {LO,HI}. A LO task
is associated with its WCET CLO

i . Opposed to this, a HI task
is characterized by its optimistic WCET estimate CLO

i and its
conservative WCET estimate CHI

i , clearly being CLO
i ≤ CHI

i .

Tasks in τ are independent in the sense that they do
not affect each other’s execution apart from competing for
resources. However, as mentioned previously, we consider that
some functional dependency does exist for some tasks in the
system. In particular, if a HI task switches to HI mode, some
LO tasks may not need to run anymore, i.e., they become
superfluous. On the other hand, it may be meaningful that
some other LO tasks continue to run, if provided sufficient
resources.

As a result, we assume that τ can be divided into a number
of disjoint subsets τA, τB , . . . τZ , each of which comprises
tasks that are functionally related in the described form. More
specifically, each τX with X ∈ {A,B, . . . Z} contains a mix
of HI and LO tasks: If a HI task within this τX switches to
HI mode, all LO tasks in τX will be discarded; however, LO
tasks in the remaining subsets τA, τB , . . . τZ are allowed to
continue running, since they do not functionally depend on
any τX ’s tasks.

Basically, the system distinguishes two operation modes m
for each subset τX ⊂ τ : LO and HI mode. In LO mode, HI
tasks execute for no longer than CLO

i , whereas these might
require executing for up to CHI

i in HI mode. Initially, τX is
in LO mode where all LO and HI tasks therein need to meet
their deadlines. As soon as one job of a HI task executes for
longer than its CLO

i , τX switches to HI mode where only its HI
tasks are allowed to execute. Again, this does not affects LO
tasks in other subsets but only those in τX . In the following,
we define utilization parameters such as:

Um
χ :=

∑

χi=χ

Cm
i

Ti

,

where again χ,m ∈ {LO,HI}. For simplicity, we avoid
an index identifying the subset τX in the above parameters.



Um
χ indicates the processor utilization produced by tasks with

criticality χ in mode m.

Finally, among the four potential criticality-to-mode com-
binations, note that only ULO

LO , ULO
HI and UHI

HI are defined.
UHI
LO does not exist for a particular τX ⊂ τ , since LO tasks

are dropped when a HI task in τX changes to HI mode and,
hence, do not run in τX ’s HI mode.

IV. THE EDF-VD ALGORITHM

EDF-VD [3] is an extension of the EDF algorithm [23]
to MC systems. Its basic idea is to promote HI jobs in LO
mode by shortening their deadlines so as to reserve processor
capacity for the HI mode. That is, D′

i = xTi with x ∈ (0, 1) for
all i where χi = HI . D′

i is referred to as virtual deadline and
is used instead of Di — the real deadline — to schedule HI
tasks in LO mode. The parameter x is the so-called deadline
scaling factor. There is no deadline scaling for LO tasks such
that they are scheduled using their Di. In HI mode, HI tasks
start being scheduled according to their real deadlines Di

whereas LO tasks are discarded. In both LO and HI mode,
tasks are scheduled under the EDF algorithm.

From the above description, in order that EDF-VD be
schedulable, the LO and HI tasks need to be schedulable with
their corresponding CLO

i under EDF in LO mode. Similarly,
in HI mode, the HI tasks also need to be schedulable with their
corresponding CHI

i under EDF. As a result, the following two
schedulability conditions are necessary:2

ULO
LO + ULO

HI ≤ 1, (1)

UHI
HI ≤ 1. (2)

In [11], Baruah et al. also obtained a sufficient schedulabil-
ity condition for EDF-VD in the form of a utilization bound:
max

(

ULO
LO + ULO

HI , U
HI
HI

)

≤ 3/4. They also proposed a more
accurate schedulability test based on whether a scaling factor
x can be obtained or not [11]. To this end, a lower and an
upper bound on x are computed:

ULO
HI

1− ULO
LO

≤ x, (3)

x ≤ 1− UHI
HI

ULO
LO

. (4)

If the value of x obtained with (3) is less than or equal to
the value obtained with (4), then it is possible to find a valid x
for the considered system and the task system is schedulable
by EDF-VD.

V. INTRODUCING UTILIZATION CAPS

In this section, we introduce utilization caps to EDF-VD.
That is, instead of finding a value of x for the whole τ as
previously, we find a value of x for each τX ⊂ τ , i.e., for each
disjoint subset within τ , and limit the amount of utilization it
can use. To this end, let us first reshape (3) and (4):

2For the equations in Section IV, note that τ is not divided into any
partitions/subsets and that the utilization parameters are hence those obtained
for all tasks in τ . In the following sections, utilization parameters are again
defined for each subset τA, τB , . . . τZ ⊂ τ , however, for the sake of
simplicity, we omit identifying the different such subsets in the notation.

ULO
LO +

ULO
HI

x
≤ 1,

x · ULO
LO + UHI

HI ≤ 1.

Note that the left-hand sides of the above inequalities
represent measures of how much utilization is used by the MC
tasks on the processor. Since originally EDF-VD assumes that
the full processor capacity is available, the task set is feasible
or schedulable if those utilization measures are below 1.

We can limit the amount of utilization for any τX ⊂ τ by
reducing the right-hand side of the above expressions from 1
to UL in (0, 1] as shown below:

ULO
LO +

ULO
HI

x
≤ UL,

x · ULO
LO + UHI

HI ≤ UL,

where we refer to UL as utilization cap. Now, we can reshape
these latter expressions to compute lower and upper bounds
on the value of x for any τX ⊂ τ :

ULO
HI

UL − ULO
LO

≤ x, (5)

x ≤ UL − UHI
HI

ULO
LO

. (6)

In order that τX ⊂ τ is schedulable, we need to find a
value of x in (0, 1), for which (5) and (6) hold. However, this
defines a range of possible values, from which one can choose
x to be, for example, in the middle of it:

x =
ULO
HI

UL − ULO
LO

+
UL − UHI

HI

2 · ULO
LO

− ULO
HI

2
(

UL − ULO
LO

) . (7)

A. Fixed utilization caps

Clearly, whether (5) and (6) hold depends on the value
of UL. Let us first assume this to be arbitrarily fixed by
the designer as shown in Alg. 1. For example, the designer
can decide to equally distribute the processor capacity among
individual τX ⊂ τ . That is, if there are three such subsets in
the systems, each of them would be using 1/3 of the total
utilization.

Schedulability test. Alg. 1 shows the schedulability test for
EDF-VD with fixed utilization caps. This requires to know all
disjoint subsets τA, τB , . . . τZ included in τ , for which values
of UL are assumed to be specified by the designer.

For each such subset τX , the algorithm first computes the
values of ULO

LO , ULO
HI and UHI

HI and checks whether ULO
LO +

ULO
HI > 1 or UHI

HI > 1 hold or not — see lines 2 and 6. If these
hold, it means that the current subset τX is not schedulable
and the algorithm returns with an error.

If the above conditions are passed, the algorithm checks
whether there exists a valid range of values for x in line 7. If
this is the case, UL of the current τX is sum to U — the total
processor utilization — in line 8 and x is computed as per (7)
in line 9.

If no valid range can be found for x, again an error is
returned. Finally, τ is schedulable on one processor if U <= 1
holds in line 14, i.e., if the sum of all UL — i.e., for each
τX ⊂ τ — is less than 1.



Algorithm 1 Schedulability test for fixed utilization caps

Require: τ = τA ∪ τB ∪ . . . τZ

Require: UL

1: for each τX ⊂ τ do

2: Compute ULO
LO , ULO

HI and UHI
HI

3: if ULO
LO + ULO

HI > 1 then

4: Return (“not schedulable”)

5: else if UHI
HI > 1 then

6: Return (“not schedulable”)

7: else if
ULO

HI

UL−ULO

LO

≤ UL−UHI

HI

ULO

LO

then

8: U = U + UL

9: Compute x

10: else

11: Return (“not schedulable”)

12: end if

13: end for

14: if U > 1 then

15: Return (“not schedulable”)

16: else

17: Return (“schedulable”)

18: end if

Note that ULO
LO , ULO

HI , and UHI
HI need to be computed for

each subset τX ⊂ τ . This can be done in linear time, i.e.,
O(n), since each τX is a disjoint subset of τ and the total
number of tasks in τ is given by n.

All other computations and checks in Alg. 1 can be
performed in constant time, i.e., O(1). As a result, the overall
complexity is O(n).

B. Optimized utilization caps

Although using fixed UL is more straightforward, in some
cases, we would like to find an optimum value of UL for a
given τX ⊂ τ such that schedulability is guaranteed.

To this end, since the left-hand side of (5) needs to be less
than or equal to the right-hand side of (6), we have:

ULO
HI

UL − ULO
LO

≤ UL − UHI
HI

ULO
LO

,

and, reshaping to solve for UL, we finally obtain:

0 ≤ U2

L −
(

ULO
LO + UHI

HI

)

· UL +
(

UHI
HI − ULO

HI

)

· ULO
LO . (8)

Now, for the system to be schedulable, either ÛL or ǓL —
i.e., any of the roots of (8) when equalized to zero — needs
to be a real number in the interval (0, 1]:

ǓL =

(

ULO

LO + UHI

HI

)

2

−

√

(ULO

LO
+ UHI

HI
)
2
− 4 (UHI

HI
− ULO

HI
) · ULO

LO

2
, (9)

ÛL =

(

ULO

LO + UHI

HI

)

2

+

√

(ULO

LO
+ UHI

HI
)
2
− 4 (UHI

HI
− ULO

HI
) · ULO

LO

2
. (10)

Note that the value of UL given by one of these roots is a
lower bound and that any other greater value that is less than
1 will also guarantee schedulability. On the other hand, if this

is not the case, i.e., if neither of ÛL or ǓL is a real number
in the interval (0, 1], the system is rendered unschedulable.

Note that finding a valid UL implies that a valid x can be
obtained as well, for which we again can use (7) as before.

Schedulability test. Alg. 2 shows the schedulability test for
EDF-VD with utilization caps, where the values of UL are
optimized as per the above analysis. This algorithm also
requires knowing all disjoint subsets τA, τB , . . . τZ which τ
consists of.

For each such subset τX , the algorithm first computes the
values of ULO

LO , ULO
HI and UHI

HI and checks whether ULO
LO +

ULO
HI > 1 or UHI

HI > 1 hold or not — see lines 3 and 5. If these
hold, it means that the current subset τX is not schedulable
and the algorithm returns an error.

If τX passes the above checks, ǓL and ÛL, i.e., the roots
of (8), are computed in as per (9) and (10) in line 8. Clearly,
if ǓL is a real number in (0, 1], it is meaningful to use this

value for UL since ǓL < ÛL holds — see lines 9 and 10.
That is, this is going to be the lowest possible value of UL

that renders the system schedulable.

On the other hand, if ǓL is not a valid value of UL (in
particular, if it is less than zero), ÛL may still be a real number
in (0, 1] and, hence, this is checked next in lines 11 and 12.
Note that, if ǓL is not a real number, ǓL is neither going to

be real. As a result, it is not necessary to compute ÛL. The

same happens if ǓL is greater than 1, i.e., ÛL is also going to
be greater than 1 and, hence, does not need to be computed.

If neither ǓL nor ÛL are real numbers in (0, 1], the subset
τX and, hence, also τ are not schedulable — see lines 13 and
14. If a valid UL was found for τX , this is summed to U , i.e.,
the total utilization on the processor, in line 16.

As mentioned above, if there exists a valid value of UL, a
valid x also exists for τX . However, this needs to be computed,
e.g., as per (7) in line 17. Finally, if a UL could be obtained
for every disjoint subset τX in τ , τ is only feasible on one
processor if U <= 1 holds, i.e., if the sum of all UL is less
than 1.

Finally, note that ǓL and ÛL can be computed for each
τX ⊂ τ in constant time, i.e., O(1). As a consequence, similar
to Alg. 1, the overall complexity of Alg. 2 is also linear in the
form O(n).

VI. EXPERIMENTAL EVALUATION

In this section we evaluate the benefits and drawbacks
of the proposed approach consisting in introducing utilization
caps to MC scheduling. In particular, we compare our approach
as given in Alg. 1, i.e., with fixed utilization caps, to the orig-
inal EDF-VD algorithm. The choice of Alg. 1 over Alg. 2 was
taken to facilitate comparison based on synthetic data. Alg. 1



Algorithm 2 Schedulability test for optimum utilization caps

Require: τ = τA ∪ τB ∪ . . . τZ

1: for each τX ⊂ τ do

2: Compute ULO
LO , ULO

HI and UHI
HI

3: if ULO
LO + ULO

HI > 1 then

4: Return (“not schedulable”)

5: else if UHI
HI > 1 then

6: Return (“not schedulable”)

7: else

8: Compute ǓL and ÛL

9: if ǓL > 0 and ǓL <= 1 then

10: UL = ǓL

11: else if ÛL > 0 and ÛL <= 1 then

12: UL = ÛL

13: else

14: Return (“not schedulable”)

15: end if

16: U = U + UL

17: Compute x

18: end if

19: end for

20: if U > 1 then

21: Return (“not schedulable”)

22: else

23: Return (“schedulable”)

24: end if

makes it easier to systematically investigate how performance
is affected by a decreasing utilization cap UL.

In particular, we consider that the processor three cases
UL = 1/2, UL = 1/3 and UL = 1/4, i.e., where the total
processor utilization is uniformly divided in 2, 3 and 4 portions
respectively. As mentioned above, we assume that tasks in
τ are partitioned or grouped according to some functional
dependency. For the sake of comparison, however, we use a
the well-known first fit decreasing (FFD) heuristic to build
partitions or groups of tasks in this section. Thereby, tasks are

sorted according to non-increasing utilization values —
CLO

i

Ti

for LO tasks or
CHI

i

Ti
for HI tasks.

The impact of (i) the total number of tasks, (ii) the number
of HI tasks and (iii) a varying increase of HI execution demand
for each HI task is investigated in Fig. 1 to Fig. 12. In each
curve, the percentage of schedulable task sets that could be
found by the different algorithms is shown on the y-axis for
a varying ULO

LO + ULO
HI on the x-axis. Each data-point was

obtained by randomly generating 1000 task systems and testing
each for schedulability according to the corresponding algo-
rithms. To this end, we made use of the algorithm UUniFast
[24] to generate valid utilization values.
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Fig. 1. Schedulability vs. LO utilization for 10 tasks, 50% of HI tasks, 100%
increase of execution demand by HI tasks in HI mode
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Fig. 2. Schedulability vs. LO utilization for 10 tasks, 10% of HI tasks, 100%
increase of execution demand by HI tasks in HI mode

A. 10 task per task set

Fig. 1 to Fig. 4 show the results of our experiments for 10
tasks per set and different comparison conditions. We vary the
number of HI tasks in each task set from 50%, i.e., 5 tasks, in
Fig. 1 and 3 to 10%, i.e., 1 task, in Fig. 2 and 4. In addition,
we vary the amount of execution demand from 100% in Fig. 1
and Fig. 2, i.e., HI tasks double their execution demand in HI
mode, to 10% in Fig. 3 and Fig. 4, i.e., HI tasks have an
increase of 10% more execution demand in HI mode.

As it can be seen, the smaller the value of UL, the worse the
algorithm’s performance, i.e., less task sets will be rendered
schedulable. In other words, UL = 1/3 and UL = 1/4
have the the worst performance compared to UL = 1/2. On
the other hand, UL = 1/2 has a performance that is close
to that of the original EDF-VD. This means that we can
safeguard half of the LO tasks from being discarded in HI
mode without significantly reducing the total usable utilization
on the processor.

B. 20 task per task set

Fig. 5 to Fig. 8 show the results of our experiments for
20 tasks per set and different comparison conditions. We vary
the number of HI tasks in each task set from 50%, i.e., 10
tasks, in Fig. 5 and 7 to 10%, i.e., 2 tasks, in Fig. 6 and 8.
The amount of execution demand was varied from 100% in
Fig. 5 and 6, i.e., HI tasks double their execution demand in
HI mode, to 10% in Fig. 7 and Fig. 8, i.e., HI tasks have an
increase of 10% more execution demand in HI mode.
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Fig. 3. Schedulability vs. LO utilization for 10 tasks, 50% of HI tasks, 10%
increase of execution demand by HI tasks in HI mode
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Fig. 4. Schedulability vs. LO utilization for 10 tasks, 10% of HI tasks, 10%
increase of execution demand by HI tasks in HI mode

Again, the smaller the value of UL, the worse the algo-
rithm’s performance in terms of schedulable task sets. This
time, however, UL = 1/3 and UL = 1/4 are closer to the
performance of UL = 1/2 and of EDF-VD, being UL = 1/4
still the one with the worst performance among all. The amount
of usable utilization on the processor is not so drastically
impacted as in the case of 10-task sets. The exception is Fig. 5,
where the total HI execution demand is much higher than for
Fig. 6 to Fig. 8.
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Fig. 5. Schedulability vs. LO utilization for 20 tasks, 50% of HI tasks, 100%
increase of execution demand by HI tasks in HI mode
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Fig. 6. Schedulability vs. LO utilization for 20 tasks, 10% of HI tasks, 100%
increase of execution demand by HI tasks in HI mode
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Fig. 7. Schedulability vs. LO utilization for 20 tasks, 50% of HI tasks, 10%
increase of execution demand by HI tasks in HI mode
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Fig. 8. Schedulability vs. LO utilization for 20 tasks, 10% of HI tasks, 10%
increase of execution demand by HI tasks in HI mode
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Fig. 9. Schedulability vs. LO utilization for 50 tasks, 50% of HI tasks, 100%
increase of execution demand by HI tasks in HI mode
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Fig. 10. Schedulability vs. LO utilization for 50 tasks, 10% of HI tasks,
100% increase of execution demand by HI tasks in HI mode
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Fig. 11. Schedulability vs. LO utilization for 50 tasks, 50% of HI tasks, 10%
increase of execution demand by HI tasks in HI mode

C. 50 task per task set

Similar to the case of 10-task and 20-task sets, Fig. 9 to
Fig. 12 show the results of our experiments for 50 tasks per
set and different comparison conditions. We vary the number
of HI tasks in each task set from 50%, i.e., 25 tasks, in Fig. 9
and 11 to 10%, i.e., 5 tasks, in Fig. 10 and 12. The amount of
execution demand was varied from 100% in Fig. 9 and 10, i.e.,
HI tasks have twice their LO execution demand in HI mode,
to 10% in Fig. 11 and Fig. 12, i.e., HI tasks have an increase
of 10% more execution demand in HI mode.
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Fig. 12. Schedulability vs. LO utilization for 50 tasks, 10% of HI tasks, 10%
increase of execution demand by HI tasks in HI mode

We can see that, this time, all algorithms behave almost the
same. Only in Fig. 9, where the greatest HI execution demand
is considered, they still have some difference in the number of
task sets they render schedulable. In Fig. 10 to 12, algorithms’
performance curves almost overlap fully showing a negligible
difference with respect to EDF-VD.

VII. CONCLUDING REMARKS

In this paper, we proposed introducing utilization caps to
the original EDF-VD algorithm. To this end, an MC task set
is partitioned into disjoint subsets, each of which is assigned
a portion of the total processor utilization. This approach is
similar to using servers, i.e., virtual machines, however, in
contrast to them, it has advantage of not incurring starvation
periods or additional context switches — which can easily
jeopardize performance.

EDF-VD is then applied to each such subset or partition
independently. As a result, LO tasks within one partition are
not affected by HI tasks from other partitions in case that
the latter switch to HI mode. On the contrary, HI tasks can
only cause the abortion of LO task within their own partition.
This allows LO tasks in partitions not affected by HI mode to
continue running without being degraded.

Clearly, partitions need to follow some functional criteria.
For example, LO tasks that are not necessary anymore when a
given HI task switches to HI mode should logically belong to
the same partition as the corresponding HI task. Similarly, LO
tasks which should not be affected by a given HI task should
be put in a different partition.

As expected, there is a performance degradation with
respect to EDF-VD. The smaller the utilization cap of one
partition, the less performance in terms of schedulable task
sets can be achieved. However, out experiments indicate that,
on average, dividing the processor into two halves has almost
no performance degradation with respect to EDF-VD (with the
processor fully dedicated). This already allows for some LO
tasks to be protected from switching to HI mode enabling for
more design flexibility.
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