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Abstract— In this paper we propose a novel solution based on Zab Zpe
the £; norm as aback-end to pose graph SLAM. In contrast to
other NLSQs approaches, we formulate an iterative algoritim
inspired directly on the Factor Graph structure to solve for a @ e a
the linearized residual |Ax — b|;. Although similar to the
robust Huber norm, the £; norm is much more effective in
removing the effect of strong spurious data. Since our apprach
depends on the minimization of a non differentiable functim,
we provide the theoretical insights to solve for theC; norm. Our
optimization is based on a primal-dual formulation succesfully a o a a a a
applied for solving variational convex problems in compute
vision. We show the effectiveness of th&€; norm to produce

both a robust initial seed and a final optimized solution on
challenging and well known datasets widely used in other sta Zar

of the art works. Fig. 1: On the left, a Factor Graph for a pose graph SLAM
subproblem. A GMRF graph for the same problem structuréafyig

I. INTRODUCTION

During the last recent years, graphical models and non

linear optimization based algorithms have become the cote the indirect effect of the observations [1]. For typicakp
of many state of the art SLAM and Bundle Adjustmenigraph problems in which the observations only link pairs of
approaches. In both contexts, the goal is to estimate a Sgate variables both types of models turn out to produce very
of state variables representing the location of robotisenssimilar graph representations as can be observed in thefigur
positions along a trajectory and the pose of geometric Commonly, GMRF and Factor Graph solutions are based
elements characterizing the environment structure. Thet man minimizing anZ, norm function of the residual&(x)||3.
common way to formally define the problem is through & local quadratic approximation of the function is usually
non linear least squares (NLSQs) formulation: given astinpgarried out by linearizing the residual errarss Ax — b.
the set of relative measurements between state variabkes, tterative methods as gradient descend, conjugate gradient
goal is to minimize an error cost function. A solution deftve Gauss-Newton or Levenberg Marquardt are used as mini-
the best state variable estimation for the cost function in mizers [2], being Gauss-Newton and Levenberg Marquardt
MAP sense. Graphical models aim to graphically interprehe most common algorithms.
the stochastic relations between state variables and noisyin this paper we propose a novel solution based on‘the
observations. Lets consider the pose graph subproblemnorm as aback-end for solving a pose graph. We formulate
which the set of state variablesrepresent the locations of an iterative algorithm based on the Factor Graph structure
the sensor/robot in the environment anthe measurements of the problem that solves in each step e norm of the
obtained from odometry readings or relative transfornmatio linearized residual] Ax — b|;.
calculated from scan matching. Figure 1 shows two common Our contributions are summarized as follows:
Graphical models used to represent a pose graph. On the lef{ e formulate a novel back-end for Factor Graph SLAM
we have a Factor Graph model which is a bipartite graph with  pased on theZ; norm that is robust and effective in
links between two types of nodes: first, nodes representing  removing strong spurious data.
state variables: (blue circles); second, nodes (red squares) , we provide the theoretical insight for minimizing a
that explicitly codify the constraints between the previous non differentiable function like theZ; norm which
state variables. On the right of the figure we have a Gaussian s derived from well supported convex optimization
Markov Random Field (GMRF) with a unique type of node  theory. The optimization makes use of the primal-dual
representing the state variables whereas the links show the  g|gorithm successfully applied in vision problems.
probabilistic relations that appear between the variables  , Our solution method is easy to implement since requires

. _ simple calculations based on matrix-vector multipli-
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addition, we still exploit the sparseness of the Jacobiatbnvex optimization theory and variational methods [17].
using the efficient SuiteSparse library for the matrix-The advantage of convex problems over non convex ones is
vector multiplications. that a global optimum can be calculated with high accuracy
« We propose a very simple and robust algorithm tdn reasonable time, independently of the initial guess.un o
produce a fast and good initial seed for the non lineavork we implement as optimization kernel a primal-dual
L, optimization. algorithm that has been successfully used to solve convex
and non-differentiable optimization problems that apgear
several image processing applications [18]. This algorith
The most prominent works on pose graph optimizatiois shown to converge i®(1/k) wherek is the number of
over the past few years [3], [4], [5], [6] highlight the iterations. In [19] it is shown that this rate of convergence
importance of representing the whole estimation process optimum for convex optimization problems with saddle
as a Graphical model. These works show that the SLAMoint structure.
problem can be cast as a graph of relations between the
involved state variables (the inferred data) and the obser- HI. MINIMIZING [[Ax —bl|y
vations (the evidence). The combination of an optimization The standard method to solve many robotic and computer
algorithm and its graphical representation is a well knowRision problems is based on a NLSQ algorithm. The goal is
paradigm in the computer vision community in which it hago find a solution
been widely studied to solve the similar Bundle Adjustment
problem [7]. In the robotics field, the work presented in x" = arg min F(x) 1)
[3] establishes a clear connection of GMRFs and Factor = = . ) *
Graphs to the non linear SLAM problem. The solutions arBY Minimizing a function/” : R™ — R of the form
based on matrix factorizations of the Hessian (GMRF) or the F(x) = Z (a2, 25|12 = r(x)]12
»J

II. RELATED WORK

Jacobian (Factor Graph) of the cost function. For GMRF the
Cholesky decomposition using CHOLMOD routines [8] is
the common work-horse for factorizing the sparse Hessiawherer(x) : R" — R™ is a nonlinear residual vector that
In [3] a QR factorization is used for the Jacobian while [9Jneasures the discrepancy of the relative relation between
introduces preconditioned conjugate gradient for largdesc @ pair of state variables;,z; € x and their gathered
problems. The works in [4], [5] provide new contributionsobservationz;; € z. A local approximation of the cost
for incremental solutions. Similarly, [10], [11] find a sili ~ function is calculated by linearizing the set of residualse
way to explain the non linear optimization in terms of asolution is then found iteratively by solving th& norm of
Maximum Likelihood estimation. All this works forms the the linearized residualgAx — b3
basis for theg2o popular library [12] used in pose graph The goal of this paper is to substitute te norm by the
optimization. more robusiZ; norm in the optimization and iteratively solve
All previous works share in common the way of ad.for the linearized rESidua"AX—b”l. In order to tackle the
dressing the required optimization. They all deal with théon-differentiable nature of th€, norm we will make use
L, norm for the minimization of the residuals using aof the primal-dual optimization formulation.
tﬁradmonaI_NLQS formulation. It is well known t_hat the A. Primal-Dual general problem
2 horm is not robust to the presence of spurious data.
This fact has motivated the development of robust front-end For completeness reasons this subsection gives a brief
stages in charge of discarding spurious links in the grapFeview of the Primal-Dual general problem for convex func-
Recently, new interesting efforts have been made to rdigustitions with saddle-point structure. A more detailed desioip
the back-end stage either changing the cost function [13jan be found in [18]. The basic structure of the primal
or introducing switching variables to reduce the effect oproblem is given by
tsrg)euzzunsolrmmlfs [14]. These new approaches are also based on QIEIéi)I(lF(Kx) +G(a) @

The idea of using a robust norm for the cost function, hare kK - X — Y is a linear map between two finite-

has already been applied in many computer vision problems,ansional vector spac@s and'Y equipped with an inner
For instance, the Huber norm is commonly used in Bundlﬁroduct( -Yandnorm|| - |[=(-,-)%.

Adjustment approaches to strength the optimization agains \ya transform the original primal problem in Eq. (2) to

the presence of spurious data [15]. In fact, g@e library has a saddle point problem by obtaining the Legendre-Fenchel
as well included this norm as an option in its Optimizatiortransformation of the convex functiof

process. Similarly, image processing applications malke us

of robust norms or prior regularizers such as e norm min max(Kz, y) + G(z) — F*(y) (3)

or the Total Variation [16]. The main problem of these new rEX yeY

norms and priors is their non-differentiable nature. FortuwhereG: X — [0, +oc0) and F*: X — [0, +o0) are proper,
nately, the£; norm belongs to the set of convex functionsconvex, lower semi-continuoukg.c) functions. Equation (3)
for which there is a well supported set of math tools froms known as the primal-dual problem of (2) with dual variable



Algorithm 1 primal-dual Algorithm 2 x* = primal _dual_£(A,b)

1: {Initialization of variables} 1: { Calculate preconditioners }
2: 7,0 >0,0 €0, 1] 2. T=diag(t) Wi th 7= (71,...T)
3 (2% y°)eXxY 3 Y =diag(o) Wth o= (01,...0m)
4: 70 = 20 4:
5: while £k < N do [T p— 0; = —m—t
6 {Updatest y* 7} . I T A >0 TAGT
7.yt = I+ 00F*) L (y* + oKz¥) 7. {Initialize 29 ., ¥°,.1, 0 € [0, 1] }
8 Ml = I+ 70G) 1 (aF — o K*ykT1) 8 ' =2z
9. FhHl =gkl 4 g(xF L — oF) 9: while £k < N do
10: end while 10: { Update Dual }
1: yMl =yb 4 ¥. (AxF —b)
12: g1
y, and F'* is the convex conjugate of' obtained from the 13: yf“ = max(ii||~k+1\\) Yy, €y
Legendre-Fenchel transformation. 14: e

Algorithm 1 shows the iterative method used to solve thas: { Update Primal }
primal-dual problem. Parametersr andd are set according 16: x**! =x* —T. ATy
to the norm of matriXK. Lines 7 and 8 in the algorithm are 17:
calculated by solving the so called resolvent operatorrgive1s:  x*+1 = x*+1 4 g(x*+1 — xF)

by: 19:  xF = xkt!
ly — 312 20: end while
y= I+ 70F) ! (j) = arg min {y27y + F(y)} 21: return  x* = xy,
y T

B. Primal-Dual solution for minimizing || Ax — bl scheme is the convex nature of the resulting cost functions.

Our objective is to solve the following minimization a|gorithm 3 details the initialization process. First, theco-

problem: . bian and gradient for the angle linear systdpt = g, are
min |Ax — blx computed. In this step only the measured relative orieoriati
. . : . .are involved thus producing a Jacobian pattern whose rows
comparing this equation with Eq.(2) we can see thefollowmgre trivially expregsed ag?? — 0 Fl) 0...1..]
/LJ —_ o e .. .. DR I

equivalencesK < A, F(Ax) = ||[Ax—Db|; andG(x) = 0.

Therefore the primal-dual problem is stated as An initial correction of the angles is carried by calling the

primal_dual_L, algorithm as a subroutine. This delivers a
min max(Ax — b,y) — F*(y) set of improved initial orientationg*. A similar procedure
x Y is applied to solve the translation subprobldgt = g;. By
where the dual conjugaté* is the indicator function defined fixing the orientation to the partial solutidt, the decoupled

as: translation problem becomes also convex obtaining aralniti
0 <1 solutiont*.
00 >
» WY lleo V. L£1; NORM BASED OPTIMIZATION FOR POSE GRAPH

For this particular problem, the solution for the primal and SLAM

dual variables at each iteration is sketched in algorithm 2. 5|pal optimization updates using tife cost function are
To speed up the convergence we use a diagonal precongis, carried out in a primal-dual sense. Similar to the Gauss

tioning for 7 and o explained in [20] in lines 2 to 5. The Newton method, we provide an iterative method shown in
resolvent operator for the dual variable is given in line 13

whereas for the primal variable the resolvent operatorss ju
the identity (sinceG(x) = 0). Notice that the algorithm is Algorithm 3 getlnitialSeed(£'G)
based on simple sparse matrix-vector products. 1. { orientation seed }

IV. L1-INITIALIZATION FOR POSE GRAPHSLAM 2

. ) o . . 3: [Jo, go] = buildSetupOrientation(FG)
Initialization for non linear optimization is crucial to  ,, >~ .

. . 4: 6* = primal_dual _L1(Jgo , o)
achieve convergence. A robust back-end solution must pro-. x = fixTheta(x, %)
vide an accurate initial seed independently of the norm used. ’
during global iterations. We use the primal-dual algormll_lm 7: { trandation | )
generate an accurate seed that will be used later on as mput L
tr}etﬁl mlmmllzgr. Iln olrde(ttho achieve the majtor Sffectlv?n(iﬁs o [J;, 2] = buildSetupTranslation(FG)
of the primal dual algorithm, we propose to decouple thg . .. — primal.dual L, (J; , &)

rotation and translation variables. The advantage of this




algorithm 4. At the current linearization point, we builceth iterations by using similar stop criteria on the gradientrmo
Jacobian matrix and gradient vector of our pose factor graf@nd cost values as in g2o. Figure 3 shows the final maps
given the state vectot® and the set of relatives observations
z. The calculation of the gradients and Jacobians is exact’
the same as for th€, norm based optimization. The state.
vector is updated using the composition transformatiomas
the g20 optimizer. |

Algorithm 4 Factor Graph Optimization

: {Given a factor graptFG(V, &)}

xV = getInitial Seed(FG)

- while k£ < N, do
[J,g] = buildSetup(x* , z)
dx* = primal_dual_L,(J , g)
k1 = xk @ dxk

end while

=

NoOaR N
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VI. RESULTS Fig. 3: Optimized maps withC; based Factor graph SLAM.

. . . . tel (top-left). Manhattan3500 (top-right). City10k @bam-left).
We provide a fast and reliable C++ implementation otq;nhgﬁgnio)k (bgtrt‘o?n-ﬁght). (top-right). City ef)

our £, based Factor graph algorithm running on an Intel
Core i7-2630QM CPU at 2.9GHz. Our back-end module

allows us to use theZ; and £, based cost functions for TABLE I: Initial and final £, costs
primal-dual and NLSQ optimizations respectively. Our im- .

.. . . . . L1 solution
plementation is based on the SuitSparse library with efficie Initial cost  Final Cost
sparse matrix-vector operations f6i, and a fast Cholesky ~Manhattan3500 5940 131953
factorization solver with reordering fof,. We have tested Manhattan10k | 5.2064e+07 30206,5

X o Intel 1513,17 982,051

our £, NLSQs solver against the g2o0 software obtaining ;o 2 785136406 4021.95
the same efficiency. Nonetheless, we have run g2o in thevanhatan50k | 7.14591e+08 117734

expriments to assure the thoughtfulness of the evaluatidn a
to provide fair comparisons with the most popular state abbtained for 4 datasets. In Table | we summarize the initial
the art optimizer. The algorithms proposed in this paper a@nd finalZ; costs for the evaluated datasets. Figure 4 depicts
run on three well known real datasets widely usedt el ,  for thel nt el dataset the output sequence for each step of
Manhat t an3500 andCi t y10k. The simplicity of theC;  the optimization. To clearly show the effect of the initial
calculations also allows us to carry out more challengingeed algorithm we generate a very noisy data as input to
evaluations on larger simulated Manhattan worlds with 10the optimizer. The improved seed was obtained after 1000
and 50k nodes. primal-dual iterations for both angles and translationse T
Our first experiment evaluates the ability of the primafinal £; non-linear optimization required 5 outer iterations
dual algorithm to obtain good initial seeds. Algorithm 3 iswith 500 primal dual inner iterations.
executed to find an improved set of angles from which we Although our algorithm usually requires a larger number
calculate a set of improved translations. Figures 2a and 26 £, iterations to achieve a correct map compared to
show the evolution of the cost function per iteration for thg2o, each iteration requires less time due to the simple
big Manhat t an10k dataset. In both cases, we intentionallysparse matrix-vector multiplications involved. On the con
over iterate the algorithm usinte+5 primal-dual iterations trary, CHOLDMOD based solvers as g2o0 use much more
until the convex function gets its lowest costs and reachdisne per iteration to solve a Newton step. In table Il we
the optimal minimum. The results empirically show thasummarize the time in seconds for each iteration for the
a maximum of le+4 iterations are required to achievedifferent algorithms. For the Manhattan50k dataset, which
the searched solution. Notice th@(1/k) cost reduction contains 50000 nodes and 700000 edges, the g2o algorithm
behavior predicted by the theory. Figure 2¢c shows also thgets stacked solving the first iteration while the proposed
evolution of the cost function during the non-linear globalC, algorithm is able to achieve a solution. In fact, the
optimization (algorithm 4) with 10000 outer updates andable shows the CHOLMOD dependency on the graph struc-
400 inner primal-dual iterations. Again, we have performeture. TheCi t y10k map is solved in just 0.12s while the
much more iterations than the strictly necessary to get tidanhat t an10k, which contains the same number of nodes
basin minimum. According to the results, at least 30 outdsut a different edge distribution takes 2.31s per iteratiom
iterations are required to obtain a solution for the nondme incremental version of the proposed algorithm was tested
problem. We can avoid the use of a fixed number outexgainst the incremental g2o solution. In Figure 5 we show the
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Fig. 2: Results obtained after the execution of dlir based primal dual algorithm. The plots show the cost ewatugier number of total
iterations on thevanhat t an10k dataset. (a) Cost vs iterations for convex angle correcfionCost vs iterations for convex translation
correction. (c) Global cost vs outer iterations for the ctetgnon-linear optimizations. For each plot, a close upupicis taken to show
that the minimum cost is achieved during the first iterations
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Fig. 4: Graph optimization sequence for that el dataset. (a) Initial seed with added noise. (b) Result afted initialization (light-cyan)
and final £, optimization (dark-blue). (c) Comparison @f, based solution (blue) v&2> g20 solution (red).

TABLE II: Time per iteration in seconds been done by g2o0 using a Levenberg Marquardt step. On

£ solution L£2-g20 solution  the right of the figure, we can observe the final distorted
SENR—— éf(‘)%'gg Tfa(s)'%t(')%” %‘%%%' S solutions. In contrastC; based Factor Graph SLAM uses
anhattan , \ , , . . . S
Manhattan10k | 0,003 00075 0011 231 10000 |terat|ons_for_angle and_ translation |n|t|aI|zatwmh
Intel 0,0003 0,0006 0,001 0,0067 no global optimization obtaining good results. The input
City10k 0,003 0,0076 0,013 0,12 noisy data is depicted in green. Random spurious data
Manhattan50k | 0,015 0,033 0,056 ??

corresponds to the red links.

0.8

time per iteration required by g2o and our method to solve |
the CitylOk dataset. Notice that the behaviour of our algo;
rithm remains unaltered with the number of nodes in contra est
to g20. For more than 5000 nodes the running times of botﬁ ol
algorithms is very similar. Finally, we show the robustneks 2
the £, based Factor Graph algorithm in presence of strong *
spurious data. Our algorithm is able to achieve an accurafe, |
result even when the datasets contain very incorrect linkg
without any adjustment of new experimental parameters. I@ o2r
Figure 6 bottom, we show an optimized map of thet el 2
andManhat t an3500 datasets where 10 and 2 links have
been randomly added respectively. These links connect far 1 20 @ a0 50 w0 o a0 o0 w0

away robot positions whereas the corresponding spurious Number of nodes/10

measurements tells the algorithm that the distance is zefog. 5: Time per iteration for an incremental problem wih the
For this datasets we run g2o using the robust Huber norf t Y10k dataset.

with different kernel values. A total of 100 iterations have

te

0.1
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Fig. 6: Brief evaluation of the graph SLAM algorithms under the (7]
presence of spurious data. On the left, the solution oldalryethe
proposed algorithm. On the right, the solution provided Bg with

robust Huber kernel. [8]

VII. CONCLUSIONS ANDFUTURE WORK Bl

The current work presents a novel Factor Graph algorithm
for pose graph SLAM based on minimizing ay norm
cost function instead of the traditional NLSQs scheme. wegd
introduce into the SLAM literature a primal-dual transfor-
mation able to cope with non differentiable functions likel11]
the £, norm in reasonable time. To solve the non-linear
and non-differentiable optimization, we propose a double
iterative algorithm: On the one hand, an inner iterativél2]
subroutine is executed to find th&; norm solution of
a linear system; On the other hand, an outer iteration is
performed, as in traditional Gauss Newton methods, thé&i3]
linearizes the residuals and builds the linear system that
will feed the inner loop. As additional contributions, we[14]
propose a simple an effcient algorithm to calculate a very
good seed for the non-linear optimization based on deco 5
pling the orientation and translation variables to obtaio t
convex minimization problems easily solved using the saniéé]
paradigm. Since the primal-dual formulation proposed only
performs sparse matrix-vector products, the algorithnbis a
to reach accurate solutions on very large graph datasets in
which state of the art optimizers can not perform well. We, ,
have also shown the ability of the proposed optimization
method to reject strong spurious data. Unlike the knowl38]
Huber norm, theZ; norm is more robust and does not require
the tuning of any kernel parameter.

This work opens a bunch of future lines of research. Sindé®l
all norms are convex, we could make use of the primal dual
formulation to introduce new norms into our optimization[2o]
back-end such as th&€., norm or to combine different
norms to derive new algorithms to improve data association

during the optimization steps. In a practical sense, we can
extent the use of our primal dual algorithm to 3D pose
graph optimization. We also feel that other fields of robotic
reseach where optimization of non-differentiable funcsics
required can be drastically favored with this new formualati
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