Learning Max Mixtures

Edwin Olson ebolson@umich.edu Computer Science and Engineering University of Michigan

The ugly

Errors

- Classical SLAM systems are very sensitive to errors
 - Natural question: How do we reduce the error rate?

Reducing Error Rates

- Neira: JCBB (2001)
- Bailey: CDDA (2002)
- Bosse: Loop Validation (2004)
- Us: SCGP (2008)
- Us: Correlative Scan Matching (2009)
- Us: IPJC (2012)

The problem

 Each of these methods pushes error rates closer to zero. Great!

But mapping methods can diverge with even a single error. Not Great!

 Outlier-rejection/loop-validation methods can postpone failure, but can't eliminate it!

• What is an error, anyway?

- What is an error, anyway?
 - It's an inconsistency between our probabilistic observation model and the empirical accuracy of our data association method.

- What is an error, anyway?
 - It's an inconsistency between our probabilistic observation model and the empirical accuracy of our data association method.
 - Maybe the problem isn't outlier rejection, maybe the problem is that we're using the wrong probabilistic models!

Gaussian error models

 $p(z_i|x) = N(\mu_i, \Lambda_i^{-1})$

Gaussian error models

- Almost all robotics work uses Gaussian error models
 - Lead to very simple leastsquares state estimation algorithms.
 - Believed to be sufficiently representative

$$p(z_i|x) = N(\mu_i, \Lambda_i^{-1})$$

Gaussian Errors = Easy inference

$$p(z_i|x) = N(\mu_i, \Lambda_i^{-1}) = \frac{1}{\gamma} e^{-\frac{1}{2}(x-\mu)^T \Lambda_i(x-\mu)}$$

$$x_{opt} = \operatorname{argmax}_x \prod p(z_i|x)$$

$$x_{opt} = \operatorname{argmax}_x \log \left(\prod_i p(z_i|x)\right)$$

$$x_{opt} = \operatorname{argmax}_x \sum_i \log p(z_i|x)$$

$$x_{opt} = \operatorname{argmax}_x \sum_i (a_i x^2 + b_i x + c_i)$$

$$Ax_{opt} = b \quad \checkmark \quad \text{methods now available!}$$

Real-world errors (maybe)

Two basic problems

How can we represent these more complex error models?

How do we solve the resulting inference problems?

Sums of Gaussians

One "obvious" way to represent more types of error functions

$$p(z_{i}|x) = N(\mu_{i}, \Lambda_{i}^{-1}) \qquad p(z_{i}|x) = \sum_{i} w_{i}N(\mu_{i}, \Lambda_{i}^{-1})$$

$$p(z_{i}|x) = 0.1N(0, 0.25) + 0.9N(1, 0.5)$$

$$\begin{aligned} & \text{Sums of Gaussians} \\ & p(z_i|x) = \sum_i w_i N(\mu_i, \Lambda_i^{-1}) \\ & x_{opt} = \operatorname{argmax}_x \prod p(z_i|x) \\ & x_{opt} = \operatorname{argmax}_x \log \left(\prod_i p(z_i|x) \right) \\ & x_{opt} = \operatorname{argmax}_x \sum_i \log p(z_i|x) \\ & x_{opt} = \operatorname{argmax}_x \sum_i \log \left(\sum_j w_j N(\mu_j, \Lambda_j^{-1}) \right) \end{aligned}$$

Challenge

• Can we find a way of representing more complex error functions?

• AND make sure that we can actually solve the resulting problem?

$$p(z_i|x) = \sum_i w_i N(\mu_i, \Lambda_i^{-1})$$
$$p(x|z) \propto \prod_i p(z_i|x)$$

Saturday, July 20, 13

Use mixture models for more realistic probability distributions

$$p(z_i|x) = \sum_i w_i N(\mu_i, \Lambda_i^{-1})$$
$$p(x|z) \propto \prod_i p(z_i|x)$$

- Use mixture models for more realistic probability distributions
 - Change SUM to MAX

$$p(z_i|x) = \sum_i w_i N(\mu_i, \Lambda_i^{-1}) \quad \Longrightarrow p(z_i|x) = \max_i w_i N(\mu_i, \Lambda_i^{-1})$$
$$p(x|z) \propto \prod_i p(z_i|x)$$

• Can "push" the log past the MAX...

- Use mixture models for more realistic probability distributions
 - Change SUM to MAX

$$p(z_i|x) = \sum_i w_i N(\mu_i, \Lambda_i^{-1}) \quad \Longrightarrow p(z_i|x) = \max_i w_i N(\mu_i, \Lambda_i^{-1})$$
$$p(x|z) \propto \prod_i p(z_i|x)$$

- Can "push" the log past the MAX...
 - Results in Ax=b, just like with simple Gaussian error models

Max Mixtures: Examples

Comparison between sum and max mixtures

Inference on Max Mixtures

 Max mixture formulation is highly suggestive of an optimization strategy:

- Inference on Gaussians:
 - For each observation $p(z_i|x)$
 - Compute contribution to A matrix and b vector from the Gaussian.
 - Solve Ax = b

- Inference on Max Mixtures
 - For each observation $p(z_i|x)$
 - Find mixture component j that is most likely given x.
 - Compute contribution to A matrix and b vector from Gaussian mixture component j.
 - Solve Ax = b

The \$20 question

- Least-Squares regression (inference on Gaussians) is convex*:
 - A single minimum
 - All starting points lead to the minimum
 - Well behaved optimization problem!

- This is *not* true of max mixtures:
 - Exponentially many local minima!
 - Does this scheme robustly find the global minimum?

Slip or Grip (Toy Problem)

Results

Standard Gaussian

Max-mixture

Results: CPU Time

Saturday, July 20, 13

Results: Robustness

Saturday, July 20, 13

Does it work in 6DOF?

- 3D generally much harder than 2D:
 - Rotations exacerbate local minima problems due to non-linear effects.

"Extreme SLAM"

"Extreme SLAM"

Eliminating the front-end

- Create a max-mixture with N+I components
 - Best N matches (based on scan matching)
 - One "null" component.
 - (Encodes an interesting mutualexclusion property!)
- No loop validation, no geometric constraints.

Eliminating the front-end

With Unvalidated Loop Closures

Open-Loop

Performance Analysis

- Suppose we have N hypotheses relating a pose to earlier poses (like previous problem)
 - Could use ONE max mixture with N+I Components
 - Could use N max mixtures with 2 Components

• Which one is better?

Effect of encoding on CPU time

Dataset		Switchable constraints	bi-modal MM	k-modal MM
manhattan	iter time (s)	0.90 s	$0.74 \mathrm{\ s}$	0.13 s
with $k = 2$	fill-in $(\%)$	1.50~%	2.89~%	0.17~%
outliers $= 2099$	#loop edges	4198	4198	2099
	#components	-	2	3
manhattan	iter time (s)	1.5 s	1.2 s	0.13 s
with $k = 3$	fill-in $(\%)$	1.70~%	4.30~%	0.17~%
outliers = 4198	#loop edges	6277	6277	2099
	#components	_	2	4

- N+I component mixtures exhibit much better scaling!
 - Max mixture selects one component to be dominant
 - Thus, has fewer "links" between poses...
 - Sparser A matrix ==> faster matrix factoring methods.

Good things lead to more good things

- A system that has accumulates errors has trouble closing new loops.
- Robustly handling errors not only avoids divergence on the loops you have, it increases the number of loops you'll find!

Saturday, July 20, 13

Some Perspective

- Other approaches exist for multi-modal inference.
 - FastSLAM (Montemerlo)
 - Multiple Hypothesis Tracking
- Both have complexity that scales with the complexity of the posterior
 - FastSLAM: Particles
 - MHT: Hypotheses (each with an EKF)
- The complexity of the posterior grows exponentially, forcing these methods to prune.
 Can lead to failures (e.g. particle depletion).
- MaxMixtures is fundamentally different:
 - Memory complexity grows linearly with the size of the problem.
 - Never have to approximate the problem.
 - But, no guarantee that we find the maximum-likelihood solution!

Learning GPS Covariances

- Typically very hard to get good covariance estimates
 - Multi-path / Urban canyons
 - Indoor/Outdoor transitions
- Lots of interesting meta-data about sensor observations, e.g.:
 - # visible satellites
 - HDOP (based on geometry of satellites)
 - vendor's covariance estimate

Can we learn covariances?

- Idea:
 - Construct a feature vector **f** from this metadata
 - Learn weight vector **w** such that:

$$\sigma = w^T f$$

Feature Encoding

• Constant feature:

$$f^T = [1]$$

• Add HDOP:

$$f^T = [z_{hdop} \ 1]$$

• Add # satellites

$$f^{T} = \begin{bmatrix} 0 & \dots & 0 & 1 & 0 & \dots & 0 & Z_{hdop} & 1 \end{bmatrix}$$

$$\xrightarrow{\text{One-Hot encoding}}$$

Other feature types

- Idea: Generate features from other sensor modalities
 - Estimate "indoorness" from LIDAR data?

(Not doing that here, but it's something we're looking at)

Extension to Max Mixture

• Learning weights **w** tells us covariance

$$\sigma = w^T f$$

- Extension to max mixture is easy:
 - Fit multiple sigmas. (Assume means are the same)

$$\sigma_i = w_i^T f$$
$$p(z|x) = \max_i \alpha_i N(u, \sigma_i)$$

And learn mixing weights (alphas) too.

Evaluating the learned weights

- Standard approach:
 - Pick w's that maximize the likelihood of the data

$$w^* = \max \max_{w} \prod_{j} p(z_j | x)$$

 $\propto \max_{w} \prod_{j} e^{-\frac{1}{2}(z_j - \mu)^T (w^T f)^{-2} (z_j - \mu)}$
(shown here for standard Gaussian approach)

(i.e., what weights w maximize the likelihood of all the observations?)

Non-mixture analysis

- The ML solution w^{*} is good for two reasons:
 - It's the ML solution, and we're all good Bayesians, right?
 - It minimizes the occurrence of high X² observations
 - These have a increasing effect on the gradient in an optimization framework...
 - ... and are responsible for divergence of non-robust methods.
- I.e., In Gaussian case, low probability ==> high cost function curvature ==> divergence

Max Mixture Analysis

- It's not the case that low probability => high curvature => divergence.
- E.g., "null hypothesis" components: low weight (==> low probability) but high variance (==> low curvature)

Evaluation

- So how do we evaluate a max mixture?
 - "Model Goodness": Maximum Likelihood
 - Convergence: minimize gradient for bad data

- Our current thinking:
 - Still maximize the likelihood of the data, but...
 - Keep an eye on the gradients as an interesting check...

Constant model, f = []

Single Gaussian

Vendor+ model, f=[v]

Single Gaussian

Model Comparison

- Results:
 - More complex models ==> better predictions in an ML sense
 - Two component mixture model yields higher likelihood
- NB: Small numerical differences here are a big deal...
 - These are average likelihoods over thousands of observations.

Gradients

 Generally see lower worstcase gradient magnitudes

- Interestingly, it's not the same observations causing "problems" in both cases
 - The high gradient observations are those just barely clinging to the "inliner" component.

	Non-MM max gradient	MM max gradient
Constant	3.251	1.114
Vendor	2.331	2.024
Constant- Vendor	I.878	1.791
Constant- HDop-NSat- Vendor	2.127	1.836

Something Outrageous

- What do I care about?
 - Robustness (to outliers) (to initial estimates)
 - Where do error-models/hyper-parameters come from?

- What do I care less about?
 - Inference speed
 - Batch problems