
Learning Max Mixtures

Edwin Olson
ebolson@umich.edu

Computer Science and Engineering
University of Michigan

Saturday, July 20, 13

The ugly

Saturday, July 20, 13

Errors
• Classical SLAM systems are very sensitive to errors

‣ Natural question: How do we reduce the error rate?

Inference on networks of mixtures for robust robot mapping

Edwin Olson
Computer Science and Engineering,

University of Michigan,
2260 Hayward Street,
Ann Arbor, Michigan

Email: ebolson@umich.edu

Pratik Agarwal
Computer Science and Engineering,

University of Michigan,
2260 Hayward Street,
Ann Arbor, Michigan

Email: pratikag@umich.edu

Abstract— The central challenge in robotic mapping is ob-
taining reliable data associations (or “loop closures”): state-of-
the-art inference algorithms can fail catastrophically if even
one erroneous loop closure is incorporated into the map.
Consequently, much work has been done to push error rates
closer to zero. However, a long-lived or multi-robot system will
still encounter errors, leading to system failure.

We propose a fundamentally different approach: allow richer
error models that allow the probability of a failure to be
explicitly modeled. In other words, we optimize the map while
simultaneously determining which loop closures are correct
from within a single integrated Bayesian framework. Unlike
earlier multiple-hypothesis approaches, our approach avoids
exponential memory complexity and is fast enough for real-
time performance.

We show that the proposed method not only allows loop
closing errors to be automatically identified, but also that in
extreme cases, the “front-end” loop-validation systems can be
unnecessary. We demonstrate our system both on standard
benchmarks and on the real-world datasets that motivated this
work.

I. INTRODUCTION

Robot mapping problems are often formulated as an infer-
ence problem on a factor graph: variable nodes (representing
the location of robots or other landmarks in the environment)
are related through factor nodes, which encode geometric
relationships between those nodes. Recent Simultaneous
Localization and Mapping (SLAM) algorithms can rapidly
find maximum likelihood solutions for maps, exploiting
both fundamental improvements in the understanding of
the structure of mapping problems [1], [2], [3], and the
computational convenience afforded by assuming that error
models are simple uni-modal Gaussian [4].

Despite their convenience, Gaussian error models often
poorly approximate the truth. In the SLAM domain, per-
ceptual aliasing can lead to incorrect loop closures, and the
resulting error can lead to divergence of the map estimate.
Similarly, the wheels of a robot may sometimes grip and
sometimes slip, leading to a bi-modal motion model. Similar
challenges arise throughout robotics, including sonar and
radar (with multi-path effects), target-tracking (where multi-
ple disjoint hypotheses may warrant consideration), etc.

In the specific case of SLAM, it has become standard
practice to decompose the problem into two halves: a “front-
end” and “back-end”. The front-end is responsible for iden-

Fig. 1. Recovering a map in the presence of erroneous loop closures. We
evaluated the robustness of our method by adding erroneous loop closures
to the Intel data set. The top row reflects the posterior map as computed by
a state-of-the-art sparse Cholesky factorization method with 1, 10, and 100
bad loop closures. The bottom row shows the posterior map for the same
data set using our proposed max mixture method. While earlier methods
produce maps with increasing global map deformation, our proposed method
is essentially unaffected by the presence of the incorrect loop closures.

tifying and validating loop closures and constructing a factor
graph; the back-end then performs inference (often maximum
likelihood) on this factor graph. In most of the literature, it is
assumed that the loop closures found by the front-end have
noise that can be modeled as Gaussian.

For example, the front-end might assert that the robot is
now at the same location that it was ten minutes ago (it has
“closed a loop”), with an uncertainty of 1 meter. Suppose,
however, that the robot was somewhere else entirely— a
full 10 meters away. The back-end’s role is to compute the
maximum likelihood map, and an error of ten standard devi-
ations is so profoundly unlikely that the back-end will almost
certainly never recover the correct map: it is compelled to
distort the map so as to make the erroneous loop closure
more probable (see Fig. 1).

The conventional strategy is to build better front-end
systems. Indeed, much effort has been devoted to creating
better front-end systems [5], [6], [7], and these approaches
have succeeded in vastly reducing the rate of errors. But

1 error 10 errors 100 errors
Saturday, July 20, 13

Reducing Error Rates
• Neira: JCBB (2001)

• Bailey: CDDA (2002)

• Bosse: Loop Validation (2004)

• Us: SCGP (2008)

• Us: Correlative Scan Matching
(2009)

• Us: IPJC (2012)

In order for the above argument to hold, a second (more
subtle) condition must be satisfied. Suppose, for example, that
the area being matched is self-similar: it is then possible for
multiple overlapping matches to exist within the uncertainty
ellipse. A simple example would be an environment containing
a picket fence: many overlapping local matches are possible
due to the repeated fence posts, and each of these local
matches can be large. In other words, the local match must be
locally unambiguous: within the area of the local match, there
must not be other conflicting matches of similar size.

III. POSE-TO-POSE MATCHING

When a new set of observations arrive, we begin by iden-
tifying all the previous poses that might have overlapping
sensor data. Rather than maintain a covariance matrix over all
poses, we use a Dijkstra projection [?], [?] which computes
the minimum uncertainty path from the robot’s current position
to all earlier nodes. These projections, along with conservative
upper bounds on their uncertainty, can be rapidly computed.
Since a covariance matrix is not needed by our method,
applications are free to use highly-efficient non-linear SLAM
methods [?], [?] that do not estimate it.

For each earlier node that could plausibly have overlapping
sensor data (using a Mahalanobis distance threshold of 3 and
a nominal sensor range of 4m), we attempt to compute a local
match. Let us denote the two robot poses being matched as a
and b.

The pose-to-pose is generated via RANSAC: two points
are randomly selected from both a and b, and using Horn’s
algorithm [?], a rigid-body transformation is computed that
optimally aligns those points. For each point in a, we compute
the distance to the closest point in b, and vice versa. Let the
minimum distance for point ai be dist(ai). We also incorpo-
rated a negative information penalty P , described below. The
probabilistically motivated consensus score S is then:

S =
X

i∈a

e−βdist(ai)
2
+

X

j∈b

e−βdist(bj)
2
− P (1)

The parameter β was set to 10.0 in our experiments. We
also reject any rigid-body transformations that are more than
three Mahalanobis distances away from the Dijkstra-projection
prior. The rigid-body transformation achieving the highest
consensus score S becomes a pose-to-pose match hypothesis,
and is subject to further filtering as subsequent sections will
describe. We call them hypotheses in order to emphasize the
fact that they may be incorrect.

When there is environmental ambiguity (like a picket fence),
the pose-to-pose matching will generate many different and
incompatible solutions. This is due to the fact that each pose-
to-pose match is independently computed by a greedy local
optimization. The ambiguity of the environment is implicitly
encoded in the dissonances of the pose-to-pose matches, and
is detected in Section IV.

A. Negative Information
The data in the circles dataset is highly ambiguous: indi-

vidual features are indistinguishable and it is often possible

to find erroneous rigid-body transformation that align two or
more points reasonably well. However, it is rare to fail to
detect a feature if one is present. Consequently, we estimate
which landmarks should be visible and penalize alignments
that result in missing features.

To do this, we must first estimate the size and shape of the
overlapping views from the two poses. Of course, we would
need to know the relative positions of the two poses in order
to compute this exactly, and this is information is unknown.

The RANSAC method computes scores assuming that two
pairs of features match. In other words, if a given RANSAC
iteration is correct, the sensor range overlap must include at
least the points upon which the alignment is conditioned. Thus,
we model the overlapping sensor range as the smallest circle
that includes both points. Each unmatched observations within
these circles incurs a penalty of 1.0 (equivalent to the score
resulting from a single good match.) In our experiments, the
use of negative information significantly improved hypothesis
generation.

IV. LOCAL MATCHING

Pose-to-pose match hypotheses are grouped together to
form hypothesis sets such that each set contains topologically
similar hypotheses, as described in [?]. In short, the hypotheses
in a single set relate two small pieces of the trajectory—
i.e., a single loop closure. From this hypothesis set, we will
construct a single local match. By combining multiple pose-to-
pose matches into a single local match, we increase the spatial
extent of the match: this is necessary in order to resolve large
positional uncertainties.

Fig. 4. Pair-wise hypothesis test. A loop of rigid-body constraints can be
formed given two hypotheses and two short segments from dead-reckoning.
If the hypotheses are consistent, the composition of the four rigid-body
transformations should be close to the identity transform.

For each pair of hypotheses, we can construct a loop of
rigid-body constraints (see Fig. 3). This loop incorporates two
additional rigid-body constraints derived from dead-reckoning.
Since the constraints form a loop, the composition of their
rigid-body transforms should be the identity matrix. Each
rigid-body transformation is associated with a covariance
matrix, allowing us to compute the probability that the loop
is the identity matrix: high probabilities indicate pair-wise
consistency of the two hypotheses.

We construct a consistency matrix A by computing the pair-
wise consistency of each pair of hypotheses. Using SCGP [?],
we can compute subsets of the hypotheses that are mutually
self-consistent. Each of these subsets represents a local match.

IPJC: The Incremental Posterior Joint Compatibility Test
for Fast Feature Cloud Matching

Edwin B. Olson1 and Yangming Li2

Abstract— One of the fundamental challenges in robotics is
data-association: determining which sensor observations corre-
spond to the same physical object. A common approach is to
consider groups of observations simultaneously: a constellation
of observations can be significantly less ambiguous than the
observations considered individually. The Joint Compatibility
Branch and Bound (JCBB) test is the gold standard method
for these data association problems. But its computational
complexity and its sensitivity to non-linearities limit its practical
usefulness.

We propose the Incremental Posterior Joint Compatibility
(IPJC) test. While equivalent to JCBB on linear problems, it
is significantly more accurate on non-linear problems. When
used for feature-cloud matching (an important special case),
IPJC is also dramatically faster than JCBB. We demonstrate
the advantages of IPJC over JCBB and other commonly-used
methods on both synthetic and real-world datasets.

Index Terms— Data association, joint compatibility test,
SLAM

I. INTRODUCTION

Data association is the problem of determining which
observations correspond to the same object. It is at the
core of the Simultaneous Localization and Mapping (SLAM)
problem and visual navigation: it is only by re-observing a
landmark that a map becomes over-constrained and therefore
more robust to the errors associated with any single obser-
vation.

SLAM systems are often described in terms of the two
“halves” of the problem: the front-end performs the sensor
processing and data association, while the back-end com-
putes the maximum-likelihood map subject to the observa-
tions and data-associations output by the front-end. In recent
years, the raw computational performance of back-ends has
increased dramatically: maps with millions of landmarks and
observations can be optimized [1].

While back-end systems are now very fast, the quality
of their output is entirely dependent on the accuracy of
the front-end. In particular, an incorrect data association (in
which the front-end erroneously asserts that two physically-
distinct landmarks are in fact the same landmark) forces the
back-end to distort the map to bring those two landmarks
closer together. Even a single data-association error can lead
to divergence of the entire map.

Consequently, the quality of a front-end system has an
enormous impact on the quality of the resulting map. Too
many loop closures (i.e., false positives) lead to catastrophic

1 Department of Electrical Engineering and Computer Science, University
of Michigan, Ann Arbor, MI 48109 ebolson@umich.edu

2 Institute of Intelligence Machines, Chinese Academy of Sciences,
Hefei, Anhui, 230031 ymli@iim.ac.cn

Fig. 1. IPJC Overview. A robot observes “feature clouds” from two
different poses (top left), and IPJC matches them by searching a tree and
computing a compatibility cost. The rigid-body transformation that results
from the matching process can be used in a pose-graph SLAM formulation.
IPJC is similar to JCBB, but when applied to feature cloud matching,
produces better results in less time.

failures, while too few loop closures (false negatives) lead
to a less-constrained map of lower overall quality.

A common approach to improving the quality of data-
association systems is to consider multiple observations as a
set. A reasonable analogy is that it is difficult to recognize
a star given an image of it, but recognizing a constellation
is much easier and less error-prone. When matching groups
of features, it is critical to consider the correlations between
measurements. In general, the set of observations will not
match perfectly with the prior estimates of the landmark
locations. Due to the correlations between these observa-
tions, some misalignments are more likely than others. For
example, suppose an image of a constellation of stars is
taken. The individual positions of the stars in the image are
highly correlated: they all depend on where the camera was
pointing. If all of the stars appeared to be shifted uniformly
with respect to their a priori estimated positions, the errors
could be easily explained in terms of a camera pointing
error. On the other hand, if the stars were shifted randomly
with respect to their a priori estimated positions, one might
instead conclude that the image is of a different set of
stars. In other words, proper consideration of the correlations
between observations can have a significant effect on the data

Saturday, July 20, 13

The problem
• Each of these methods pushes error rates closer

to zero. Great!

• But mapping methods can diverge with even a
single error. Not Great!

• Outlier-rejection/loop-validation methods can
postpone failure, but can’t eliminate it!

Saturday, July 20, 13

Let’s take a fresh perspective

Saturday, July 20, 13

Let’s take a fresh perspective
• What is an error, anyway?

Saturday, July 20, 13

Let’s take a fresh perspective
• What is an error, anyway?

‣ It’s an inconsistency between
our probabilistic observation
model and the empirical
accuracy of our data
association method.

Saturday, July 20, 13

Let’s take a fresh perspective
• What is an error, anyway?

‣ It’s an inconsistency between
our probabilistic observation
model and the empirical
accuracy of our data
association method.

‣ Maybe the problem isn’t
outlier rejection, maybe the
problem is that we’re using
the wrong probabilistic
models!

Saturday, July 20, 13

Gaussian error models

Saturday, July 20, 13

Gaussian error models
• Almost all robotics work uses

Gaussian error models

‣ Lead to very simple least-
squares state estimation
algorithms.

‣ Believed to be sufficiently
representative

Saturday, July 20, 13

Gaussian Errors = Easy inference

unreasonably fast
methods now available!

Saturday, July 20, 13

Real-world errors (maybe)

p(distance),

Odometry,Slip%or%Grip,

Saturday, July 20, 13

posi%on'

p(posi%on)'

Loop'closure:'null'hypothesis'

Saturday, July 20, 13

p(range))

Sonar)mul/0path)/)surface)
reflec/ons)/)loop)closing)with)
aliasing)

range)

Saturday, July 20, 13

Saturday, July 20, 13

Two basic problems
• How can we represent these more complex

error models?

• How do we solve the resulting inference
problems?

Saturday, July 20, 13

Sums of Gaussians
• One “obvious” way to represent more types of

error functions

variables), and are limited to either “on” or “off” (as opposed
to being able to model mixture models with multiple distinct
modes).

Robustified cost functions [26] provide resilience to errors
by reducing the cost associated with outliers, and have been
widely used in the vision community [27], [28]. We show
that robustified cost functions are subsumed by our mixture
approach.

Our proposed method avoids the exponential growth in
memory requirements of particle filter and MHT approaches
by avoiding an explicit representation of the posterior den-
sity. Instead, like other methods based on sparse factoriza-
tion, our method extracts a maximum likelihood estimate.
Critically, while the memory cost of representing the poste-
rior distribution grows exponentially, the cost of storing the
underlying factor graph network (which implicitly encodes
the posterior) grows only linearly with the size of the
network. In other words, our method (which only stores
the factor graph) can recover solutions that would have
been culled by particle and MHT approaches. In addition,
our approach benefits from the same sparsity and variable-
ordering insights that have recently benefited uni-modal
approaches.

III. APPROACH

Our goal is to infer the posterior distribution of the state
variable (or map) x, which can be written in terms of
the factor potentials in the factor graph. The probability is
conditioned on sensor observations z; with an application of
Bayes’ rule and by assuming an uninformative prior p(x),
we obtain:

p(x|z) ∝
∏

i

p(zi|x) (1)

Prior to this work, it is generally assumed that the factor
potentials p(zi|x) can be written as Gaussians:

p(zi|x) =
1

(2π)n/2|Λ−1
i |1/2

e−
1
2 (fi(x)−zi)

TΛi(fi(x)−zi) (2)

Further, while fi(x) is generally non-linear, it is assumed
that it can be approximated using a first-order Taylor expan-
sion such that fi(x) ≈ Ji∆x+ fi(x0).

The posterior maximum likelihood value can be easily
solved in such cases by taking the logarithm of Eqn. 1,
differentiating with respect to x, then solving for x. This
classic least-squares approach leads to a simple linear system
of the form Ax = b. Critically, this is possible because the
logarithm operator can be “pushed” inside the product in
Eqn. 1, reducing the product of N terms into a sum of
N simple quadratic terms. No logarithms or exponentials
remain, making the resulting expression easy to solve.

We might now consider a more complicated function
pi(x|z), such as a sum-mixture of Gaussians:

p(zi|x) =
∑

i

wiN(µi,Λ
−1
i) (3)

In this case, each N(µi,Λ
−1
i) represents a different Gaus-

sian distribution. Such a sum-mixture allows great flexibility

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Original bi−modal mixture

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Max−mixture

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Sum−mixture

Fig. 2. Mixture Overview. Given two mixture components (top left),
the max- and sum- mixtures produce different distributions. In both cases,
arbitrary distributions can be approximated. A robustified cost function
(in this case a corrupted Gaussian, bottom) can be constructed from two
Gaussian components with equal means but different variances.

in specifying the distribution p(zi|x). For example, we can
encode a robustified cost function by using two components
with the same mean, but with different variances. Or, we can
encode a bi-modal distribution.

The problem with a sum-mixture is that the maximum
likelihood solution is no longer simple: the logarithm can no
longer be pushed all the way into the individual Gaussian
components: the summation in Eqn. 3 prevents it. As a result,
the introduction of a sum-mixture means that it is no longer
possible to derive a simple solution for x.

A. Max-Mixtures

Our solution to this problem is a new mixture model type,
one based on a max operator rather than a sum:

p(zi|x) = max
i

wiN(µi,Λ
−1
i) (4)

While the change is relatively minor, the implications to
optimization are profound. The logarithm can be pushed
inside a max mixture: the max operator acts as a selector,
returning a single well-behaved Gaussian component. The
optimization process will be more thoroughly described in
the following section.

A max mixture has much of the same character as a
sum mixture and retains a similar expressivity: multi-modal
distributions and robustified distributions can be similarly
represented (see Fig. 2). Note, however, that when fitting
a mixture to a desired probability distribution, different
components will result for sum- and max- mixtures. Assur-
ing that the distributions integrate to one is also handled
differently: for a sum mixture,

∑
wi = 1 is a necessary and

sufficient condition; for a max mixture, proper normalization
is generally more difficult to guarantee. Usefully, for maxi-
mum likelihood inference, it is inconsequential whether the
distribution integrates to 1. Specifically, suppose that somep(distance),

Odometry,Slip%or%Grip,

Saturday, July 20, 13

Sums of Gaussians

variables), and are limited to either “on” or “off” (as opposed
to being able to model mixture models with multiple distinct
modes).

Robustified cost functions [26] provide resilience to errors
by reducing the cost associated with outliers, and have been
widely used in the vision community [27], [28]. We show
that robustified cost functions are subsumed by our mixture
approach.

Our proposed method avoids the exponential growth in
memory requirements of particle filter and MHT approaches
by avoiding an explicit representation of the posterior den-
sity. Instead, like other methods based on sparse factoriza-
tion, our method extracts a maximum likelihood estimate.
Critically, while the memory cost of representing the poste-
rior distribution grows exponentially, the cost of storing the
underlying factor graph network (which implicitly encodes
the posterior) grows only linearly with the size of the
network. In other words, our method (which only stores
the factor graph) can recover solutions that would have
been culled by particle and MHT approaches. In addition,
our approach benefits from the same sparsity and variable-
ordering insights that have recently benefited uni-modal
approaches.

III. APPROACH

Our goal is to infer the posterior distribution of the state
variable (or map) x, which can be written in terms of
the factor potentials in the factor graph. The probability is
conditioned on sensor observations z; with an application of
Bayes’ rule and by assuming an uninformative prior p(x),
we obtain:

p(x|z) ∝
∏

i

p(zi|x) (1)

Prior to this work, it is generally assumed that the factor
potentials p(zi|x) can be written as Gaussians:

p(zi|x) =
1

(2π)n/2|Λ−1
i |1/2

e−
1
2 (fi(x)−zi)

TΛi(fi(x)−zi) (2)

Further, while fi(x) is generally non-linear, it is assumed
that it can be approximated using a first-order Taylor expan-
sion such that fi(x) ≈ Ji∆x+ fi(x0).

The posterior maximum likelihood value can be easily
solved in such cases by taking the logarithm of Eqn. 1,
differentiating with respect to x, then solving for x. This
classic least-squares approach leads to a simple linear system
of the form Ax = b. Critically, this is possible because the
logarithm operator can be “pushed” inside the product in
Eqn. 1, reducing the product of N terms into a sum of
N simple quadratic terms. No logarithms or exponentials
remain, making the resulting expression easy to solve.

We might now consider a more complicated function
pi(x|z), such as a sum-mixture of Gaussians:

p(zi|x) =
∑

i

wiN(µi,Λ
−1
i) (3)

In this case, each N(µi,Λ
−1
i) represents a different Gaus-

sian distribution. Such a sum-mixture allows great flexibility

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Original bi−modal mixture

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Max−mixture

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Sum−mixture

Fig. 2. Mixture Overview. Given two mixture components (top left),
the max- and sum- mixtures produce different distributions. In both cases,
arbitrary distributions can be approximated. A robustified cost function
(in this case a corrupted Gaussian, bottom) can be constructed from two
Gaussian components with equal means but different variances.

in specifying the distribution p(zi|x). For example, we can
encode a robustified cost function by using two components
with the same mean, but with different variances. Or, we can
encode a bi-modal distribution.

The problem with a sum-mixture is that the maximum
likelihood solution is no longer simple: the logarithm can no
longer be pushed all the way into the individual Gaussian
components: the summation in Eqn. 3 prevents it. As a result,
the introduction of a sum-mixture means that it is no longer
possible to derive a simple solution for x.

A. Max-Mixtures

Our solution to this problem is a new mixture model type,
one based on a max operator rather than a sum:

p(zi|x) = max
i

wiN(µi,Λ
−1
i) (4)

While the change is relatively minor, the implications to
optimization are profound. The logarithm can be pushed
inside a max mixture: the max operator acts as a selector,
returning a single well-behaved Gaussian component. The
optimization process will be more thoroughly described in
the following section.

A max mixture has much of the same character as a
sum mixture and retains a similar expressivity: multi-modal
distributions and robustified distributions can be similarly
represented (see Fig. 2). Note, however, that when fitting
a mixture to a desired probability distribution, different
components will result for sum- and max- mixtures. Assur-
ing that the distributions integrate to one is also handled
differently: for a sum mixture,

∑
wi = 1 is a necessary and

sufficient condition; for a max mixture, proper normalization
is generally more difficult to guarantee. Usefully, for maxi-
mum likelihood inference, it is inconsequential whether the
distribution integrates to 1. Specifically, suppose that some

Saturday, July 20, 13

Sums of Gaussians

variables), and are limited to either “on” or “off” (as opposed
to being able to model mixture models with multiple distinct
modes).

Robustified cost functions [26] provide resilience to errors
by reducing the cost associated with outliers, and have been
widely used in the vision community [27], [28]. We show
that robustified cost functions are subsumed by our mixture
approach.

Our proposed method avoids the exponential growth in
memory requirements of particle filter and MHT approaches
by avoiding an explicit representation of the posterior den-
sity. Instead, like other methods based on sparse factoriza-
tion, our method extracts a maximum likelihood estimate.
Critically, while the memory cost of representing the poste-
rior distribution grows exponentially, the cost of storing the
underlying factor graph network (which implicitly encodes
the posterior) grows only linearly with the size of the
network. In other words, our method (which only stores
the factor graph) can recover solutions that would have
been culled by particle and MHT approaches. In addition,
our approach benefits from the same sparsity and variable-
ordering insights that have recently benefited uni-modal
approaches.

III. APPROACH

Our goal is to infer the posterior distribution of the state
variable (or map) x, which can be written in terms of
the factor potentials in the factor graph. The probability is
conditioned on sensor observations z; with an application of
Bayes’ rule and by assuming an uninformative prior p(x),
we obtain:

p(x|z) ∝
∏

i

p(zi|x) (1)

Prior to this work, it is generally assumed that the factor
potentials p(zi|x) can be written as Gaussians:

p(zi|x) =
1

(2π)n/2|Λ−1
i |1/2

e−
1
2 (fi(x)−zi)

TΛi(fi(x)−zi) (2)

Further, while fi(x) is generally non-linear, it is assumed
that it can be approximated using a first-order Taylor expan-
sion such that fi(x) ≈ Ji∆x+ fi(x0).

The posterior maximum likelihood value can be easily
solved in such cases by taking the logarithm of Eqn. 1,
differentiating with respect to x, then solving for x. This
classic least-squares approach leads to a simple linear system
of the form Ax = b. Critically, this is possible because the
logarithm operator can be “pushed” inside the product in
Eqn. 1, reducing the product of N terms into a sum of
N simple quadratic terms. No logarithms or exponentials
remain, making the resulting expression easy to solve.

We might now consider a more complicated function
pi(x|z), such as a sum-mixture of Gaussians:

p(zi|x) =
∑

i

wiN(µi,Λ
−1
i) (3)

In this case, each N(µi,Λ
−1
i) represents a different Gaus-

sian distribution. Such a sum-mixture allows great flexibility

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Original bi−modal mixture

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Max−mixture

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Sum−mixture

Fig. 2. Mixture Overview. Given two mixture components (top left),
the max- and sum- mixtures produce different distributions. In both cases,
arbitrary distributions can be approximated. A robustified cost function
(in this case a corrupted Gaussian, bottom) can be constructed from two
Gaussian components with equal means but different variances.

in specifying the distribution p(zi|x). For example, we can
encode a robustified cost function by using two components
with the same mean, but with different variances. Or, we can
encode a bi-modal distribution.

The problem with a sum-mixture is that the maximum
likelihood solution is no longer simple: the logarithm can no
longer be pushed all the way into the individual Gaussian
components: the summation in Eqn. 3 prevents it. As a result,
the introduction of a sum-mixture means that it is no longer
possible to derive a simple solution for x.

A. Max-Mixtures

Our solution to this problem is a new mixture model type,
one based on a max operator rather than a sum:

p(zi|x) = max
i

wiN(µi,Λ
−1
i) (4)

While the change is relatively minor, the implications to
optimization are profound. The logarithm can be pushed
inside a max mixture: the max operator acts as a selector,
returning a single well-behaved Gaussian component. The
optimization process will be more thoroughly described in
the following section.

A max mixture has much of the same character as a
sum mixture and retains a similar expressivity: multi-modal
distributions and robustified distributions can be similarly
represented (see Fig. 2). Note, however, that when fitting
a mixture to a desired probability distribution, different
components will result for sum- and max- mixtures. Assur-
ing that the distributions integrate to one is also handled
differently: for a sum mixture,

∑
wi = 1 is a necessary and

sufficient condition; for a max mixture, proper normalization
is generally more difficult to guarantee. Usefully, for maxi-
mum likelihood inference, it is inconsequential whether the
distribution integrates to 1. Specifically, suppose that some

Saturday, July 20, 13

Challenge
• Can we find a way of representing more complex

error functions?

• AND make sure that we can actually solve the
resulting problem?

Saturday, July 20, 13

Our approach

variables), and are limited to either “on” or “off” (as opposed
to being able to model mixture models with multiple distinct
modes).

Robustified cost functions [26] provide resilience to errors
by reducing the cost associated with outliers, and have been
widely used in the vision community [27], [28]. We show
that robustified cost functions are subsumed by our mixture
approach.

Our proposed method avoids the exponential growth in
memory requirements of particle filter and MHT approaches
by avoiding an explicit representation of the posterior den-
sity. Instead, like other methods based on sparse factoriza-
tion, our method extracts a maximum likelihood estimate.
Critically, while the memory cost of representing the poste-
rior distribution grows exponentially, the cost of storing the
underlying factor graph network (which implicitly encodes
the posterior) grows only linearly with the size of the
network. In other words, our method (which only stores
the factor graph) can recover solutions that would have
been culled by particle and MHT approaches. In addition,
our approach benefits from the same sparsity and variable-
ordering insights that have recently benefited uni-modal
approaches.

III. APPROACH

Our goal is to infer the posterior distribution of the state
variable (or map) x, which can be written in terms of
the factor potentials in the factor graph. The probability is
conditioned on sensor observations z; with an application of
Bayes’ rule and by assuming an uninformative prior p(x),
we obtain:

p(x|z) ∝
∏

i

p(zi|x) (1)

Prior to this work, it is generally assumed that the factor
potentials p(zi|x) can be written as Gaussians:

p(zi|x) =
1

(2π)n/2|Λ−1
i |1/2

e−
1
2 (fi(x)−zi)

TΛi(fi(x)−zi) (2)

Further, while fi(x) is generally non-linear, it is assumed
that it can be approximated using a first-order Taylor expan-
sion such that fi(x) ≈ Ji∆x+ fi(x0).

The posterior maximum likelihood value can be easily
solved in such cases by taking the logarithm of Eqn. 1,
differentiating with respect to x, then solving for x. This
classic least-squares approach leads to a simple linear system
of the form Ax = b. Critically, this is possible because the
logarithm operator can be “pushed” inside the product in
Eqn. 1, reducing the product of N terms into a sum of
N simple quadratic terms. No logarithms or exponentials
remain, making the resulting expression easy to solve.

We might now consider a more complicated function
pi(x|z), such as a sum-mixture of Gaussians:

p(zi|x) =
∑

i

wiN(µi,Λ
−1
i) (3)

In this case, each N(µi,Λ
−1
i) represents a different Gaus-

sian distribution. Such a sum-mixture allows great flexibility

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Original bi−modal mixture

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Max−mixture

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Sum−mixture

Fig. 2. Mixture Overview. Given two mixture components (top left),
the max- and sum- mixtures produce different distributions. In both cases,
arbitrary distributions can be approximated. A robustified cost function
(in this case a corrupted Gaussian, bottom) can be constructed from two
Gaussian components with equal means but different variances.

in specifying the distribution p(zi|x). For example, we can
encode a robustified cost function by using two components
with the same mean, but with different variances. Or, we can
encode a bi-modal distribution.

The problem with a sum-mixture is that the maximum
likelihood solution is no longer simple: the logarithm can no
longer be pushed all the way into the individual Gaussian
components: the summation in Eqn. 3 prevents it. As a result,
the introduction of a sum-mixture means that it is no longer
possible to derive a simple solution for x.

A. Max-Mixtures

Our solution to this problem is a new mixture model type,
one based on a max operator rather than a sum:

p(zi|x) = max
i

wiN(µi,Λ
−1
i) (4)

While the change is relatively minor, the implications to
optimization are profound. The logarithm can be pushed
inside a max mixture: the max operator acts as a selector,
returning a single well-behaved Gaussian component. The
optimization process will be more thoroughly described in
the following section.

A max mixture has much of the same character as a
sum mixture and retains a similar expressivity: multi-modal
distributions and robustified distributions can be similarly
represented (see Fig. 2). Note, however, that when fitting
a mixture to a desired probability distribution, different
components will result for sum- and max- mixtures. Assur-
ing that the distributions integrate to one is also handled
differently: for a sum mixture,

∑
wi = 1 is a necessary and

sufficient condition; for a max mixture, proper normalization
is generally more difficult to guarantee. Usefully, for maxi-
mum likelihood inference, it is inconsequential whether the
distribution integrates to 1. Specifically, suppose that some

variables), and are limited to either “on” or “off” (as opposed
to being able to model mixture models with multiple distinct
modes).

Robustified cost functions [26] provide resilience to errors
by reducing the cost associated with outliers, and have been
widely used in the vision community [27], [28]. We show
that robustified cost functions are subsumed by our mixture
approach.

Our proposed method avoids the exponential growth in
memory requirements of particle filter and MHT approaches
by avoiding an explicit representation of the posterior den-
sity. Instead, like other methods based on sparse factoriza-
tion, our method extracts a maximum likelihood estimate.
Critically, while the memory cost of representing the poste-
rior distribution grows exponentially, the cost of storing the
underlying factor graph network (which implicitly encodes
the posterior) grows only linearly with the size of the
network. In other words, our method (which only stores
the factor graph) can recover solutions that would have
been culled by particle and MHT approaches. In addition,
our approach benefits from the same sparsity and variable-
ordering insights that have recently benefited uni-modal
approaches.

III. APPROACH

Our goal is to infer the posterior distribution of the state
variable (or map) x, which can be written in terms of
the factor potentials in the factor graph. The probability is
conditioned on sensor observations z; with an application of
Bayes’ rule and by assuming an uninformative prior p(x),
we obtain:

p(x|z) ∝
∏

i

p(zi|x) (1)

Prior to this work, it is generally assumed that the factor
potentials p(zi|x) can be written as Gaussians:

p(zi|x) =
1

(2π)n/2|Λ−1
i |1/2

e−
1
2 (fi(x)−zi)

TΛi(fi(x)−zi) (2)

Further, while fi(x) is generally non-linear, it is assumed
that it can be approximated using a first-order Taylor expan-
sion such that fi(x) ≈ Ji∆x+ fi(x0).

The posterior maximum likelihood value can be easily
solved in such cases by taking the logarithm of Eqn. 1,
differentiating with respect to x, then solving for x. This
classic least-squares approach leads to a simple linear system
of the form Ax = b. Critically, this is possible because the
logarithm operator can be “pushed” inside the product in
Eqn. 1, reducing the product of N terms into a sum of
N simple quadratic terms. No logarithms or exponentials
remain, making the resulting expression easy to solve.

We might now consider a more complicated function
pi(x|z), such as a sum-mixture of Gaussians:

p(zi|x) =
∑

i

wiN(µi,Λ
−1
i) (3)

In this case, each N(µi,Λ
−1
i) represents a different Gaus-

sian distribution. Such a sum-mixture allows great flexibility

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Original bi−modal mixture

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Max−mixture

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Sum−mixture

Fig. 2. Mixture Overview. Given two mixture components (top left),
the max- and sum- mixtures produce different distributions. In both cases,
arbitrary distributions can be approximated. A robustified cost function
(in this case a corrupted Gaussian, bottom) can be constructed from two
Gaussian components with equal means but different variances.

in specifying the distribution p(zi|x). For example, we can
encode a robustified cost function by using two components
with the same mean, but with different variances. Or, we can
encode a bi-modal distribution.

The problem with a sum-mixture is that the maximum
likelihood solution is no longer simple: the logarithm can no
longer be pushed all the way into the individual Gaussian
components: the summation in Eqn. 3 prevents it. As a result,
the introduction of a sum-mixture means that it is no longer
possible to derive a simple solution for x.

A. Max-Mixtures

Our solution to this problem is a new mixture model type,
one based on a max operator rather than a sum:

p(zi|x) = max
i

wiN(µi,Λ
−1
i) (4)

While the change is relatively minor, the implications to
optimization are profound. The logarithm can be pushed
inside a max mixture: the max operator acts as a selector,
returning a single well-behaved Gaussian component. The
optimization process will be more thoroughly described in
the following section.

A max mixture has much of the same character as a
sum mixture and retains a similar expressivity: multi-modal
distributions and robustified distributions can be similarly
represented (see Fig. 2). Note, however, that when fitting
a mixture to a desired probability distribution, different
components will result for sum- and max- mixtures. Assur-
ing that the distributions integrate to one is also handled
differently: for a sum mixture,

∑
wi = 1 is a necessary and

sufficient condition; for a max mixture, proper normalization
is generally more difficult to guarantee. Usefully, for maxi-
mum likelihood inference, it is inconsequential whether the
distribution integrates to 1. Specifically, suppose that some

17
Saturday, July 20, 13

Our approach
• Use mixture models for more realistic probability

distributions

‣ Change SUM to MAX

variables), and are limited to either “on” or “off” (as opposed
to being able to model mixture models with multiple distinct
modes).

Robustified cost functions [26] provide resilience to errors
by reducing the cost associated with outliers, and have been
widely used in the vision community [27], [28]. We show
that robustified cost functions are subsumed by our mixture
approach.

Our proposed method avoids the exponential growth in
memory requirements of particle filter and MHT approaches
by avoiding an explicit representation of the posterior den-
sity. Instead, like other methods based on sparse factoriza-
tion, our method extracts a maximum likelihood estimate.
Critically, while the memory cost of representing the poste-
rior distribution grows exponentially, the cost of storing the
underlying factor graph network (which implicitly encodes
the posterior) grows only linearly with the size of the
network. In other words, our method (which only stores
the factor graph) can recover solutions that would have
been culled by particle and MHT approaches. In addition,
our approach benefits from the same sparsity and variable-
ordering insights that have recently benefited uni-modal
approaches.

III. APPROACH

Our goal is to infer the posterior distribution of the state
variable (or map) x, which can be written in terms of
the factor potentials in the factor graph. The probability is
conditioned on sensor observations z; with an application of
Bayes’ rule and by assuming an uninformative prior p(x),
we obtain:

p(x|z) ∝
∏

i

p(zi|x) (1)

Prior to this work, it is generally assumed that the factor
potentials p(zi|x) can be written as Gaussians:

p(zi|x) =
1

(2π)n/2|Λ−1
i |1/2

e−
1
2 (fi(x)−zi)

TΛi(fi(x)−zi) (2)

Further, while fi(x) is generally non-linear, it is assumed
that it can be approximated using a first-order Taylor expan-
sion such that fi(x) ≈ Ji∆x+ fi(x0).

The posterior maximum likelihood value can be easily
solved in such cases by taking the logarithm of Eqn. 1,
differentiating with respect to x, then solving for x. This
classic least-squares approach leads to a simple linear system
of the form Ax = b. Critically, this is possible because the
logarithm operator can be “pushed” inside the product in
Eqn. 1, reducing the product of N terms into a sum of
N simple quadratic terms. No logarithms or exponentials
remain, making the resulting expression easy to solve.

We might now consider a more complicated function
pi(x|z), such as a sum-mixture of Gaussians:

p(zi|x) =
∑

i

wiN(µi,Λ
−1
i) (3)

In this case, each N(µi,Λ
−1
i) represents a different Gaus-

sian distribution. Such a sum-mixture allows great flexibility

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Original bi−modal mixture

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Max−mixture

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Sum−mixture

Fig. 2. Mixture Overview. Given two mixture components (top left),
the max- and sum- mixtures produce different distributions. In both cases,
arbitrary distributions can be approximated. A robustified cost function
(in this case a corrupted Gaussian, bottom) can be constructed from two
Gaussian components with equal means but different variances.

in specifying the distribution p(zi|x). For example, we can
encode a robustified cost function by using two components
with the same mean, but with different variances. Or, we can
encode a bi-modal distribution.

The problem with a sum-mixture is that the maximum
likelihood solution is no longer simple: the logarithm can no
longer be pushed all the way into the individual Gaussian
components: the summation in Eqn. 3 prevents it. As a result,
the introduction of a sum-mixture means that it is no longer
possible to derive a simple solution for x.

A. Max-Mixtures

Our solution to this problem is a new mixture model type,
one based on a max operator rather than a sum:

p(zi|x) = max
i

wiN(µi,Λ
−1
i) (4)

While the change is relatively minor, the implications to
optimization are profound. The logarithm can be pushed
inside a max mixture: the max operator acts as a selector,
returning a single well-behaved Gaussian component. The
optimization process will be more thoroughly described in
the following section.

A max mixture has much of the same character as a
sum mixture and retains a similar expressivity: multi-modal
distributions and robustified distributions can be similarly
represented (see Fig. 2). Note, however, that when fitting
a mixture to a desired probability distribution, different
components will result for sum- and max- mixtures. Assur-
ing that the distributions integrate to one is also handled
differently: for a sum mixture,

∑
wi = 1 is a necessary and

sufficient condition; for a max mixture, proper normalization
is generally more difficult to guarantee. Usefully, for maxi-
mum likelihood inference, it is inconsequential whether the
distribution integrates to 1. Specifically, suppose that some

variables), and are limited to either “on” or “off” (as opposed
to being able to model mixture models with multiple distinct
modes).

Robustified cost functions [26] provide resilience to errors
by reducing the cost associated with outliers, and have been
widely used in the vision community [27], [28]. We show
that robustified cost functions are subsumed by our mixture
approach.

Our proposed method avoids the exponential growth in
memory requirements of particle filter and MHT approaches
by avoiding an explicit representation of the posterior den-
sity. Instead, like other methods based on sparse factoriza-
tion, our method extracts a maximum likelihood estimate.
Critically, while the memory cost of representing the poste-
rior distribution grows exponentially, the cost of storing the
underlying factor graph network (which implicitly encodes
the posterior) grows only linearly with the size of the
network. In other words, our method (which only stores
the factor graph) can recover solutions that would have
been culled by particle and MHT approaches. In addition,
our approach benefits from the same sparsity and variable-
ordering insights that have recently benefited uni-modal
approaches.

III. APPROACH

Our goal is to infer the posterior distribution of the state
variable (or map) x, which can be written in terms of
the factor potentials in the factor graph. The probability is
conditioned on sensor observations z; with an application of
Bayes’ rule and by assuming an uninformative prior p(x),
we obtain:

p(x|z) ∝
∏

i

p(zi|x) (1)

Prior to this work, it is generally assumed that the factor
potentials p(zi|x) can be written as Gaussians:

p(zi|x) =
1

(2π)n/2|Λ−1
i |1/2

e−
1
2 (fi(x)−zi)

TΛi(fi(x)−zi) (2)

Further, while fi(x) is generally non-linear, it is assumed
that it can be approximated using a first-order Taylor expan-
sion such that fi(x) ≈ Ji∆x+ fi(x0).

The posterior maximum likelihood value can be easily
solved in such cases by taking the logarithm of Eqn. 1,
differentiating with respect to x, then solving for x. This
classic least-squares approach leads to a simple linear system
of the form Ax = b. Critically, this is possible because the
logarithm operator can be “pushed” inside the product in
Eqn. 1, reducing the product of N terms into a sum of
N simple quadratic terms. No logarithms or exponentials
remain, making the resulting expression easy to solve.

We might now consider a more complicated function
pi(x|z), such as a sum-mixture of Gaussians:

p(zi|x) =
∑

i

wiN(µi,Λ
−1
i) (3)

In this case, each N(µi,Λ
−1
i) represents a different Gaus-

sian distribution. Such a sum-mixture allows great flexibility

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Original bi−modal mixture

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Max−mixture

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Sum−mixture

Fig. 2. Mixture Overview. Given two mixture components (top left),
the max- and sum- mixtures produce different distributions. In both cases,
arbitrary distributions can be approximated. A robustified cost function
(in this case a corrupted Gaussian, bottom) can be constructed from two
Gaussian components with equal means but different variances.

in specifying the distribution p(zi|x). For example, we can
encode a robustified cost function by using two components
with the same mean, but with different variances. Or, we can
encode a bi-modal distribution.

The problem with a sum-mixture is that the maximum
likelihood solution is no longer simple: the logarithm can no
longer be pushed all the way into the individual Gaussian
components: the summation in Eqn. 3 prevents it. As a result,
the introduction of a sum-mixture means that it is no longer
possible to derive a simple solution for x.

A. Max-Mixtures

Our solution to this problem is a new mixture model type,
one based on a max operator rather than a sum:

p(zi|x) = max
i

wiN(µi,Λ
−1
i) (4)

While the change is relatively minor, the implications to
optimization are profound. The logarithm can be pushed
inside a max mixture: the max operator acts as a selector,
returning a single well-behaved Gaussian component. The
optimization process will be more thoroughly described in
the following section.

A max mixture has much of the same character as a
sum mixture and retains a similar expressivity: multi-modal
distributions and robustified distributions can be similarly
represented (see Fig. 2). Note, however, that when fitting
a mixture to a desired probability distribution, different
components will result for sum- and max- mixtures. Assur-
ing that the distributions integrate to one is also handled
differently: for a sum mixture,

∑
wi = 1 is a necessary and

sufficient condition; for a max mixture, proper normalization
is generally more difficult to guarantee. Usefully, for maxi-
mum likelihood inference, it is inconsequential whether the
distribution integrates to 1. Specifically, suppose that some

17
Saturday, July 20, 13

Our approach
• Use mixture models for more realistic probability

distributions

‣ Change SUM to MAX

‣ Can “push” the log past the MAX...

variables), and are limited to either “on” or “off” (as opposed
to being able to model mixture models with multiple distinct
modes).

Robustified cost functions [26] provide resilience to errors
by reducing the cost associated with outliers, and have been
widely used in the vision community [27], [28]. We show
that robustified cost functions are subsumed by our mixture
approach.

Our proposed method avoids the exponential growth in
memory requirements of particle filter and MHT approaches
by avoiding an explicit representation of the posterior den-
sity. Instead, like other methods based on sparse factoriza-
tion, our method extracts a maximum likelihood estimate.
Critically, while the memory cost of representing the poste-
rior distribution grows exponentially, the cost of storing the
underlying factor graph network (which implicitly encodes
the posterior) grows only linearly with the size of the
network. In other words, our method (which only stores
the factor graph) can recover solutions that would have
been culled by particle and MHT approaches. In addition,
our approach benefits from the same sparsity and variable-
ordering insights that have recently benefited uni-modal
approaches.

III. APPROACH

Our goal is to infer the posterior distribution of the state
variable (or map) x, which can be written in terms of
the factor potentials in the factor graph. The probability is
conditioned on sensor observations z; with an application of
Bayes’ rule and by assuming an uninformative prior p(x),
we obtain:

p(x|z) ∝
∏

i

p(zi|x) (1)

Prior to this work, it is generally assumed that the factor
potentials p(zi|x) can be written as Gaussians:

p(zi|x) =
1

(2π)n/2|Λ−1
i |1/2

e−
1
2 (fi(x)−zi)

TΛi(fi(x)−zi) (2)

Further, while fi(x) is generally non-linear, it is assumed
that it can be approximated using a first-order Taylor expan-
sion such that fi(x) ≈ Ji∆x+ fi(x0).

The posterior maximum likelihood value can be easily
solved in such cases by taking the logarithm of Eqn. 1,
differentiating with respect to x, then solving for x. This
classic least-squares approach leads to a simple linear system
of the form Ax = b. Critically, this is possible because the
logarithm operator can be “pushed” inside the product in
Eqn. 1, reducing the product of N terms into a sum of
N simple quadratic terms. No logarithms or exponentials
remain, making the resulting expression easy to solve.

We might now consider a more complicated function
pi(x|z), such as a sum-mixture of Gaussians:

p(zi|x) =
∑

i

wiN(µi,Λ
−1
i) (3)

In this case, each N(µi,Λ
−1
i) represents a different Gaus-

sian distribution. Such a sum-mixture allows great flexibility

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Original bi−modal mixture

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Max−mixture

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Sum−mixture

Fig. 2. Mixture Overview. Given two mixture components (top left),
the max- and sum- mixtures produce different distributions. In both cases,
arbitrary distributions can be approximated. A robustified cost function
(in this case a corrupted Gaussian, bottom) can be constructed from two
Gaussian components with equal means but different variances.

in specifying the distribution p(zi|x). For example, we can
encode a robustified cost function by using two components
with the same mean, but with different variances. Or, we can
encode a bi-modal distribution.

The problem with a sum-mixture is that the maximum
likelihood solution is no longer simple: the logarithm can no
longer be pushed all the way into the individual Gaussian
components: the summation in Eqn. 3 prevents it. As a result,
the introduction of a sum-mixture means that it is no longer
possible to derive a simple solution for x.

A. Max-Mixtures

Our solution to this problem is a new mixture model type,
one based on a max operator rather than a sum:

p(zi|x) = max
i

wiN(µi,Λ
−1
i) (4)

While the change is relatively minor, the implications to
optimization are profound. The logarithm can be pushed
inside a max mixture: the max operator acts as a selector,
returning a single well-behaved Gaussian component. The
optimization process will be more thoroughly described in
the following section.

A max mixture has much of the same character as a
sum mixture and retains a similar expressivity: multi-modal
distributions and robustified distributions can be similarly
represented (see Fig. 2). Note, however, that when fitting
a mixture to a desired probability distribution, different
components will result for sum- and max- mixtures. Assur-
ing that the distributions integrate to one is also handled
differently: for a sum mixture,

∑
wi = 1 is a necessary and

sufficient condition; for a max mixture, proper normalization
is generally more difficult to guarantee. Usefully, for maxi-
mum likelihood inference, it is inconsequential whether the
distribution integrates to 1. Specifically, suppose that some

variables), and are limited to either “on” or “off” (as opposed
to being able to model mixture models with multiple distinct
modes).

Robustified cost functions [26] provide resilience to errors
by reducing the cost associated with outliers, and have been
widely used in the vision community [27], [28]. We show
that robustified cost functions are subsumed by our mixture
approach.

Our proposed method avoids the exponential growth in
memory requirements of particle filter and MHT approaches
by avoiding an explicit representation of the posterior den-
sity. Instead, like other methods based on sparse factoriza-
tion, our method extracts a maximum likelihood estimate.
Critically, while the memory cost of representing the poste-
rior distribution grows exponentially, the cost of storing the
underlying factor graph network (which implicitly encodes
the posterior) grows only linearly with the size of the
network. In other words, our method (which only stores
the factor graph) can recover solutions that would have
been culled by particle and MHT approaches. In addition,
our approach benefits from the same sparsity and variable-
ordering insights that have recently benefited uni-modal
approaches.

III. APPROACH

Our goal is to infer the posterior distribution of the state
variable (or map) x, which can be written in terms of
the factor potentials in the factor graph. The probability is
conditioned on sensor observations z; with an application of
Bayes’ rule and by assuming an uninformative prior p(x),
we obtain:

p(x|z) ∝
∏

i

p(zi|x) (1)

Prior to this work, it is generally assumed that the factor
potentials p(zi|x) can be written as Gaussians:

p(zi|x) =
1

(2π)n/2|Λ−1
i |1/2

e−
1
2 (fi(x)−zi)

TΛi(fi(x)−zi) (2)

Further, while fi(x) is generally non-linear, it is assumed
that it can be approximated using a first-order Taylor expan-
sion such that fi(x) ≈ Ji∆x+ fi(x0).

The posterior maximum likelihood value can be easily
solved in such cases by taking the logarithm of Eqn. 1,
differentiating with respect to x, then solving for x. This
classic least-squares approach leads to a simple linear system
of the form Ax = b. Critically, this is possible because the
logarithm operator can be “pushed” inside the product in
Eqn. 1, reducing the product of N terms into a sum of
N simple quadratic terms. No logarithms or exponentials
remain, making the resulting expression easy to solve.

We might now consider a more complicated function
pi(x|z), such as a sum-mixture of Gaussians:

p(zi|x) =
∑

i

wiN(µi,Λ
−1
i) (3)

In this case, each N(µi,Λ
−1
i) represents a different Gaus-

sian distribution. Such a sum-mixture allows great flexibility

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Original bi−modal mixture

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Max−mixture

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Sum−mixture

Fig. 2. Mixture Overview. Given two mixture components (top left),
the max- and sum- mixtures produce different distributions. In both cases,
arbitrary distributions can be approximated. A robustified cost function
(in this case a corrupted Gaussian, bottom) can be constructed from two
Gaussian components with equal means but different variances.

in specifying the distribution p(zi|x). For example, we can
encode a robustified cost function by using two components
with the same mean, but with different variances. Or, we can
encode a bi-modal distribution.

The problem with a sum-mixture is that the maximum
likelihood solution is no longer simple: the logarithm can no
longer be pushed all the way into the individual Gaussian
components: the summation in Eqn. 3 prevents it. As a result,
the introduction of a sum-mixture means that it is no longer
possible to derive a simple solution for x.

A. Max-Mixtures

Our solution to this problem is a new mixture model type,
one based on a max operator rather than a sum:

p(zi|x) = max
i

wiN(µi,Λ
−1
i) (4)

While the change is relatively minor, the implications to
optimization are profound. The logarithm can be pushed
inside a max mixture: the max operator acts as a selector,
returning a single well-behaved Gaussian component. The
optimization process will be more thoroughly described in
the following section.

A max mixture has much of the same character as a
sum mixture and retains a similar expressivity: multi-modal
distributions and robustified distributions can be similarly
represented (see Fig. 2). Note, however, that when fitting
a mixture to a desired probability distribution, different
components will result for sum- and max- mixtures. Assur-
ing that the distributions integrate to one is also handled
differently: for a sum mixture,

∑
wi = 1 is a necessary and

sufficient condition; for a max mixture, proper normalization
is generally more difficult to guarantee. Usefully, for maxi-
mum likelihood inference, it is inconsequential whether the
distribution integrates to 1. Specifically, suppose that some

variables), and are limited to either “on” or “off” (as opposed
to being able to model mixture models with multiple distinct
modes).

Robustified cost functions [26] provide resilience to errors
by reducing the cost associated with outliers, and have been
widely used in the vision community [27], [28]. We show
that robustified cost functions are subsumed by our mixture
approach.

Our proposed method avoids the exponential growth in
memory requirements of particle filter and MHT approaches
by avoiding an explicit representation of the posterior den-
sity. Instead, like other methods based on sparse factoriza-
tion, our method extracts a maximum likelihood estimate.
Critically, while the memory cost of representing the poste-
rior distribution grows exponentially, the cost of storing the
underlying factor graph network (which implicitly encodes
the posterior) grows only linearly with the size of the
network. In other words, our method (which only stores
the factor graph) can recover solutions that would have
been culled by particle and MHT approaches. In addition,
our approach benefits from the same sparsity and variable-
ordering insights that have recently benefited uni-modal
approaches.

III. APPROACH

Our goal is to infer the posterior distribution of the state
variable (or map) x, which can be written in terms of
the factor potentials in the factor graph. The probability is
conditioned on sensor observations z; with an application of
Bayes’ rule and by assuming an uninformative prior p(x),
we obtain:

p(x|z) ∝
∏

i

p(zi|x) (1)

Prior to this work, it is generally assumed that the factor
potentials p(zi|x) can be written as Gaussians:

p(zi|x) =
1

(2π)n/2|Λ−1
i |1/2

e−
1
2 (fi(x)−zi)

TΛi(fi(x)−zi) (2)

Further, while fi(x) is generally non-linear, it is assumed
that it can be approximated using a first-order Taylor expan-
sion such that fi(x) ≈ Ji∆x+ fi(x0).

The posterior maximum likelihood value can be easily
solved in such cases by taking the logarithm of Eqn. 1,
differentiating with respect to x, then solving for x. This
classic least-squares approach leads to a simple linear system
of the form Ax = b. Critically, this is possible because the
logarithm operator can be “pushed” inside the product in
Eqn. 1, reducing the product of N terms into a sum of
N simple quadratic terms. No logarithms or exponentials
remain, making the resulting expression easy to solve.

We might now consider a more complicated function
pi(x|z), such as a sum-mixture of Gaussians:

p(zi|x) =
∑

i

wiN(µi,Λ
−1
i) (3)

In this case, each N(µi,Λ
−1
i) represents a different Gaus-

sian distribution. Such a sum-mixture allows great flexibility

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Original bi−modal mixture

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Max−mixture

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Sum−mixture

Fig. 2. Mixture Overview. Given two mixture components (top left),
the max- and sum- mixtures produce different distributions. In both cases,
arbitrary distributions can be approximated. A robustified cost function
(in this case a corrupted Gaussian, bottom) can be constructed from two
Gaussian components with equal means but different variances.

in specifying the distribution p(zi|x). For example, we can
encode a robustified cost function by using two components
with the same mean, but with different variances. Or, we can
encode a bi-modal distribution.

The problem with a sum-mixture is that the maximum
likelihood solution is no longer simple: the logarithm can no
longer be pushed all the way into the individual Gaussian
components: the summation in Eqn. 3 prevents it. As a result,
the introduction of a sum-mixture means that it is no longer
possible to derive a simple solution for x.

A. Max-Mixtures

Our solution to this problem is a new mixture model type,
one based on a max operator rather than a sum:

p(zi|x) = max
i

wiN(µi,Λ
−1
i) (4)

While the change is relatively minor, the implications to
optimization are profound. The logarithm can be pushed
inside a max mixture: the max operator acts as a selector,
returning a single well-behaved Gaussian component. The
optimization process will be more thoroughly described in
the following section.

A max mixture has much of the same character as a
sum mixture and retains a similar expressivity: multi-modal
distributions and robustified distributions can be similarly
represented (see Fig. 2). Note, however, that when fitting
a mixture to a desired probability distribution, different
components will result for sum- and max- mixtures. Assur-
ing that the distributions integrate to one is also handled
differently: for a sum mixture,

∑
wi = 1 is a necessary and

sufficient condition; for a max mixture, proper normalization
is generally more difficult to guarantee. Usefully, for maxi-
mum likelihood inference, it is inconsequential whether the
distribution integrates to 1. Specifically, suppose that some

17
Saturday, July 20, 13

Our approach
• Use mixture models for more realistic probability

distributions

‣ Change SUM to MAX

‣ Can “push” the log past the MAX...

• Results in Ax=b, just like with simple Gaussian
error models

variables), and are limited to either “on” or “off” (as opposed
to being able to model mixture models with multiple distinct
modes).

Robustified cost functions [26] provide resilience to errors
by reducing the cost associated with outliers, and have been
widely used in the vision community [27], [28]. We show
that robustified cost functions are subsumed by our mixture
approach.

Our proposed method avoids the exponential growth in
memory requirements of particle filter and MHT approaches
by avoiding an explicit representation of the posterior den-
sity. Instead, like other methods based on sparse factoriza-
tion, our method extracts a maximum likelihood estimate.
Critically, while the memory cost of representing the poste-
rior distribution grows exponentially, the cost of storing the
underlying factor graph network (which implicitly encodes
the posterior) grows only linearly with the size of the
network. In other words, our method (which only stores
the factor graph) can recover solutions that would have
been culled by particle and MHT approaches. In addition,
our approach benefits from the same sparsity and variable-
ordering insights that have recently benefited uni-modal
approaches.

III. APPROACH

Our goal is to infer the posterior distribution of the state
variable (or map) x, which can be written in terms of
the factor potentials in the factor graph. The probability is
conditioned on sensor observations z; with an application of
Bayes’ rule and by assuming an uninformative prior p(x),
we obtain:

p(x|z) ∝
∏

i

p(zi|x) (1)

Prior to this work, it is generally assumed that the factor
potentials p(zi|x) can be written as Gaussians:

p(zi|x) =
1

(2π)n/2|Λ−1
i |1/2

e−
1
2 (fi(x)−zi)

TΛi(fi(x)−zi) (2)

Further, while fi(x) is generally non-linear, it is assumed
that it can be approximated using a first-order Taylor expan-
sion such that fi(x) ≈ Ji∆x+ fi(x0).

The posterior maximum likelihood value can be easily
solved in such cases by taking the logarithm of Eqn. 1,
differentiating with respect to x, then solving for x. This
classic least-squares approach leads to a simple linear system
of the form Ax = b. Critically, this is possible because the
logarithm operator can be “pushed” inside the product in
Eqn. 1, reducing the product of N terms into a sum of
N simple quadratic terms. No logarithms or exponentials
remain, making the resulting expression easy to solve.

We might now consider a more complicated function
pi(x|z), such as a sum-mixture of Gaussians:

p(zi|x) =
∑

i

wiN(µi,Λ
−1
i) (3)

In this case, each N(µi,Λ
−1
i) represents a different Gaus-

sian distribution. Such a sum-mixture allows great flexibility

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Original bi−modal mixture

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Max−mixture

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Sum−mixture

Fig. 2. Mixture Overview. Given two mixture components (top left),
the max- and sum- mixtures produce different distributions. In both cases,
arbitrary distributions can be approximated. A robustified cost function
(in this case a corrupted Gaussian, bottom) can be constructed from two
Gaussian components with equal means but different variances.

in specifying the distribution p(zi|x). For example, we can
encode a robustified cost function by using two components
with the same mean, but with different variances. Or, we can
encode a bi-modal distribution.

The problem with a sum-mixture is that the maximum
likelihood solution is no longer simple: the logarithm can no
longer be pushed all the way into the individual Gaussian
components: the summation in Eqn. 3 prevents it. As a result,
the introduction of a sum-mixture means that it is no longer
possible to derive a simple solution for x.

A. Max-Mixtures

Our solution to this problem is a new mixture model type,
one based on a max operator rather than a sum:

p(zi|x) = max
i

wiN(µi,Λ
−1
i) (4)

While the change is relatively minor, the implications to
optimization are profound. The logarithm can be pushed
inside a max mixture: the max operator acts as a selector,
returning a single well-behaved Gaussian component. The
optimization process will be more thoroughly described in
the following section.

A max mixture has much of the same character as a
sum mixture and retains a similar expressivity: multi-modal
distributions and robustified distributions can be similarly
represented (see Fig. 2). Note, however, that when fitting
a mixture to a desired probability distribution, different
components will result for sum- and max- mixtures. Assur-
ing that the distributions integrate to one is also handled
differently: for a sum mixture,

∑
wi = 1 is a necessary and

sufficient condition; for a max mixture, proper normalization
is generally more difficult to guarantee. Usefully, for maxi-
mum likelihood inference, it is inconsequential whether the
distribution integrates to 1. Specifically, suppose that some

variables), and are limited to either “on” or “off” (as opposed
to being able to model mixture models with multiple distinct
modes).

Robustified cost functions [26] provide resilience to errors
by reducing the cost associated with outliers, and have been
widely used in the vision community [27], [28]. We show
that robustified cost functions are subsumed by our mixture
approach.

Our proposed method avoids the exponential growth in
memory requirements of particle filter and MHT approaches
by avoiding an explicit representation of the posterior den-
sity. Instead, like other methods based on sparse factoriza-
tion, our method extracts a maximum likelihood estimate.
Critically, while the memory cost of representing the poste-
rior distribution grows exponentially, the cost of storing the
underlying factor graph network (which implicitly encodes
the posterior) grows only linearly with the size of the
network. In other words, our method (which only stores
the factor graph) can recover solutions that would have
been culled by particle and MHT approaches. In addition,
our approach benefits from the same sparsity and variable-
ordering insights that have recently benefited uni-modal
approaches.

III. APPROACH

Our goal is to infer the posterior distribution of the state
variable (or map) x, which can be written in terms of
the factor potentials in the factor graph. The probability is
conditioned on sensor observations z; with an application of
Bayes’ rule and by assuming an uninformative prior p(x),
we obtain:

p(x|z) ∝
∏

i

p(zi|x) (1)

Prior to this work, it is generally assumed that the factor
potentials p(zi|x) can be written as Gaussians:

p(zi|x) =
1

(2π)n/2|Λ−1
i |1/2

e−
1
2 (fi(x)−zi)

TΛi(fi(x)−zi) (2)

Further, while fi(x) is generally non-linear, it is assumed
that it can be approximated using a first-order Taylor expan-
sion such that fi(x) ≈ Ji∆x+ fi(x0).

The posterior maximum likelihood value can be easily
solved in such cases by taking the logarithm of Eqn. 1,
differentiating with respect to x, then solving for x. This
classic least-squares approach leads to a simple linear system
of the form Ax = b. Critically, this is possible because the
logarithm operator can be “pushed” inside the product in
Eqn. 1, reducing the product of N terms into a sum of
N simple quadratic terms. No logarithms or exponentials
remain, making the resulting expression easy to solve.

We might now consider a more complicated function
pi(x|z), such as a sum-mixture of Gaussians:

p(zi|x) =
∑

i

wiN(µi,Λ
−1
i) (3)

In this case, each N(µi,Λ
−1
i) represents a different Gaus-

sian distribution. Such a sum-mixture allows great flexibility

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Original bi−modal mixture

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Max−mixture

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Sum−mixture

Fig. 2. Mixture Overview. Given two mixture components (top left),
the max- and sum- mixtures produce different distributions. In both cases,
arbitrary distributions can be approximated. A robustified cost function
(in this case a corrupted Gaussian, bottom) can be constructed from two
Gaussian components with equal means but different variances.

in specifying the distribution p(zi|x). For example, we can
encode a robustified cost function by using two components
with the same mean, but with different variances. Or, we can
encode a bi-modal distribution.

The problem with a sum-mixture is that the maximum
likelihood solution is no longer simple: the logarithm can no
longer be pushed all the way into the individual Gaussian
components: the summation in Eqn. 3 prevents it. As a result,
the introduction of a sum-mixture means that it is no longer
possible to derive a simple solution for x.

A. Max-Mixtures

Our solution to this problem is a new mixture model type,
one based on a max operator rather than a sum:

p(zi|x) = max
i

wiN(µi,Λ
−1
i) (4)

While the change is relatively minor, the implications to
optimization are profound. The logarithm can be pushed
inside a max mixture: the max operator acts as a selector,
returning a single well-behaved Gaussian component. The
optimization process will be more thoroughly described in
the following section.

A max mixture has much of the same character as a
sum mixture and retains a similar expressivity: multi-modal
distributions and robustified distributions can be similarly
represented (see Fig. 2). Note, however, that when fitting
a mixture to a desired probability distribution, different
components will result for sum- and max- mixtures. Assur-
ing that the distributions integrate to one is also handled
differently: for a sum mixture,

∑
wi = 1 is a necessary and

sufficient condition; for a max mixture, proper normalization
is generally more difficult to guarantee. Usefully, for maxi-
mum likelihood inference, it is inconsequential whether the
distribution integrates to 1. Specifically, suppose that some

variables), and are limited to either “on” or “off” (as opposed
to being able to model mixture models with multiple distinct
modes).

Robustified cost functions [26] provide resilience to errors
by reducing the cost associated with outliers, and have been
widely used in the vision community [27], [28]. We show
that robustified cost functions are subsumed by our mixture
approach.

Our proposed method avoids the exponential growth in
memory requirements of particle filter and MHT approaches
by avoiding an explicit representation of the posterior den-
sity. Instead, like other methods based on sparse factoriza-
tion, our method extracts a maximum likelihood estimate.
Critically, while the memory cost of representing the poste-
rior distribution grows exponentially, the cost of storing the
underlying factor graph network (which implicitly encodes
the posterior) grows only linearly with the size of the
network. In other words, our method (which only stores
the factor graph) can recover solutions that would have
been culled by particle and MHT approaches. In addition,
our approach benefits from the same sparsity and variable-
ordering insights that have recently benefited uni-modal
approaches.

III. APPROACH

Our goal is to infer the posterior distribution of the state
variable (or map) x, which can be written in terms of
the factor potentials in the factor graph. The probability is
conditioned on sensor observations z; with an application of
Bayes’ rule and by assuming an uninformative prior p(x),
we obtain:

p(x|z) ∝
∏

i

p(zi|x) (1)

Prior to this work, it is generally assumed that the factor
potentials p(zi|x) can be written as Gaussians:

p(zi|x) =
1

(2π)n/2|Λ−1
i |1/2

e−
1
2 (fi(x)−zi)

TΛi(fi(x)−zi) (2)

Further, while fi(x) is generally non-linear, it is assumed
that it can be approximated using a first-order Taylor expan-
sion such that fi(x) ≈ Ji∆x+ fi(x0).

The posterior maximum likelihood value can be easily
solved in such cases by taking the logarithm of Eqn. 1,
differentiating with respect to x, then solving for x. This
classic least-squares approach leads to a simple linear system
of the form Ax = b. Critically, this is possible because the
logarithm operator can be “pushed” inside the product in
Eqn. 1, reducing the product of N terms into a sum of
N simple quadratic terms. No logarithms or exponentials
remain, making the resulting expression easy to solve.

We might now consider a more complicated function
pi(x|z), such as a sum-mixture of Gaussians:

p(zi|x) =
∑

i

wiN(µi,Λ
−1
i) (3)

In this case, each N(µi,Λ
−1
i) represents a different Gaus-

sian distribution. Such a sum-mixture allows great flexibility

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Original bi−modal mixture

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Max−mixture

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Sum−mixture

Fig. 2. Mixture Overview. Given two mixture components (top left),
the max- and sum- mixtures produce different distributions. In both cases,
arbitrary distributions can be approximated. A robustified cost function
(in this case a corrupted Gaussian, bottom) can be constructed from two
Gaussian components with equal means but different variances.

in specifying the distribution p(zi|x). For example, we can
encode a robustified cost function by using two components
with the same mean, but with different variances. Or, we can
encode a bi-modal distribution.

The problem with a sum-mixture is that the maximum
likelihood solution is no longer simple: the logarithm can no
longer be pushed all the way into the individual Gaussian
components: the summation in Eqn. 3 prevents it. As a result,
the introduction of a sum-mixture means that it is no longer
possible to derive a simple solution for x.

A. Max-Mixtures

Our solution to this problem is a new mixture model type,
one based on a max operator rather than a sum:

p(zi|x) = max
i

wiN(µi,Λ
−1
i) (4)

While the change is relatively minor, the implications to
optimization are profound. The logarithm can be pushed
inside a max mixture: the max operator acts as a selector,
returning a single well-behaved Gaussian component. The
optimization process will be more thoroughly described in
the following section.

A max mixture has much of the same character as a
sum mixture and retains a similar expressivity: multi-modal
distributions and robustified distributions can be similarly
represented (see Fig. 2). Note, however, that when fitting
a mixture to a desired probability distribution, different
components will result for sum- and max- mixtures. Assur-
ing that the distributions integrate to one is also handled
differently: for a sum mixture,

∑
wi = 1 is a necessary and

sufficient condition; for a max mixture, proper normalization
is generally more difficult to guarantee. Usefully, for maxi-
mum likelihood inference, it is inconsequential whether the
distribution integrates to 1. Specifically, suppose that some

17
Saturday, July 20, 13

Max Mixtures: Examples

18

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Original bi−modal mixture

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Max−mixture

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Sum−mixture

Figure 2: Mixture Overview. Given two mixture components (top left), the max- and sum- mixtures
produce different distributions. In both cases, arbitrary distributions can be approximated. A
robustified cost function (in this case a corrupted Gaussian, bottom) can be constructed from two
Gaussian components with equal means but different variances.

8

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Original bi−modal mixture

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Max−mixture

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Sum−mixture

Figure 2: Mixture Overview. Given two mixture components (top left), the max- and sum- mixtures
produce different distributions. In both cases, arbitrary distributions can be approximated. A
robustified cost function (in this case a corrupted Gaussian, bottom) can be constructed from two
Gaussian components with equal means but different variances.

8

Cost function interpretation
 (Corrupted Gaussian)

Comparison between
sum and max mixtures

Saturday, July 20, 13

Inference on Max Mixtures
• Max mixture formulation is highly suggestive of

an optimization strategy:

19

• Inference on Max Mixtures

‣ For each observation p(zi|x)

• Find mixture component j that
is most likely given x.

• Compute contribution to A
matrix and b vector from
Gaussian mixture component j.

‣ Solve Ax = b

• Inference on Gaussians:

‣ For each observation p(zi|x)

• Compute contribution
to A matrix and b vector
from the Gaussian.

‣ Solve Ax = b

Saturday, July 20, 13

The $20 question
• Least-Squares regression (inference on Gaussians) is

convex*:

‣ A single minimum

‣ All starting points lead to the minimum

‣ Well behaved optimization problem!

• This is not true of max mixtures:

‣ Exponentially many local minima!

‣ Does this scheme robustly find the global minimum?

20
Saturday, July 20, 13

CAREER: Inference on networks of mixtures for robust robot systems NSF PI: Edwin Olson

í2 í1.5 í1 í0.5 0 0.5 1 1.5 2
0

0.5

1

1.5 Biímodal model
Uniímodal model

Figure 4: Slip-or-Grip example. Top: A robot is commanded to drive forward for four steps, leading to a dead-
reckoned trajectory. Exteroceptive sensors indicate that the robot has not moved at all (i.e., the wheels may have
slipped). The top shows posterior trajectories incorporating both proprioceptive and exteroceptive data for a stan-
dard uni-modal method and our prototype max-mixture method. Not only does the mixture model produce a more
intuitively sensible result, it is more than 13 times as probable based on its χ2 statistic. Bottom: The probability
distributions used by the methods; note that the uni-modal model is the best-fit model to the bi-modal model.

we did not have to explicitly enumerate them in order to find the maximum likelihood system mode, even
though the initial estimate was in the “grip” mode for every constraint.

In contrast, a standard uni-modal Cholesky solver (using an uncertainty model that is a best-fit to the
bi-modal model), computes an implausible maximum likelihood solution in which the robot “splits the dif-
ference” between slipping and not slipping. Not only is the Cholesky-MM result more physically plausible,
it is over an order-of-magnitude more likely than the solution found by the standard method.

It remains for us to apply the method to larger problems and to more fully characterize the robustness
of the method to local minima. Since the dominant mode of each mixture is unlikely to change on every
iteration, computational savings may be obtained by caching the dominant component. This would produce
a speed-up of a factor of c, if each mixture has c components.

A shortcoming of Cholesky-based methods is that they are best suited to offline use; i.e., they are es-
sentially “batch” methods. Online variants for the Gaussian case are known [KRD07], however, the fact
that the Jacobians can change more rapidly in the max-mixture case (due to “mode” changes in the mixture)
requires additional investigation.

Stochastic-MM. Devising a stochastic method for the max-mixture case is even more challenging than
for Cholesky. In the uni-modal case, we compute a gradient that moves the state vector closer to the mean
of the observation. However, in a max-mixture model, there are multiple “destinations” (one for each
component) for the state vector that could potentially reduce the χ2 error. Which one should we select?

Our proposed method is to select a component according to the posterior likelihood of each component
given the current state. Let the notation N(µ,Λ−1)|x represent the probability of a Gaussian distribution
with mean µ and covariance Λ−1 evaluated at point x. We can then write the probability of selecting the ith

component when computing the gradient step as:

p(i|x) = wiN(µi,Λ
−1
i)|x∑

j wjN(µj ,Λ
−1
j)|x

(7)

Stochastic methods are well-suited to online operation; the primary challenge is determining a learning

8

Slip or Grip (Toy Problem)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25

30

35

Difference between true distance and
 false positive edge length (meters)

to
ta

l n
um

be
r o

f f
al

se
 p

os
iti

ve
s

Analysis of false positive edges

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2000

4000

6000

8000

10000

12000

Difference between true distance and
 true positive edge length (meters)

to
ta

l n
um

be
r o

f t
ru

e
po

si
tiv

es

Analysis of true positive edges

Figure 4: Error distribution for true and false positives. Our method accepts some randomly-
generated “false positives”, but an analysis of the error of those edges indicates that they (left) are
only slightly worse than the error of true edges (right).

For example, one of the original motivating problems of this work was dealing with the “slip or

grip” problem: the case where a robot’s wheels occasionally slip catastrophically, resulting in near

Figure 5: Slip or Grip Example. We evaluate the ability of our algorithm to recover a good map in
the presence of catastrophically slipping wheels. In this case, the robot is obtaining loop closures
using a conventional laser scanner front-end. These loop closures are of high quality, but the
odometry edges still cause significant map distortions when using standard methods (left). When a
small probability is added to account for slippage, our mixture approach recovers a much improved
map (right).

13

Saturday, July 20, 13

Results

1 error 10 errors 100 errors

M
ax

-m
ix

tu
re

St
an

da
rd

G

au
ss

ia
n

22
Saturday, July 20, 13

Results: CPU Time

23
Saturday, July 20, 13

Results: Robustness

24
Saturday, July 20, 13

Does it work in 6DOF?
• 3D generally much harder than 2D:

‣ Rotations exacerbate local minima problems
due to non-linear effects.

25

Figure 7: Recovering a map in the presence of outliers. We evaluated the robustness of our method
by adding erroneous loop closure edges to the Sphere2500 dataset, a dataset with a full 6 degrees-
of-freedom.. The top row reflects the posterior of the map with a standard least square Cholesky
solver with 1, 10, and 100 wrong edges. The bottom row shows the corresponding map for the
same dataset using max mixtures method.

4.3 Extension to 6DOF

While many important domains can be described in terms of planar motion (with three-dimensional

factor potentials reflecting translation in x, translation in y, and rotation), there is increasing

interest in 6 degree-of-freedom problems. Rotation is a major source of non-linearity in SLAM

problems, and full six degree-of-freedom problems can be particularly challenging.

To evaluate the performance of our method on a six degree-of-freedom problem, we used the

benchmark Sphere2500 dataset [23]. This dataset does not contain incorrect loop closures, and so

we added additional erroneous loop closures. In Fig. 7, we show the results of a standard Cholesky

solver and our max mixture approach applied to corrupted Sphere2500 dataset with an additional

1, 10, and 100 erroneous edges. As in previous examples, the maps produced by a standard method

quickly deteriorate. In contrast, the proposed method produces posterior maps that are essentially

unaffected by the errors. In this experiment, each loop closure edge in the graph (both correct

and false) was modeled as a two-component max mixture in which the second component had

a large variance (107 times larger than the hypothesis itself) and a small weight (10−7). The

method is relatively insensitive to the particular values used: the critical factor is ensuring that,

15

1 error 10 errors 100 errors

Standard
Cholesky

Max
Mixtures

Saturday, July 20, 13

“Extreme SLAM”

26
Saturday, July 20, 13

“Extreme SLAM”

26
Saturday, July 20, 13

Eliminating the front-end
• Create a max-mixture

with N+1 components

‣ Best N matches
(based on scan
matching)

‣ One “null”
component.

‣ (Encodes an
interesting mutual-
exclusion property!)

• No loop validation, no
geometric constraints.

27

closures, the basin of convergence is enlarged, allowing good maps to be computed even when the

open-loop trajectory is poor.

Map

Scan alignments

Figure 8: Data-association as a mixture. Given a query pose (red circle at bottom of map), we
perform a brute-force scan matching operation to all previous poses. The best 4 scan match results,
based on overlap, are added to a max-mixture model that also includes a null hypothesis. The
position of the best matches are shown as blue circles, and the corresponding scan matches shown
at the bottom. The similarity in appearance between the blue poses represents a significant degree
of perceptual aliasing. The scan matcher finds two correct matches and two incorrect matches.
The two correct matches are the two blue circles at the bottom of the map and the first two scan
alignments.

17

closures, the basin of convergence is enlarged, allowing good maps to be computed even when the

open-loop trajectory is poor.

Map

Scan alignments

Figure 8: Data-association as a mixture. Given a query pose (red circle at bottom of map), we
perform a brute-force scan matching operation to all previous poses. The best 4 scan match results,
based on overlap, are added to a max-mixture model that also includes a null hypothesis. The
position of the best matches are shown as blue circles, and the corresponding scan matches shown
at the bottom. The similarity in appearance between the blue poses represents a significant degree
of perceptual aliasing. The scan matcher finds two correct matches and two incorrect matches.
The two correct matches are the two blue circles at the bottom of the map and the first two scan
alignments.

17

closures, the basin of convergence is enlarged, allowing good maps to be computed even when the

open-loop trajectory is poor.

Map

Scan alignments

Figure 8: Data-association as a mixture. Given a query pose (red circle at bottom of map), we
perform a brute-force scan matching operation to all previous poses. The best 4 scan match results,
based on overlap, are added to a max-mixture model that also includes a null hypothesis. The
position of the best matches are shown as blue circles, and the corresponding scan matches shown
at the bottom. The similarity in appearance between the blue poses represents a significant degree
of perceptual aliasing. The scan matcher finds two correct matches and two incorrect matches.
The two correct matches are the two blue circles at the bottom of the map and the first two scan
alignments.

17

closures, the basin of convergence is enlarged, allowing good maps to be computed even when the

open-loop trajectory is poor.

Map

Scan alignments

Figure 8: Data-association as a mixture. Given a query pose (red circle at bottom of map), we
perform a brute-force scan matching operation to all previous poses. The best 4 scan match results,
based on overlap, are added to a max-mixture model that also includes a null hypothesis. The
position of the best matches are shown as blue circles, and the corresponding scan matches shown
at the bottom. The similarity in appearance between the blue poses represents a significant degree
of perceptual aliasing. The scan matcher finds two correct matches and two incorrect matches.
The two correct matches are the two blue circles at the bottom of the map and the first two scan
alignments.

17

closures, the basin of convergence is enlarged, allowing good maps to be computed even when the

open-loop trajectory is poor.

Map

Scan alignments

Figure 8: Data-association as a mixture. Given a query pose (red circle at bottom of map), we
perform a brute-force scan matching operation to all previous poses. The best 4 scan match results,
based on overlap, are added to a max-mixture model that also includes a null hypothesis. The
position of the best matches are shown as blue circles, and the corresponding scan matches shown
at the bottom. The similarity in appearance between the blue poses represents a significant degree
of perceptual aliasing. The scan matcher finds two correct matches and two incorrect matches.
The two correct matches are the two blue circles at the bottom of the map and the first two scan
alignments.

17

Saturday, July 20, 13

Eliminating the front-end

28

4.5 Performance Impact of Uncertainty Modeling

In the previous section, uncertain data associations were modeled as “one-in-k” mixtures, in which

multiple candidate loop closures were grouped together in a single edge. Alternatively, each can-

didate loop closure could be encoded as a two-component mixture in a “null-hypothesis” style

mixture; this approach is well-suited to the case where little is known about alternatives to a pu-

tative loop closure, while still allowing for the possibility that it is incorrect. (It is also possible

that the mixture components have no obvious semantic meaning: the mixture model could simply

be approximating a more complex distribution. For example, a max mixture could be fit to an

empirically derived cost function from a correlation-based scan matcher [33]).

In this section, we explore the performance impact of “one-in-k” mixtures versus “null-hypothesis”

mixtures. Consider a “one-in-k” mixture consisting of three candidate loop closures plus a null

hypothesis: {L1, L2, L3, null}. This can be transformed into three “null-hypothesis” mixtures:

{L1, null}, {L2, null}, and {L3, null}. These two formulations are not exactly equivalent: the “one-

in-k” encodes mutual-exclusion between the hypotheses, whereas the k separate “null-hypotheses”

would permit solutions in which more than one of the loop closures was accepted. In many practical

situations, however, the semantic difference is relatively minor. In this section, we show that the

Figure 9: Intel without front-end loop validation. Our system can identify correct loop closures and
compute a posterior map from within a single integrated Bayesian framework (right); the typical
front-end loop validation has been replaced with a k+ 1 mixture component containing the k best
laser scan matches (based purely on overlap) plus a null hypothesis. In this experiment, we used
k = 5. For reference, the open-loop trajectory of the robot is given on the left.

18

Open-Loop
With Unvalidated

Loop Closures
Saturday, July 20, 13

Performance Analysis
• Suppose we have N hypotheses relating a pose

to earlier poses (like previous problem)

‣ Could use ONE max mixture with N+1
Components

‣ Could use N max mixtures with 2
Components

• Which one is better?

29
Saturday, July 20, 13

Effect of encoding on CPU time

30

Dataset Switchable constraints bi-modal MM k-modal MM
manhattan iter time (s) 0.90 s 0.74 s 0.13 s
with k = 2 fill-in (%) 1.50 % 2.89 % 0.17 %

outliers = 2099 #loop edges 4198 4198 2099
#components - 2 3

manhattan iter time (s) 1.5 s 1.2 s 0.13 s
with k = 3 fill-in (%) 1.70 % 4.30 % 0.17 %

outliers= 4198 #loop edges 6277 6277 2099
#components - 2 4

Table 1: Runtime comparison between switchable constraints, “null-hypothesis”, “one-in-k” for-
mulations. Groups of related hypotheses were generated and either grouped as a single set of
mutually-exclusive edges (one-in-k), individually associated with a null hypothesis, or individu-
ally associated with a switching variable [27]. Using the one-in-k formulation reduces the effective
connectivity in the graph, reducing fill-in, and resulting in faster computation time.

to which correct edges can “overpower” incorrect edges.

To illustrate the relationship between these factors and the resulting quality of the map (mea-

sured in terms of mean squared error), we considered a range of loop-closing error rates (ranging

from 0% to 100%) for graphs with an average node degree of 4, 8, and 12. Note that an error rate

of 80% means that incorrect loop closures outnumber correct loop closures by a ratio of 4:1. In

each case, the vehicle’s noisy odometry is also provided. For each condition, we evaluate the perfor-

mance of our method on 100,000 randomly-generated Manhattan-world graphs (see Fig. 10). Our

method produces good maps even when the error rate is very high, and the performance improves

further with increasing node degree. In contrast, a standard non-mixture approach diverges almost

immediately.

4.7 Runtime Performance

The performance of our method is comparable to existing state-of-the-art sparse factorization meth-

ods (see Fig. 11). It takes additional time to identify the maximum likelihood mode for each mixture,

but this cost is minor in comparison to the cost of solving the resulting linear system.

4.8 Basin of Convergence

A key issue in non-linear optimization methods is whether the globally optimal solution will be

found, or whether the optimization process will get stuck in a local minimum. This is a function

of the initial solution as well as the parameters of the problem. In this section, we describe the

effects of these parameters on the robustness of our method, as well as an experiment to empirically

20

• N+1 component mixtures exhibit much better scaling!

‣ Max mixture selects one component to be dominant

‣ Thus, has fewer “links” between poses...

‣ Sparser A matrix ==> faster matrix factoring methods.

Saturday, July 20, 13

Good things lead to more good things

• A system that has accumulates errors has trouble closing new
loops.

• Robustly handling errors not only avoids divergence on the loops
you have, it increases the number of loops you’ll find!

31

zero motion. With a typical odometry noise model of 10-20%, such an outcome would wreak havoc

on the posterior map.

Our approach to the “slip or grip” problem is to use a two-component mixture model: one

component (with a large weight) corresponds to the usual 15% noise model, while the second

component (with a low weight) is centered around zero. No changes to our optimization algorithm

are required to handle such a case. However, since the distribution now has multiple local maxima,

it poses a greater challenge in terms of robustness.

Of course, without some independent source of information that contradicts the odometry

data, there is no way to determine that the wheels were slipping. To provide this independent

information, we used a state-of-the-art scan matching system [33] to generate loop closures. We

manually induced wheel slippage by pulling on the robot. Despite the good loop closures, standard

methods are unable to recover the correct map. In contrast, our method determines that “slip”

mode is more likely than the “grip” mode, and recovers the correct map (see Fig. 5).

As part of our earlier multi-robot mapping work [34, 8], we employed a team of 14 robots to

explore a large urban environment. Wheel slippage contributed to a poor map in two ways: 1) the

erroneous factor potentials themselves, and 2) the inability to identify good loop closures due to

a low quality motion estimate. By using a better odometry model, our online system produced a

significantly improved map (see Fig. 6).

Figure 6: Online results using odometry mixture model. The left figure shows a map of a 30m
× 25m area in which our multi-robot urban mapping team produced a poor map due to wheel
slippage and the ensuing inability to find loop-closures. With our odometry mixture model (right),
the wheel slippage is (implicitly) detected, and we find additional loop closures. The result is a
significantly improved map.

14

zero motion. With a typical odometry noise model of 10-20%, such an outcome would wreak havoc

on the posterior map.

Our approach to the “slip or grip” problem is to use a two-component mixture model: one

component (with a large weight) corresponds to the usual 15% noise model, while the second

component (with a low weight) is centered around zero. No changes to our optimization algorithm

are required to handle such a case. However, since the distribution now has multiple local maxima,

it poses a greater challenge in terms of robustness.

Of course, without some independent source of information that contradicts the odometry

data, there is no way to determine that the wheels were slipping. To provide this independent

information, we used a state-of-the-art scan matching system [33] to generate loop closures. We

manually induced wheel slippage by pulling on the robot. Despite the good loop closures, standard

methods are unable to recover the correct map. In contrast, our method determines that “slip”

mode is more likely than the “grip” mode, and recovers the correct map (see Fig. 5).

As part of our earlier multi-robot mapping work [34, 8], we employed a team of 14 robots to

explore a large urban environment. Wheel slippage contributed to a poor map in two ways: 1) the

erroneous factor potentials themselves, and 2) the inability to identify good loop closures due to

a low quality motion estimate. By using a better odometry model, our online system produced a

significantly improved map (see Fig. 6).

Figure 6: Online results using odometry mixture model. The left figure shows a map of a 30m
× 25m area in which our multi-robot urban mapping team produced a poor map due to wheel
slippage and the ensuing inability to find loop-closures. With our odometry mixture model (right),
the wheel slippage is (implicitly) detected, and we find additional loop closures. The result is a
significantly improved map.

14

Saturday, July 20, 13

Some Perspective
• Other approaches exist for multi-modal inference.

‣ FastSLAM (Montemerlo)

‣ Multiple Hypothesis Tracking

• Both have complexity that scales with the complexity of the posterior

‣ FastSLAM: Particles

‣ MHT: Hypotheses (each with an EKF)

• The complexity of the posterior grows exponentially, forcing these methods to prune.
Can lead to failures (e.g. particle depletion).

• MaxMixtures is fundamentally different:

‣ Memory complexity grows linearly with the size of the problem.

‣ Never have to approximate the problem.

‣ But, no guarantee that we find the maximum-likelihood solution!

32
Saturday, July 20, 13

Learning GPS Covariances
• Typically very hard to get good

covariance estimates

‣ Multi-path / Urban canyons

‣ Indoor/Outdoor transitions

• Lots of interesting meta-data
about sensor observations, e.g.:

‣ # visible satellites

‣ HDOP (based on geometry
of satellites)

‣ vendor’s covariance estimate

Saturday, July 20, 13

Can we learn covariances?
• Idea:

‣ Construct a feature vector f from this meta-
data

‣ Learn weight vector w such that:

Saturday, July 20, 13

Feature Encoding
• Constant feature:

• Add HDOP:

• Add # satellites

One-Hot encoding

Saturday, July 20, 13

Other feature types
• Idea: Generate features from other sensor

modalities

‣ Estimate “indoorness” from LIDAR data?

• (Not doing that here, but it’s something we’re
looking at)

Saturday, July 20, 13

Extension to Max Mixture
• Learning weights w tells us covariance

• Extension to max mixture is easy:

‣ Fit multiple sigmas. (Assume means are the same)

‣ And learn mixing weights (alphas) too.

Saturday, July 20, 13

Evaluating the learned weights

• Standard approach:

‣ Pick w’s that maximize the likelihood of the data

• (i.e., what weights w maximize the likelihood of all the
observations?)

(shown here for standard Gaussian approach)

Saturday, July 20, 13

Non-mixture analysis
• The ML solution w* is good for two reasons:

‣ It’s the ML solution, and we’re all good
Bayesians, right?

‣ It minimizes the occurrence of high X2
observations

• These have a increasing effect on the
gradient in an optimization framework...

• ... and are responsible for divergence of
non-robust methods.

• I.e., In Gaussian case, low probability ==> high
cost function curvature ==> divergence

Error

Cost

Increasing
curvature

Saturday, July 20, 13

Max Mixture Analysis
• It’s not the case that low probability => high curvature =>

divergence.

• E.g., “null hypothesis” components: low weight (==> low
probability) but high variance (==> low curvature)

Error

Cost

decreasing
curvature

Saturday, July 20, 13

Evaluation
• So how do we evaluate a max mixture?

‣ “Model Goodness”: Maximum Likelihood

‣ Convergence: minimize gradient for bad data

• Our current thinking:

‣ Still maximize the likelihood of the data, but...

‣ Keep an eye on the gradients as an interesting
check...

Saturday, July 20, 13

Constant model, f = [1]
• Single Gaussian

• Max Mixture of two Gaussians

TABLE I: Training and Testing Error.

Model Unimodal Max-Mixture

Train Test Train Test

L maxχ max ||∇i|| L maxχ max ||∇i|| L maxχ max ||∇i|| L maxχ max ||∇i||

constant hdop -6.855 14.503 2.920 -6.852 17.895 2.750 -6.587 8.810 1.363 -6.623 10.946 1.300
constant-hdop-nsat-vendor -6.299 6.866 2.260 -6.318 11.451 2.127 -6.289 5.142 1.840 -6.306 7.261 1.836
constant-hdop-vendor -6.312 6.342 1.957 -6.325 11.548 1.890 -6.303 4.318 1.631 -6.325 7.932 1.664
constant-nsat-vendor -6.302 6.785 2.208 -6.319 11.595 2.096 -6.271 6.736 2.431 -6.286 10.770 2.275
constant-vendor -6.312 6.331 1.948 -6.326 11.516 1.878 -6.305 4.286 1.737 -6.321 7.292 1.791
constant -7.210 21.106 3.263 -7.321 21.618 3.251 -6.733 12.353 1.118 -6.820 12.653 1.114
vendor -6.329 6.177 2.514 -6.336 9.643 2.331 -6.320 4.204 2.048 -6.330 6.563 2.024

distribution, but a second mixture adds probability mass
where a single mixture could not.

The models did not perform similarly with respect to
the handling of outliers. As seen by the outlier arrows in
Fig. 2, the max ei/σi values varied greatly between models;
only a few were able to model all observations within
statistical significance bounds. As seen in Table I, the models
also varied with respect to ||∇i||. The additional mixture
component reduced the ||∇i|| by up to 65%, confirming the
expected result that even a very small mixing coefficient
(≈ 0) on the large σ component gives max-mixtures the
ability to model high-error observations.

As seen in Fig. 2, the distribution of ei/σi are qualitatively
similar to a χ distribution. We have not provided quantitative
results because the metric does not exactly apply to max-
mixtures. However, the deviations from the χ distribution
are informative on the type of modeling problem present.
For example, in Figs. 2a (and to a lesser extent, all other
subfigures) the probability mass is disproportionately shifted
to lower ei/σi values, indicating that σi is an overestimate
for a large number of observations, presumably to compen-
sate for outliers. Possibly a better fit would use additional
mixture components.

C. Learned Weights

We next present a few learned parameter settings for
discussion purposes, see http://april.eecs.umich.edu/ for a
full parameter listing of all models analyzed. The setting
presented here correspond to the respective models shown
in Table I.

The constant models learned weights of [9.29] for uni-
modal and [[5.2], [16.2]] with α = [0.98, 0.02] for the max-
mixture model. This reflects the fact that the sensor performs
well most of the time, but a unimodal modal must compen-
sate for the high-error observations with an overestimate of
σ to fit the Gaussian assumption.

We were pleasantly surprised by the quality of the vendor’s
uncertainties (both in terms of likelihood and in terms of
max ei

σi
). The vendor model learned weights of [0.8] and

[[0.73], [1.16]] with α = [0.97, 0.03], reflecting that their
noise terms are pretty good. However, we improve their
robustness by utilizing additional features from the sensor
and max-mixtures.

(a) Constant (b) MM-Constant

(c) Vendor (d) MM-Vendor

(e) Const-HDOP-NSAT-Vendor (f) MM-Const-HDOP-NSAT-Vendor

Fig. 2: Histogram of Empirical vs. Ideal χ-error (for select
models). Ideally, if the underlying Gaussian assumptions
hold, the normalized histogram of ei

σi
(gray) would fit a 2

DOF χ distribution (red). Horizontal units represent standard
deviations, σi, and green/magenta arrows mark max ei

σi
for

training/testing, respectively. On the left, the arrows out
where P (eiσi

) ≈ 0 highlight the non-robustness of the uni-
modal models. On the right, the increased robustness of the
max-mixture models can be seen by the relative leftward
movement of the worst-case arrows (both components have
identical form to the unimodal model on the left).

VII. CONCLUSION

The integration of GPS sensors into SLAM allows for
global alignment but requires probabilistically motivated
uncertainty estimates that accurately reflects the true distri-
bution. We presented two families of uncertainty predictors
based on classical Gaussian models and max-mixtures using
a new framework for robust sensor characterization. We
learned the parameters for a number of models with real-
world data and show that many of these models produce
similar log-likelihood values. However, models within the
max-mixture family can robustly handle real-world GPS data
by modeling high-error observations.

There is a trade-off between the likelihood and robustness
to high noise observations. Artificially increasing covari-
ances can decrease the effect of outliers, but has the side-
effect of reducing the amount of information extracted from
valid measurements. The max-mixture approach provides
robustness through the use of multiple covariance functions,
allowing a richer representation of the underlying model.

TABLE I: Training and Testing Error.

Model Unimodal Max-Mixture

Train Test Train Test

L maxχ max ||∇i|| L maxχ max ||∇i|| L maxχ max ||∇i|| L maxχ max ||∇i||

constant hdop -6.855 14.503 2.920 -6.852 17.895 2.750 -6.587 8.810 1.363 -6.623 10.946 1.300
constant-hdop-nsat-vendor -6.299 6.866 2.260 -6.318 11.451 2.127 -6.289 5.142 1.840 -6.306 7.261 1.836
constant-hdop-vendor -6.312 6.342 1.957 -6.325 11.548 1.890 -6.303 4.318 1.631 -6.325 7.932 1.664
constant-nsat-vendor -6.302 6.785 2.208 -6.319 11.595 2.096 -6.271 6.736 2.431 -6.286 10.770 2.275
constant-vendor -6.312 6.331 1.948 -6.326 11.516 1.878 -6.305 4.286 1.737 -6.321 7.292 1.791
constant -7.210 21.106 3.263 -7.321 21.618 3.251 -6.733 12.353 1.118 -6.820 12.653 1.114
vendor -6.329 6.177 2.514 -6.336 9.643 2.331 -6.320 4.204 2.048 -6.330 6.563 2.024

distribution, but a second mixture adds probability mass
where a single mixture could not.

The models did not perform similarly with respect to
the handling of outliers. As seen by the outlier arrows in
Fig. 2, the max ei/σi values varied greatly between models;
only a few were able to model all observations within
statistical significance bounds. As seen in Table I, the models
also varied with respect to ||∇i||. The additional mixture
component reduced the ||∇i|| by up to 65%, confirming the
expected result that even a very small mixing coefficient
(≈ 0) on the large σ component gives max-mixtures the
ability to model high-error observations.

As seen in Fig. 2, the distribution of ei/σi are qualitatively
similar to a χ distribution. We have not provided quantitative
results because the metric does not exactly apply to max-
mixtures. However, the deviations from the χ distribution
are informative on the type of modeling problem present.
For example, in Figs. 2a (and to a lesser extent, all other
subfigures) the probability mass is disproportionately shifted
to lower ei/σi values, indicating that σi is an overestimate
for a large number of observations, presumably to compen-
sate for outliers. Possibly a better fit would use additional
mixture components.

C. Learned Weights

We next present a few learned parameter settings for
discussion purposes, see http://april.eecs.umich.edu/ for a
full parameter listing of all models analyzed. The setting
presented here correspond to the respective models shown
in Table I.

The constant models learned weights of [9.29] for uni-
modal and [[5.2], [16.2]] with α = [0.98, 0.02] for the max-
mixture model. This reflects the fact that the sensor performs
well most of the time, but a unimodal modal must compen-
sate for the high-error observations with an overestimate of
σ to fit the Gaussian assumption.

We were pleasantly surprised by the quality of the vendor’s
uncertainties (both in terms of likelihood and in terms of
max ei

σi
). The vendor model learned weights of [0.8] and

[[0.73], [1.16]] with α = [0.97, 0.03], reflecting that their
noise terms are pretty good. However, we improve their
robustness by utilizing additional features from the sensor
and max-mixtures.

(a) Constant (b) MM-Constant

(c) Vendor (d) MM-Vendor

(e) Const-HDOP-NSAT-Vendor (f) MM-Const-HDOP-NSAT-Vendor

Fig. 2: Histogram of Empirical vs. Ideal χ-error (for select
models). Ideally, if the underlying Gaussian assumptions
hold, the normalized histogram of ei

σi
(gray) would fit a 2

DOF χ distribution (red). Horizontal units represent standard
deviations, σi, and green/magenta arrows mark max ei

σi
for

training/testing, respectively. On the left, the arrows out
where P (eiσi

) ≈ 0 highlight the non-robustness of the uni-
modal models. On the right, the increased robustness of the
max-mixture models can be seen by the relative leftward
movement of the worst-case arrows (both components have
identical form to the unimodal model on the left).

VII. CONCLUSION

The integration of GPS sensors into SLAM allows for
global alignment but requires probabilistically motivated
uncertainty estimates that accurately reflects the true distri-
bution. We presented two families of uncertainty predictors
based on classical Gaussian models and max-mixtures using
a new framework for robust sensor characterization. We
learned the parameters for a number of models with real-
world data and show that many of these models produce
similar log-likelihood values. However, models within the
max-mixture family can robustly handle real-world GPS data
by modeling high-error observations.

There is a trade-off between the likelihood and robustness
to high noise observations. Artificially increasing covari-
ances can decrease the effect of outliers, but has the side-
effect of reducing the amount of information extracted from
valid measurements. The max-mixture approach provides
robustness through the use of multiple covariance functions,
allowing a richer representation of the underlying model.

Training

Test

Training

Test

21.6 std deviations

12.6 std deviations
Saturday, July 20, 13

Vendor+ model, f=[v]
• Single Gaussian

• Max Mixture of two Gaussians

TABLE I: Training and Testing Error.

Model Unimodal Max-Mixture

Train Test Train Test

L maxχ max ||∇i|| L maxχ max ||∇i|| L maxχ max ||∇i|| L maxχ max ||∇i||

constant hdop -6.855 14.503 2.920 -6.852 17.895 2.750 -6.587 8.810 1.363 -6.623 10.946 1.300
constant-hdop-nsat-vendor -6.299 6.866 2.260 -6.318 11.451 2.127 -6.289 5.142 1.840 -6.306 7.261 1.836
constant-hdop-vendor -6.312 6.342 1.957 -6.325 11.548 1.890 -6.303 4.318 1.631 -6.325 7.932 1.664
constant-nsat-vendor -6.302 6.785 2.208 -6.319 11.595 2.096 -6.271 6.736 2.431 -6.286 10.770 2.275
constant-vendor -6.312 6.331 1.948 -6.326 11.516 1.878 -6.305 4.286 1.737 -6.321 7.292 1.791
constant -7.210 21.106 3.263 -7.321 21.618 3.251 -6.733 12.353 1.118 -6.820 12.653 1.114
vendor -6.329 6.177 2.514 -6.336 9.643 2.331 -6.320 4.204 2.048 -6.330 6.563 2.024

distribution, but a second mixture adds probability mass
where a single mixture could not.

The models did not perform similarly with respect to
the handling of outliers. As seen by the outlier arrows in
Fig. 2, the max ei/σi values varied greatly between models;
only a few were able to model all observations within
statistical significance bounds. As seen in Table I, the models
also varied with respect to ||∇i||. The additional mixture
component reduced the ||∇i|| by up to 65%, confirming the
expected result that even a very small mixing coefficient
(≈ 0) on the large σ component gives max-mixtures the
ability to model high-error observations.

As seen in Fig. 2, the distribution of ei/σi are qualitatively
similar to a χ distribution. We have not provided quantitative
results because the metric does not exactly apply to max-
mixtures. However, the deviations from the χ distribution
are informative on the type of modeling problem present.
For example, in Figs. 2a (and to a lesser extent, all other
subfigures) the probability mass is disproportionately shifted
to lower ei/σi values, indicating that σi is an overestimate
for a large number of observations, presumably to compen-
sate for outliers. Possibly a better fit would use additional
mixture components.

C. Learned Weights

We next present a few learned parameter settings for
discussion purposes, see http://april.eecs.umich.edu/ for a
full parameter listing of all models analyzed. The setting
presented here correspond to the respective models shown
in Table I.

The constant models learned weights of [9.29] for uni-
modal and [[5.2], [16.2]] with α = [0.98, 0.02] for the max-
mixture model. This reflects the fact that the sensor performs
well most of the time, but a unimodal modal must compen-
sate for the high-error observations with an overestimate of
σ to fit the Gaussian assumption.

We were pleasantly surprised by the quality of the vendor’s
uncertainties (both in terms of likelihood and in terms of
max ei

σi
). The vendor model learned weights of [0.8] and

[[0.73], [1.16]] with α = [0.97, 0.03], reflecting that their
noise terms are pretty good. However, we improve their
robustness by utilizing additional features from the sensor
and max-mixtures.

(a) Constant (b) MM-Constant

(c) Vendor (d) MM-Vendor

(e) Const-HDOP-NSAT-Vendor (f) MM-Const-HDOP-NSAT-Vendor

Fig. 2: Histogram of Empirical vs. Ideal χ-error (for select
models). Ideally, if the underlying Gaussian assumptions
hold, the normalized histogram of ei

σi
(gray) would fit a 2

DOF χ distribution (red). Horizontal units represent standard
deviations, σi, and green/magenta arrows mark max ei

σi
for

training/testing, respectively. On the left, the arrows out
where P (eiσi

) ≈ 0 highlight the non-robustness of the uni-
modal models. On the right, the increased robustness of the
max-mixture models can be seen by the relative leftward
movement of the worst-case arrows (both components have
identical form to the unimodal model on the left).

VII. CONCLUSION

The integration of GPS sensors into SLAM allows for
global alignment but requires probabilistically motivated
uncertainty estimates that accurately reflects the true distri-
bution. We presented two families of uncertainty predictors
based on classical Gaussian models and max-mixtures using
a new framework for robust sensor characterization. We
learned the parameters for a number of models with real-
world data and show that many of these models produce
similar log-likelihood values. However, models within the
max-mixture family can robustly handle real-world GPS data
by modeling high-error observations.

There is a trade-off between the likelihood and robustness
to high noise observations. Artificially increasing covari-
ances can decrease the effect of outliers, but has the side-
effect of reducing the amount of information extracted from
valid measurements. The max-mixture approach provides
robustness through the use of multiple covariance functions,
allowing a richer representation of the underlying model.

TABLE I: Training and Testing Error.

Model Unimodal Max-Mixture

Train Test Train Test

L maxχ max ||∇i|| L maxχ max ||∇i|| L maxχ max ||∇i|| L maxχ max ||∇i||

constant hdop -6.855 14.503 2.920 -6.852 17.895 2.750 -6.587 8.810 1.363 -6.623 10.946 1.300
constant-hdop-nsat-vendor -6.299 6.866 2.260 -6.318 11.451 2.127 -6.289 5.142 1.840 -6.306 7.261 1.836
constant-hdop-vendor -6.312 6.342 1.957 -6.325 11.548 1.890 -6.303 4.318 1.631 -6.325 7.932 1.664
constant-nsat-vendor -6.302 6.785 2.208 -6.319 11.595 2.096 -6.271 6.736 2.431 -6.286 10.770 2.275
constant-vendor -6.312 6.331 1.948 -6.326 11.516 1.878 -6.305 4.286 1.737 -6.321 7.292 1.791
constant -7.210 21.106 3.263 -7.321 21.618 3.251 -6.733 12.353 1.118 -6.820 12.653 1.114
vendor -6.329 6.177 2.514 -6.336 9.643 2.331 -6.320 4.204 2.048 -6.330 6.563 2.024

distribution, but a second mixture adds probability mass
where a single mixture could not.

The models did not perform similarly with respect to
the handling of outliers. As seen by the outlier arrows in
Fig. 2, the max ei/σi values varied greatly between models;
only a few were able to model all observations within
statistical significance bounds. As seen in Table I, the models
also varied with respect to ||∇i||. The additional mixture
component reduced the ||∇i|| by up to 65%, confirming the
expected result that even a very small mixing coefficient
(≈ 0) on the large σ component gives max-mixtures the
ability to model high-error observations.

As seen in Fig. 2, the distribution of ei/σi are qualitatively
similar to a χ distribution. We have not provided quantitative
results because the metric does not exactly apply to max-
mixtures. However, the deviations from the χ distribution
are informative on the type of modeling problem present.
For example, in Figs. 2a (and to a lesser extent, all other
subfigures) the probability mass is disproportionately shifted
to lower ei/σi values, indicating that σi is an overestimate
for a large number of observations, presumably to compen-
sate for outliers. Possibly a better fit would use additional
mixture components.

C. Learned Weights

We next present a few learned parameter settings for
discussion purposes, see http://april.eecs.umich.edu/ for a
full parameter listing of all models analyzed. The setting
presented here correspond to the respective models shown
in Table I.

The constant models learned weights of [9.29] for uni-
modal and [[5.2], [16.2]] with α = [0.98, 0.02] for the max-
mixture model. This reflects the fact that the sensor performs
well most of the time, but a unimodal modal must compen-
sate for the high-error observations with an overestimate of
σ to fit the Gaussian assumption.

We were pleasantly surprised by the quality of the vendor’s
uncertainties (both in terms of likelihood and in terms of
max ei

σi
). The vendor model learned weights of [0.8] and

[[0.73], [1.16]] with α = [0.97, 0.03], reflecting that their
noise terms are pretty good. However, we improve their
robustness by utilizing additional features from the sensor
and max-mixtures.

(a) Constant (b) MM-Constant

(c) Vendor (d) MM-Vendor

(e) Const-HDOP-NSAT-Vendor (f) MM-Const-HDOP-NSAT-Vendor

Fig. 2: Histogram of Empirical vs. Ideal χ-error (for select
models). Ideally, if the underlying Gaussian assumptions
hold, the normalized histogram of ei

σi
(gray) would fit a 2

DOF χ distribution (red). Horizontal units represent standard
deviations, σi, and green/magenta arrows mark max ei

σi
for

training/testing, respectively. On the left, the arrows out
where P (eiσi

) ≈ 0 highlight the non-robustness of the uni-
modal models. On the right, the increased robustness of the
max-mixture models can be seen by the relative leftward
movement of the worst-case arrows (both components have
identical form to the unimodal model on the left).

VII. CONCLUSION

The integration of GPS sensors into SLAM allows for
global alignment but requires probabilistically motivated
uncertainty estimates that accurately reflects the true distri-
bution. We presented two families of uncertainty predictors
based on classical Gaussian models and max-mixtures using
a new framework for robust sensor characterization. We
learned the parameters for a number of models with real-
world data and show that many of these models produce
similar log-likelihood values. However, models within the
max-mixture family can robustly handle real-world GPS data
by modeling high-error observations.

There is a trade-off between the likelihood and robustness
to high noise observations. Artificially increasing covari-
ances can decrease the effect of outliers, but has the side-
effect of reducing the amount of information extracted from
valid measurements. The max-mixture approach provides
robustness through the use of multiple covariance functions,
allowing a richer representation of the underlying model.

Training

Test

Training

Test

9.6 std deviations

6.5 std deviations
Saturday, July 20, 13

• Results:

‣ More complex models ==>
better predictions in an ML
sense

‣ Two component mixture model
yields higher likelihood

• NB: Small numerical differences
here are a big deal...

‣ These are average likelihoods
over thousands of
observations.

Model Comparison

!7.4%

!7.2%

!7%

!6.8%

!6.6%

!6.4%

!6.2%

!6%

co
ns
tan
t%

ve
nd
or%

co
ns
tan
t!v
en
do
r%

co
ns
tan
t!h
do
p!n
sat
!ve
nd
or%

Single/Train%

Single/Test%

MM/Train%

MM/Test%

Saturday, July 20, 13

Gradients
• Generally see lower worst-

case gradient magnitudes

• Interestingly, it’s not the
same observations causing
“problems” in both cases

‣ The high gradient
observations are those
just barely clinging to the
“inliner” component.

Non-MM
max

gradient

MM max
gradient

Constant 3.251 1.114

Vendor 2.331 2.024

Constant-
Vendor 1.878 1.791

Constant-
HDop-NSat-

Vendor
2.127 1.836

Saturday, July 20, 13

Something Outrageous
• What do I care about?

‣ Robustness (to outliers) (to initial estimates)

‣ Where do error-models/hyper-parameters
come from?

• What do I care less about?

‣ Inference speed

‣ Batch problems
Saturday, July 20, 13

