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Abstract— In this paper we propose a novel solution based on
the L1 norm as a back-end to pose graph SLAM. In contrast to
other NLSQs approaches, we formulate an iterative algorithm
inspired directly on the Factor Graph structure to solve for
the linearized residual ‖Ax − b‖1. Although similar to the
robust Huber norm, the L1 norm is much more effective in
removing the effect of strong spurious data. Since our approach
depends on the minimization of a non differentiable function,
we provide the theoretical insights to solve for theL1 norm. Our
optimization is based on a primal-dual formulation successfully
applied for solving variational convex problems in computer
vision. We show the effectiveness of theL1 norm to produce
both a robust initial seed and a final optimized solution on
challenging and well known datasets widely used in other state
of the art works.

I. I NTRODUCTION

During the last recent years, graphical models and non
linear optimization based algorithms have become the core
of many state of the art SLAM and Bundle Adjustment
approaches. In both contexts, the goal is to estimate a set
of state variables representing the location of robot/sensor
positions along a trajectory and the pose of geometric
elements characterizing the environment structure. The most
common way to formally define the problem is through a
non linear least squares (NLSQs) formulation: given as input
the set of relative measurements between state variables, the
goal is to minimize an error cost function. A solution delivers
the best state variable estimation for the cost function in a
MAP sense. Graphical models aim to graphically interpret
the stochastic relations between state variables and noisy
observations. Lets consider the pose graph subproblem in
which the set of state variablesx represent the locations of
the sensor/robot in the environment andz the measurements
obtained from odometry readings or relative transformations
calculated from scan matching. Figure 1 shows two common
Graphical models used to represent a pose graph. On the left
we have a Factor Graph model which is a bipartite graph with
links between two types of nodes: first, nodes representing
state variablesx (blue circles); second, nodes (red squares)
that explicitly codify the constraintsz between the previous
state variables. On the right of the figure we have a Gaussian
Markov Random Field (GMRF) with a unique type of node
representing the state variables whereas the links show the
probabilistic relations that appear between the variablesdue
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Fig. 1: On the left, a Factor Graph for a pose graph SLAM
subproblem. A GMRF graph for the same problem structure (right)

to the indirect effect of the observations [1]. For typical pose
graph problems in which the observations only link pairs of
state variables both types of models turn out to produce very
similar graph representations as can be observed in the figure.

Commonly, GMRF and Factor Graph solutions are based
on minimizing anL2 norm function of the residuals‖r(x)‖22.
A local quadratic approximation of the function is usually
carried out by linearizing the residual errorsr ≈ Ax − b.
Iterative methods as gradient descend, conjugate gradient,
Gauss-Newton or Levenberg Marquardt are used as mini-
mizers [2], being Gauss-Newton and Levenberg Marquardt
the most common algorithms.

In this paper we propose a novel solution based on theL1

norm as aback-end for solving a pose graph. We formulate
an iterative algorithm based on the Factor Graph structure
of the problem that solves in each step theL1 norm of the
linearized residual‖Ax− b‖1.

Our contributions are summarized as follows:

• We formulate a novel back-end for Factor Graph SLAM
based on theL1 norm that is robust and effective in
removing strong spurious data.

• We provide the theoretical insight for minimizing a
non differentiable function like theL1 norm which
is derived from well supported convex optimization
theory. The optimization makes use of the primal-dual
algorithm successfully applied in vision problems.

• Our solution method is easy to implement since requires
simple calculations based on matrix-vector multipli-
cations. We do not need to calculate the Hessian of
the cost function or apply a reordering algorithm. In



addition, we still exploit the sparseness of the Jacobian
using the efficient SuiteSparse library for the matrix-
vector multiplications.

• We propose a very simple and robust algorithm to
produce a fast and good initial seed for the non linear
L1 optimization.

II. RELATED WORK

The most prominent works on pose graph optimization
over the past few years [3], [4], [5], [6] highlight the
importance of representing the whole estimation process
as a Graphical model. These works show that the SLAM
problem can be cast as a graph of relations between the
involved state variables (the inferred data) and the obser-
vations (the evidence). The combination of an optimization
algorithm and its graphical representation is a well known
paradigm in the computer vision community in which it has
been widely studied to solve the similar Bundle Adjustment
problem [7]. In the robotics field, the work presented in
[3] establishes a clear connection of GMRFs and Factor
Graphs to the non linear SLAM problem. The solutions are
based on matrix factorizations of the Hessian (GMRF) or the
Jacobian (Factor Graph) of the cost function. For GMRF the
Cholesky decomposition using CHOLMOD routines [8] is
the common work-horse for factorizing the sparse Hessian.
In [3] a QR factorization is used for the Jacobian while [9]
introduces preconditioned conjugate gradient for large scale
problems. The works in [4], [5] provide new contributions
for incremental solutions. Similarly, [10], [11] find a similar
way to explain the non linear optimization in terms of a
Maximum Likelihood estimation. All this works forms the
basis for theg2o popular library [12] used in pose graph
optimization.

All previous works share in common the way of ad-
dressing the required optimization. They all deal with the
L2 norm for the minimization of the residuals using a
traditional NLQS formulation. It is well known that the
L2 norm is not robust to the presence of spurious data.
This fact has motivated the development of robust front-end
stages in charge of discarding spurious links in the graph.
Recently, new interesting efforts have been made to robustify
the back-end stage either changing the cost function [13],
or introducing switching variables to reduce the effect of
spurious links [14]. These new approaches are also based on
theL2 norm.

The idea of using a robust norm for the cost function
has already been applied in many computer vision problems.
For instance, the Huber norm is commonly used in Bundle
Adjustment approaches to strength the optimization against
the presence of spurious data [15]. In fact, theg2o library has
as well included this norm as an option in its optimization
process. Similarly, image processing applications make use
of robust norms or prior regularizers such as theL1 norm
or the Total Variation [16]. The main problem of these new
norms and priors is their non-differentiable nature. Fortu-
nately, theL1 norm belongs to the set of convex functions
for which there is a well supported set of math tools from

convex optimization theory and variational methods [17].
The advantage of convex problems over non convex ones is
that a global optimum can be calculated with high accuracy
in reasonable time, independently of the initial guess. In our
work we implement as optimization kernel a primal-dual
algorithm that has been successfully used to solve convex
and non-differentiable optimization problems that appearin
several image processing applications [18]. This algorithm
is shown to converge inO(1/k) wherek is the number of
iterations. In [19] it is shown that this rate of convergence
is optimum for convex optimization problems with saddle
point structure.

III. M INIMIZING ‖Ax− b‖1

The standard method to solve many robotic and computer
vision problems is based on a NLSQ algorithm. The goal is
to find a solution

x∗ = arg min
x

F (x) (1)

by minimizing a functionF : Rn → R of the form

F (x) =
∑

i,j

‖r(xi, xj , zij)‖
2
2 = ‖r(x)‖22

wherer(x) : Rn → Rm is a nonlinear residual vector that
measures the discrepancy of the relative relation between
a pair of state variablesxi, xj ∈ x and their gathered
observationzij ∈ z. A local approximation of the cost
function is calculated by linearizing the set of residuals.The
solution is then found iteratively by solving theL2 norm of
the linearized residuals‖Ax− b‖22.

The goal of this paper is to substitute theL2 norm by the
more robustL1 norm in the optimization and iteratively solve
for the linearized residual‖Ax−b‖1. In order to tackle the
non-differentiable nature of theL1 norm we will make use
of the primal-dual optimization formulation.

A. Primal-Dual general problem

For completeness reasons this subsection gives a brief
review of the Primal-Dual general problem for convex func-
tions with saddle-point structure. A more detailed description
can be found in [18]. The basic structure of the primal
problem is given by

min
x∈X

F (Kx) +G(x) (2)

whereK : X → Y is a linear map between two finite-
dimensional vector spacesX andY equipped with an inner
product〈 · , · 〉 and norm‖ · ‖ = 〈 · , · 〉

1
2 .

We transform the original primal problem in Eq. (2) to
a saddle point problem by obtaining the Legendre-Fenchel
transformation of the convex functionF ,

min
x∈X

max
y∈Y

〈Kx, y〉+G(x) − F ∗(y) (3)

whereG : X → [0,+∞) andF ∗ : X → [0,+∞) are proper,
convex, lower semi-continuous (l.s.c) functions. Equation (3)
is known as the primal-dual problem of (2) with dual variable



Algorithm 1 primal-dual

1: {Initialization of variables:}
2: τ, σ > 0, θ ∈ [0, 1]
3: (x0, y0) ∈ X×Y

4: x̄0 = x0

5: while k ≤ N do
6: {Updatexk,yk,x̄k}
7: yk+1 = (I+ σ∂F ∗)−1(yk + σKx̄k)
8: xk+1 = (I+ τ∂G)−1(xk − σK∗yk+1)
9: x̄k+1 = xk+1 + θ(xk+1 − xk)

10: end while

y, andF ∗ is the convex conjugate ofF obtained from the
Legendre-Fenchel transformation.

Algorithm 1 shows the iterative method used to solve the
primal-dual problem. Parametersτ ,σ andθ are set according
to the norm of matrixK. Lines 7 and 8 in the algorithm are
calculated by solving the so called resolvent operator given
by:

y = (I+ τ∂F )−1(ỹ) = arg min
y

{
‖y − ỹ‖2

2τ
+ F (y)}

B. Primal-Dual solution for minimizing ‖Ax− b‖1

Our objective is to solve the following minimization
problem:

min
x

‖Ax− b‖1

comparing this equation with Eq.(2) we can see the following
equivalences:K ↔ A, F (Ax) = ‖Ax−b‖1 andG(x) = 0.
Therefore the primal-dual problem is stated as

min
x

max
y

〈Ax− b,y〉 − F ∗(y)

where the dual conjugateF ∗ is the indicator function defined
as:

F ∗(y) =

{

0, ‖y‖∞ ≤ 1

∞, ‖y‖∞ > 1
(4)

For this particular problem, the solution for the primal and
dual variables at eachk iteration is sketched in algorithm 2.
To speed up the convergence we use a diagonal precondi-
tioning for τ and σ explained in [20] in lines 2 to 5. The
resolvent operator for the dual variable is given in line 13
whereas for the primal variable the resolvent operator is just
the identity (sinceG(x) = 0). Notice that the algorithm is
based on simple sparse matrix-vector products.

IV. L1-INITIALIZATION FOR POSE GRAPHSLAM

Initialization for non linear optimization is crucial to
achieve convergence. A robust back-end solution must pro-
vide an accurate initial seed independently of the norm used
during global iterations. We use the primal-dual algorithmto
generate an accurate seed that will be used later on as input to
theL1 minimizer. In order to achieve the major effectiveness
of the primal dual algorithm, we propose to decouple the
rotation and translation variables. The advantage of this

Algorithm 2 x∗ = primal dual L1(A,b)

1: { Calculate preconditioners }
2: T = diag(τ) with τ = (τ1, . . . τn)
3: Σ = diag(σ) with σ = (σ1, . . . σm)
4:

5: τj =
1∑

m
i=1

‖Aij‖
σi =

1∑
n
j=1

‖Aij‖
6:

7: {Initialize x0
n×1, y0m×1, θ ∈ [0, 1] }

8: x̄0 = x0

9: while k ≤ N do
10: { Update Dual }
11: yk+1 = yk + Σ · (Ax̄k − b)
12:

13: yk+1
i =

ỹ
k+1

i

max(1,‖ỹk+1

i
‖)

∀yi ∈ y

14:

15: { Update Primal }
16: xk+1 = xk − T ·ATy

17:

18: x̄k+1 = xk+1 + θ(xk+1 − xk)
19: xk = xk+1

20: end while
21: return x∗ = xk

scheme is the convex nature of the resulting cost functions.
Algorithm 3 details the initialization process. First, theJaco-
bian and gradient for the angle linear systemJθθ = gθ are
computed. In this step only the measured relative orientations
are involved thus producing a Jacobian pattern whose rows
are trivially expressed asJij = [0 . . . − 1 . . . 0 . . . 1 . . .].
An initial correction of the angles is carried by calling the
primal dual L1 algorithm as a subroutine. This delivers a
set of improved initial orientationsθ∗. A similar procedure
is applied to solve the translation subproblemJtt = gt. By
fixing the orientation to the partial solutionθ∗, the decoupled
translation problem becomes also convex obtaining an initial
solutiont∗.

V. L1 NORM BASED OPTIMIZATION FOR POSE GRAPH

SLAM

Global optimization updates using theL1 cost function are
also carried out in a primal-dual sense. Similar to the Gauss
Newton method, we provide an iterative method shown in

Algorithm 3 getInitialSeed(FG)

1: { orientation seed }
2:

3: [Jθ,gθ] = buildSetupOrientation(FG)
4: θ∗ = primal dual L1(Jθ , gθ)
5: x = fixTheta(x, θ∗)
6:

7: { translation seed }
8:

9: [Jt,gt] = buildSetupT ranslation(FG)
10: t∗ = primal dual L1(Jt , gt)



algorithm 4. At the current linearization point, we build the
Jacobian matrix and gradient vector of our pose factor graph
given the state vectorxk and the set of relatives observations
z. The calculation of the gradients and Jacobians is exactly
the same as for theL2 norm based optimization. The state
vector is updated using the composition transformation as in
the g2o optimizer.

Algorithm 4 Factor Graph Optimization

1: {Given a factor graphFG(V , E)}
2: x0 = getInitialSeed(FG)
3: while k ≤ Ng do
4: [J,g] = buildSetup(xk , z)
5: dxk = primal dual L1(J , g)
6: xk+1 = xk ⊕ dxk

7: end while

VI. RESULTS

We provide a fast and reliable C++ implementation of
our L1 based Factor graph algorithm running on an Intel
Core i7-2630QM CPU at 2.9GHz. Our back-end module
allows us to use theL1 and L2 based cost functions for
primal-dual and NLSQ optimizations respectively. Our im-
plementation is based on the SuitSparse library with efficient
sparse matrix-vector operations forL1, and a fast Cholesky
factorization solver with reordering forL2. We have tested
our L2 NLSQs solver against the g2o software obtaining
the same efficiency. Nonetheless, we have run g2o in the
expriments to assure the thoughtfulness of the evaluation and
to provide fair comparisons with the most popular state of
the art optimizer. The algorithms proposed in this paper are
run on three well known real datasets widely used:Intel,
Manhattan3500 andCity10k. The simplicity of theL1

calculations also allows us to carry out more challenging
evaluations on larger simulated Manhattan worlds with 10k
and 50k nodes.

Our first experiment evaluates the ability of the primal
dual algorithm to obtain good initial seeds. Algorithm 3 is
executed to find an improved set of angles from which we
calculate a set of improved translations. Figures 2a and 2b
show the evolution of the cost function per iteration for the
big Manhattan10k dataset. In both cases, we intentionally
over iterate the algorithm using1e+5 primal-dual iterations
until the convex function gets its lowest costs and reaches
the optimal minimum. The results empirically show that
a maximum of 1e+4 iterations are required to achieve
the searched solution. Notice theO(1/k) cost reduction
behavior predicted by the theory. Figure 2c shows also the
evolution of the cost function during the non-linear global
optimization (algorithm 4) with 10000 outer updates and
400 inner primal-dual iterations. Again, we have performed
much more iterations than the strictly necessary to get the
basin minimum. According to the results, at least 30 outer
iterations are required to obtain a solution for the non linear
problem. We can avoid the use of a fixed number outer

iterations by using similar stop criteria on the gradient norm
and cost values as in g2o. Figure 3 shows the final maps
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Fig. 3: Optimized maps withL1 based Factor graph SLAM.
Intel (top-left). Manhattan3500 (top-right). City10k (bottom-left).
Manhattan10k (bottom-right).

TABLE I: Initial and final L1 costs

L1 solution
Initial cost Final Cost

Manhattan3500 5940 1319,53
Manhattan10k 5.2064e+07 30206,5
Intel 1513,17 982,051
City10k 2.78513e+06 4021,95
Manhatan50k 7.14591e+08 117734

obtained for 4 datasets. In Table I we summarize the initial
and finalL1 costs for the evaluated datasets. Figure 4 depicts
for the Intel dataset the output sequence for each step of
the optimization. To clearly show the effect of the initial
seed algorithm we generate a very noisy data as input to
the optimizer. The improved seed was obtained after 1000
primal-dual iterations for both angles and translations. The
final L1 non-linear optimization required 5 outer iterations
with 500 primal dual inner iterations.

Although our algorithm usually requires a larger number
of L1 iterations to achieve a correct map compared to
g2o, each iteration requires less time due to the simple
sparse matrix-vector multiplications involved. On the con-
trary, CHOLDMOD based solvers as g2o use much more
time per iteration to solve a Newton step. In table II we
summarize the time in seconds for each iteration for the
different algorithms. For the Manhattan50k dataset, which
contains 50000 nodes and 700000 edges, the g2o algorithm
gets stacked solving the first iteration while the proposed
L1 algorithm is able to achieve a solution. In fact, the
table shows the CHOLMOD dependency on the graph struc-
ture. TheCity10k map is solved in just 0.12s while the
Manhattan10k, which contains the same number of nodes
but a different edge distribution takes 2.31s per iteration. An
incremental version of the proposed algorithm was tested
against the incremental g2o solution. In Figure 5 we show the
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Fig. 2: Results obtained after the execution of ourL1 based primal dual algorithm. The plots show the cost evolution per number of total
iterations on theManhattan10k dataset. (a) Cost vs iterations for convex angle correction. (b) Cost vs iterations for convex translation
correction. (c) Global cost vs outer iterations for the complete non-linear optimizations. For each plot, a close up picture is taken to show
that the minimum cost is achieved during the first iterations.
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Fig. 4:Graph optimization sequence for theIntel dataset. (a) Initial seed with added noise. (b) Result afterseed initialization (light-cyan)
and finalL1 optimization (dark-blue). (c) Comparison ofL1 based solution (blue) vs.L2 g2o solution (red).

TABLE II: Time per iteration in seconds

L1 solution L2-g2o solution
Angle Traslation Global

Manhattan3500 0,0009 0,002 0,003 0,016
Manhattan10k 0,003 0,0075 0,011 2,31
Intel 0,0003 0,0006 0,001 0,0067
City10k 0,003 0,0076 0,013 0,12
Manhattan50k 0,015 0,033 0,056 ??

time per iteration required by g2o and our method to solve
the City10k dataset. Notice that the behaviour of our algo-
rithm remains unaltered with the number of nodes in contrast
to g2o. For more than 5000 nodes the running times of both
algorithms is very similar. Finally, we show the robustnessof
the L1 based Factor Graph algorithm in presence of strong
spurious data. Our algorithm is able to achieve an accurate
result even when the datasets contain very incorrect links
without any adjustment of new experimental parameters. In
Figure 6 bottom, we show an optimized map of theIntel
andManhattan3500 datasets where 10 and 2 links have
been randomly added respectively. These links connect far
away robot positions whereas the corresponding spurious
measurements tells the algorithm that the distance is zero.
For this datasets we run g2o using the robust Huber norm
with different kernel values. A total of 100 iterations have

been done by g2o using a Levenberg Marquardt step. On
the right of the figure, we can observe the final distorted
solutions. In contrast,L1 based Factor Graph SLAM uses
10000 iterations for angle and translation initializationwith
no global optimization obtaining good results. The input
noisy data is depicted in green. Random spurious data
corresponds to the red links.
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Fig. 5: Time per iteration for an incremental problem wih the
City10k dataset.



Fig. 6: Brief evaluation of the graph SLAM algorithms under the
presence of spurious data. On the left, the solution obtained by the
proposed algorithm. On the right, the solution provided by g2o with
robust Huber kernel.

VII. C ONCLUSIONS ANDFUTURE WORK

The current work presents a novel Factor Graph algorithm
for pose graph SLAM based on minimizing anL1 norm
cost function instead of the traditional NLSQs scheme. We
introduce into the SLAM literature a primal-dual transfor-
mation able to cope with non differentiable functions like
the L1 norm in reasonable time. To solve the non-linear
and non-differentiable optimization, we propose a double
iterative algorithm: On the one hand, an inner iterative
subroutine is executed to find theL1 norm solution of
a linear system; On the other hand, an outer iteration is
performed, as in traditional Gauss Newton methods, that
linearizes the residuals and builds the linear system that
will feed the inner loop. As additional contributions, we
propose a simple an effcient algorithm to calculate a very
good seed for the non-linear optimization based on decou-
pling the orientation and translation variables to obtain two
convex minimization problems easily solved using the same
paradigm. Since the primal-dual formulation proposed only
performs sparse matrix-vector products, the algorithm is able
to reach accurate solutions on very large graph datasets in
which state of the art optimizers can not perform well. We
have also shown the ability of the proposed optimization
method to reject strong spurious data. Unlike the known
Huber norm, theL1 norm is more robust and does not require
the tuning of any kernel parameter.

This work opens a bunch of future lines of research. Since
all norms are convex, we could make use of the primal dual
formulation to introduce new norms into our optimization
back-end such as theL∞ norm or to combine different
norms to derive new algorithms to improve data association

during the optimization steps. In a practical sense, we can
extent the use of our primal dual algorithm to 3D pose
graph optimization. We also feel that other fields of robotic
reseach where optimization of non-differentiable functions is
required can be drastically favored with this new formulation.
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