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Abstract— Graph-based Simultaneous Localization and Map-
ping (SLAM) has experienced a recent surge towards robust
methods. These methods take the combinatorial aspect of data
association into account by allowing decisions of the graph
topology to be made during optimization. In this paper, the Gen-
eralized Graph SLAM framework for SLAM under ambiguous
data association is presented, and a formal description of
using hyperedges to encode uncertain loop closures is given for
the first time. The framework combines both hyperedges and
multimodal Mixture of Gaussian constraints to cover all sources
of ambiguity in SLAM. An extension of the authors’ multimodal
Prefilter method is developed to find good initial conditions in
such a generalized multimodal hypergraph. Experiments on
synthetic datasets show that the novel multimodal hypergraph
Prefilter method is both significantly more robust and faster
than other robust state-of-the-art methods.

I. INTRODUCTION

Today’s robotics research pushes the envelope on where
solutions using robots and intelligent systems can be ap-
plied. When robots face more complex, unstructured, and
dynamic environments while expanding their workspace, the
problem of Simultaneous Localization and Mapping (SLAM)
becomes even more relevant and significantly harder at the
same time. There is a clear and present need for efficient and
most of all robust SLAM methods that are able to generate a
useful map, even under erroneous data association decisions
on any level in the SLAM process.

Graph-based SLAM has been the method of choice in
the latest literature on SLAM in dynamic environments
[1], portable SLAM systems for humans [2], SLAM with
micro aerial vehicles (MAV) [3], [4], as well as underwater
SLAM [5]. All of these use cases can benefit significantly
from an improved robustness of graph optimization methods
for SLAM. For those reasons, robust graph optimization
or inference for graph-based SLAM has become a strong
research focus very recently [6], [7], [8], [9], [10], [11].
These methods fall into roughly two categories:

In one ([10], [11], [8], [9] and partially [7]), incongruent
graph constraints are simply discounted during optimization.
This category is roughly comparable to iteratively reweighted
least squares [12] or least trimmed squares [13], both tradi-
tional robust regression techniques.

The other ([6] and partially [7]) allows multiple compo-
nents per constraint, either as a multimodal Mixture of Gaus-
sians (MoG) [6], or a so-called multimodal Max-Mixture [7].

This paper presents a general framework for SLAM un-
der ambiguous data associations, called Generalized Graph
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SLAM. Its description contains the first formal introduction
of how uncertain loop closures can be modeled using hy-
peredges. This is extension is combined with the authors’
previous work on multimodal constraints [6].

The hyperedge components allow to cope with global
ambiguities, i.e. to represent multiple alternative hypotheses
about possible loop closures. The multimodal components in
contrast deal with local ambiguities, i.e. they handle different
alternative hypotheses about the motion a robot/sensor may
have undergone between two subsequent poses. This new
framework of Generalized Graph SLAM can hence handle
local as well as global ambiguities in a single coherent
manner. Furthermore, it is shown that other robust methods
found in the literature are conceptually special cases within
our Generalized Graph SLAM framework.

To solve the challenges put forth in the Generalized Graph
SLAM framework, a novel extension of the authors’ Prefilter
method [6] to generate good initial conditions for selecting
globally consistent constraints from such multimodal hyper-
graphs is presented. Experiments show that the extended
Prefilter method is both significantly more robust and faster
than other robust state-of-the-art methods.

II. RELATED WORK

The robust SLAM methods in [6], [7], [8], [9], [10], [11]
improve upon traditional Graph SLAM methods by providing
ways to filter out or discount incongruent graph constraints
during optimization.

While not specified exactly in the paper, the g2o graph
optimization library by Kümmerle et al. [14] chooses a tradi-
tional robust optimization approach by applying an iteratively
reweighted least squares (IRLS) method [12]. Their approach
allows weighting the individual terms of the cost function by
the computed residuals and reducing the influence of large
residuals. Multiple of these robust kernels are implemented,
e.g. the Huber or the Cauchy kernel [12]. Thus, incongruent
constraints are weighted less, which allows the method to
converge to a reasonable result when outliers are present.
The latest g2o version1 was used in the experiments below.

Sünderhauf and Protzel [10], [11] chooses a more explicit
reweighting scheme were the weight of a cost function term
is controlled as part of the state vector during optimization.
Instead of using the value of the local residual to scale the
impact of it in the total cost function, switching variables
are introduced that are explicitly part of the state. Either a
sigmoid function [10] or a linear function [11] is used to

1from https://github.com/RainerKuemmerle/g2o



weigh individual cost function terms. For the experiments
below, an implementation of this method in the g2o library
published as open source by Sünderhauf and Protzel is used2.
This implementation uses the more recently proposed linear
switch function [11].

In the authors’ previous work [6], a novel multimodal
extension of the traditionally unimodal constraints used
in graph-based SLAM was introduced. Standard methods
assume that a constraint in the graph is inherently correct
and just uncertain due to noise; it can hence be represented
by a single underlying normal distribution. [6] uses a mul-
timodal Mixture of Gaussians (MoG) instead that allows
multiple mutually exclusive options (modes) in each edge.
The authors also introduced the concept of local ambiguity
vs. global ambiguity, where the presented approach using
MoGs is used to solve the local ambiguity problem, i.e.
the handling of different motion alternatives between two
subsequent robot/sensor poses. Several methods are outlined
in [6] to solve SLAM with locally ambiguous registration
results that are expressed in multimodal MoGs, including a
global graph initialization method called Prefilter which is
shown to be very robust. It is used to discard incongruent
components in the MoG constraints before optimization,
which is related to least trimmed squares [13].

Olson and Agrawal [7] take a similar approach by allowing
multiple single normal distributions in one constraint in the
graph. However, in their method, the decision which of the
constraint distributions should be used is reevaluated greedily
in each step of the iteration. Instead of using a weighted
sum of normal distributions as is the case with MoGs, their
approach only uses the component which contributes the
maximum probability to the current estimate, thus the name
Max-Mixture. Max-Mixtures have the disadvantage that they
are chosen greedily given the current estimate, requiring
good initial conditions to allow convergence. Olson and
Agrawal [7] also describe the idea that multiple loop closing
constraints may be combined into one using a multimodal
Max-Mixture, effectively representing a hyperedge but not
explicitly using the name nor describing the idea in any
formal way. Again, the implementation for the g2o library
made available by the authors Olson and Agrawal is used in
the experiments below3.

Latif et al. [8], [9] present a method called RRR to generate
clusters of temporally close loop-closing constraints and
check these for spatial consistency. The method makes the
rather significant assumption that sequential constraints are
generated using odometry and are always without outliers.
A traditional X 2 error metric is used to identify outliers
in each cluster of loop-closing constraints. By explicitly
making a binary decision about the inclusion or rejection
of individual constraints, the method is highly related to the
least trimmed squares method. By using a spatial consistency
measure to select outliers, the method is also related to the
Prefilter method above. For this method, the open source

2from http://openslam.org
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implementation for the g2o library was also provided by its
authors Latif et al.4

The idea of using hyperedges to represent global ambi-
guity (i.e. ambiguous loop detection results) is introduced
in this paper, and this idea is combined with the used
of multimodal edges to represent local ambiguities in the
Generalized Graph SLAM framework. An extension of the
multimodal Prefilter method that can simultaneously process
multimodal MoG constraints as well as ambiguous loop
closure constraints in the form of hyperedges is subsequently
presented. The following section validates the presented
method in comparison to the methods described above with
experimental results using synthetic datasets with varying
degrees of complexity. The last section concludes the paper.

III. GENERALIZED GRAPH SLAM

A. Traditional Graph-Based SLAM

Formally, a pose graph is an undirected graph G = (V,E)
consisting of vertices V and edges E. The vertices vi ∈ V
denote poses where the robot obtained sensor observations
zi. A pose estimate xi is also associated with the vertex and
thus is a tuple vi = (xi, zi). In addition to the vertices it
connects, each edge ek ∈ E contains a constraint ck on
the pose estimates of the associated vertices, thus ek =
(vi, vj , ck). While the graph itself is undirected, the edge
has to declare a sort of observation direction, the direction
in which the constraint was generated, often also called the
reference frame of the constraint. In case the edge is traversed
in reverse observation direction, the constraint c must be
inverted. What exactly that entails is up to the representation
of the constraint.

From the formal description in [6], the joint probability of
the pose graph G is

p(x1:t|G) =
∏

(vi,vj ,ck)∈E

p(xj 	 xi|ck) (1)

where p(xj 	 xi|ck) is the specific probability distribution
of the constraint ck on edge ek ∈ E.

Usually, this is a normal distribution, so

p(dx|ck) =
1

|2πΣk|1/2
e−

1
2 (dx	µk)T Σ−1

k (dx	µk) (2)

This results in a very convenient negative log probability
formulation that can be directly fed into a general non-linear
least squares solver.

− ln p(x1:t|G) ≈
∑

(vi,vj ,ck)∈E

(tji 	 µk)TΣ−1
k (tji 	 µk) (3)

where tji = xj 	 xi.

B. Local Ambiguity vs. Global Ambiguity

The major source of errors in graph-based SLAM is faulty
data association. Specifically, two types of data association
errors are identified: a) Errors in identifying common data in
two consecutive sensor observations (local ambiguity) and b)

4from https://github.com/ylatif/rrr
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Fig. 1. A visualization of registration ambiguity, from [6]. Two simulated
laser scans from the crossing of two corridors are matched with an exhaus-
tive cross-correlation based method. Note the multiple possible registration
results with high cross-correlation values on the right.

errors identifying common data in temporally distant sensor
observations (global ambiguity). This section describes each
of these error sources in detail, laying the foundation for the
Generalized Graph SLAM framework.

Specifically, the term ambiguity is used for the situation
where a clear global optimum of the respective registration
cost function in the local case or the data association metric
in the global case can not be found, but multiple local optima
are present instead.

Local ambiguity corresponds to the case where two con-
secutive sensor observations exhibit multiple possible regis-
tration results, such as in the example shown in figure 1.
A registration result of such two scans is called locally am-
biguous if these ambiguities can not be resolved using only
information present in the observations itself. In other words,
the registration cost function has multiple optima, resulting
in a multimodal Mixture of Gaussian (MoG) probability
distribution for the corresponding constraint.

p(xi|xi−1) =

Mk∑
m=1

πmN (xi 	 xi−1|µm,Σm) (4)

with
∑
πm = 1. Each mean µm corresponds to an optimum

in the registration cost function, Σm corresponds to the
inverse of the hessian at that point, and the weight πm should
be proportional to the value of the registration cost function
at µm.

Global ambiguity corresponds to the case of uncertain loop
closures, where two temporally distant sensor observations
may or may not show the same section of the environment.
Formally, there exists a probability mass function (PMF)
which is defined over all previously inserted vertices in the
graph, and a null hypothesis in case the current vertex is
completely new. This PMF can be represented as the weights
πm of a more generalized mixture over all previous poses
and an uninformative uniform distribution representing the
null hypothesis.

p(xi|x1:i−1) = π0U(Rd) +

i−1∑
j=1

πjp(xj 	 xi|cj) (5)

with
∑i−1

0 πj = 1, and where x1:i−1 are all poses from
vertex v1 to vi−1, p(dx|c) is any probability distribution
representing a registration result, π0 is the weight of the null
hypothesis, and U(Rd) is the uniform distribution over all
real numbers of the same degree of freedom d as the poses.

Note that local ambiguity may occur also in the registra-
tion result referenced in the global ambiguity case. Thus they
describe orthogonal problems, both or either may or may not
occur in any given SLAM problem.

This means that solutions to both are required, though in
the past both have been neglected in favor of a simple tradi-
tional unimodal SLAM model. However, many limitations of
traditional unimodal SLAM methods that do not use explicit
modeling of both sources of faulty data association have been
noted, most of which had been attempted to solve by more
complex and involved SLAM front ends. These front ends
would filter out outliers in both the local and global case and
only present verified registration results (local disambigua-
tion) and loop constraints (global disambiguation) to the
SLAM backend for optimization. In situations where either
local or global ambiguity occurred, these methods would
reject all results, potentially eliminating useful information.

C. Modeling Uncertain Loop Constraints as Hyperedges
Modeling the underlying probability mass function from

equation 5 exhaustively for all previous poses is wasteful.
Most of the weights πj will be zero or very close to zero.
Instead, a more compact representation is needed to exploit
this sparse connectedness to older vertices.

Graph theory presents a fitting concept in this case, namely
a hyperedge. Formally, a hyperedge is a set of vertices that
are connected. Thus, instead of every edge e ∈ E consisting
of exactly two endpoints vi, vj and the associated constraint
c as described in section III-A, a hyperedge in a pose graph is
defined as a tuple e = (vi, N, {vj}, {πj}, {cj}). The weight
of the null hypothesis is implicitly given by π0 = 1−

∑
πj ,

with
∑
πj ≤ 1.

Note that due to the geometric interpretation of the edge,
an observation direction is still necessary, so vi is defined
as the reference of the hyperedge and the base frame of the
relative poses represented in the constraints. {vj} is the set of
vertices the reference vertex vi is connected to by this edge,
and N = |{vj}|. Note that the case where N = 1, i.e. there
is no ambiguity which older vertex vj the reference vertex
vi should be connected to, is explicitly covered as well,
while still allowing for discounting of this one constraint
by reducing the weight π1.

For the general case, equation 5 becomes

p(xi|G) =
∏
e∈E

(1−
N∑
j=1

πj)U(Rd)

+

N∑
j=1

πjp(xj 	 xi|cj)

 (6)

≈
∏
e∈E

N∑
j=1

πjp(xj 	 xi|cj) (7)



Since U(Rd) is practically zero everywhere (technically 1
∞ ),

the term corresponding to the null hypothesis is dropped.
This means that the expression looks exactly like a regular
mixture, with the difference that

∑N
j=1 πj ≤ 1 instead of∑N

j=1 πj = 1.
In the following, each p(xj 	 xi|cj) is called a hyper-

component to distinguish between components in hyperedge
and MoG constraint mixtures. πj will be referred to as the
hypercomponent weight.

Without loss of generality, the Generalized Graph SLAM
framework assumes that all edges in a generalized pose
graph are hyperedges and all the constraints cj of each
edge are multimodal MoG constraints. Here, the cases with
N = 1 (i.e. no global ambiguity) and Mk = 1 (i.e. no
local ambiguity) are explicitly included. For this generalized
graph, the joint probability then becomes (extended from eq.
14 in [6])

p(x1:t|G) =
∏
e∈E

N∑
j=1

πj

Mk∑
m=1

πmp(t
j
i |µm,Σm) (8)

with e = (vi, N, {vj}, {πj}, {cj})
and tji = xj 	 xi

Similarly for the joint log probability

ln p(x1:t|G) =
∑
e∈E

ln

 N∑
j=1

πj

Mk∑
m=1

πmp(t
j
i |µm,Σm)

 (9)

An equivalent formulation moves the hypercomponent
weights into the MoG sum, allowing the same vertex multiple
times in the set {vj}:

p(x1:t|G) =
∏
e∈E

L∑
l=1

πlp(t
j
i |µl,Σl) (10)

with e = (vi, L, {vj}, {πl}, {(µl,Σl)})

where L =
∑
Mk and πl = πjπm for the l-th hypercompo-

nent/MoG component combination. Again, π0 = 1 −
∑
πl.

This formulation, though with
∑
πl = 1, is implicitly used

in Olson’s Max-Mixture method [7], though not explicitly
described. However, eq. 8 is conceptually clearer as it
presents a clear separation of global and local ambiguity.
Furthermore, there is of course the main challenge not only to
represent local and global ambiguities but to find a robust and
efficient optimization method for them, which may require
separate models for each.

There are now some considerations to be made for com-
puting the natural logarithm of the double sum of weighted
Gaussians. In the special case of a simple unimodal edge,
where N = 1, π1 = 1, and Mk = 1,

ln

 N∑
j=1

πj

Mk∑
m=1

πmp(t
j
i |µm,Σm)


= ln p(tji |µm,Σm)

= −1

2
ln (|2πΣ1|)−

1

2
(tji 	 µ1)TΣ−1

1 (tji 	 µ1)

In the following, such an edge will be referred to as simple.
In the special case of a purely multimodal edge, where

N = 1, π1 = 1,

ln

 N∑
j=1

πj

Mk∑
m=1

πmp(t
j
i |µm,Σm)


= ln

[
Mk∑
m=1

πmp(t
j
i |µm,Σm)

]
In the previous two cases, a π1 < 1 will result in a simple
addition by lnπ1 in the log-probability.

In the special case of a pure hyperedge with unimodal
subcomponents, where Mk = 1,

ln

 N∑
j=1

πj

Mk∑
m=1

πmp(t
j
i |µm,Σm)


= ln

 N∑
j=1

πjp(t
j
i |µm,Σm)


Additionally, there are a number of methods described

in recent literature that can be treated as special cases of
the Generalized Graph SLAM framework. The special case
where N = 1 and c1 is a unimodal Gaussian constraint (i.e.
Mk = 1) corresponds to the work done by Sünderhauf and
Protzel [10]. In this case, π1 = ωij = sig(sij), where sij
is the switch variable between vertices vi and vj (see eq. 7
in [10]), or π1 = Ψ(sij) = sij for the linear case (cf. eq.
1 in [11]). Similarly, the RRR algorithm of Latif et al. [8],
[9] makes a strictly binary decision where Sünderhauf and
Protzel make a fuzzy one, and thus can be modeled the same
way in this framework, i.e. π1 ∈ 0, 1.

The special case where the weights πj and πm are adjusted
at every iteration such that only one πj and πm retain their
original value, i.e.

(j∗,m∗) = argmax
j,m

πjπmp(dx|µm,Σm) (11)

πj =

{
πj if j = j∗

0 otherwise
(12)

πm =

{
πm if m = m∗

0 otherwise
(13)

corresponds to the Max-Mixture method (see eq. 4 in [7]).
Olson and Agrawal aggregate the two conceptually separate
weights πj and πm into one in their discussion, as in the
equivalent formulation presented in eq. 10. As such, they do
not offer an implicit null hypothesis choice, but the mixture
has to explicitly include a normal distribution defined to
be the null hypothesis, which usually has a very large
covariance.

The Prefilter method [6], and its extension to this General-
ized Graph SLAM framework described in the next section,
is used to make a similar selection of weights as Max-Mixture
does. Weights are set such that exactly one πj and one πm
per edge is one, indicating the component that explains the



estimate generated by the Prefilter method best:

(j∗,m∗) = argmax
j,m

πjπmp(dx|µm,Σm) (14)

πj =

{
1 if j = j∗

0 otherwise
(15)

πm =

{
1 if m = m∗

0 otherwise
(16)

However it is done once before the optimization starts and
this decision is not changed during optimization, allowing
the use of standard optimization methods.

D. Good Initial Conditions on Multimodal Hypergraphs

Algorithm 1: ExpandMultimodal(T, t, v, vnext, c)

Input: List of traversal states T, current traversal state
t, current vertex v, next vertex vnext,
multimodal constraint c

Output: Modified list of traversal states T
1 for every multimodal component m in c do
2 make a new traversal state tnew as a copy of t;
3 x = pose of v in t.X;
4 tnew.X = tnew.X

⋃
(x⊕ µm)

5 for every edge eadj adjacent to vnext that is not in
tnew.Eused do

6 enqueue(tnew.P , (vnext,eadj));
7 tnew.Eused = tnew.Eused

⋃
{eadj};

8 end
9 append tnew to T;

10 end

Algorithm 2: edgeweight(e)
Input: MoG Hyper PoseGraph edge e ∈ E
Output: computed edge weight ω

1 ω = 0;
2 for all constraints cj in e do
3 ω = ω +Mk;
4 end
5 return ω;

The extension of the original Prefilter algorithm [6] to also
handle hyperedges in addition to multimodal ones is rather
straight forward.

Algorithm 3 shows the pseudocode for the Prefilter
method extended to hypergraphs. The main difference to
the original Prefilter is that through choosing the hypercom-
ponent to follow, the underlying graph topology for each
sample changes. Therefore, the state of the whole minimum
spanning tree traversal has to be kept associated with the
corresponding pose sample in a list of traversal state T.
For simplicity, each MoG component also gives rise to
a new traversal state instance, even though they do not
change the graph topology and some data is duplicated. This
simplification also allows straightforward parallelization of

Algorithm 3: The Prefilter algorithm.
Input: MoG Hyper PoseGraph G, maximum number of

hypotheses N
Output: X: a set of N sets of vertex poses X = {xi}

1 initialize an empty list T of traversal states;
2 let t be a traversal state;
3 t.X = {x1};
4 t.Vused = {v1};
5 t.Eused = ∅;
6 initialize priority queue t.P to sort by edgeweight(e);
7 for all adjacent edges e of v1 do
8 enqueue(t.P , (v1, e));
9 t.Eused = t.Eused

⋃
{e};

10 end
11 append t to T;
12 while ∃t ∈ T : t.P not empty do
13 for ∀t ∈ T : t.P not empty do
14 (v, e) = dequeue(t.P );
15 if v = e.vstart then
16 for every hyperedge component j do
17 ExpandMultimodal(T, t, v, vj , cj);
18 end
19 else
20 let j be the hyperedge component of e

where vj = v;
21 ExpandMultimodal(T, t, vj , v, invert(cj));
22 end
23 if

∑N
j=1 e.πj = 1 then

24 remove t from T;
25 end
26 end
27 if |T| > N then
28 sort T by joint probability of assigned vertex

poses X of each element;
29 truncate T to contain only the N most probable

elements;
30 end
31 end
32 X =

⋃
t∈T t.X;

the algorithm for large values of N and complex graphs.
However, the implementation used in the experiments is
single threaded to allow a fair comparison.

Note that the null hypothesis is never directly referenced
in the algorithm. By design of the algorithm, keeping an
unmodified version of the current traversal state t in the list
T corresponds to the case where the current edge e is not
used, i.e. where the null hypothesis is chosen. This works
since edges are marked as used when they are enqueued in
the priority queues, and dequeueing an edge from t without
using it effectively deletes it from the graph topology for
t. Furthermore, calling ExpandMultimodal(. . . ) does not
change the passed current traversal state, only new traversal
states are generated corresponding to all modes. This means
that by line 23 in algorithm 3, the current traversal state t is



unchanged, and thus corresponding to the null hypothesis.
Line 23 checks if the null hypothesis is inadmissible by
checking its weight, and if it is not, removes t from T, thus
not following the null hypothesis.

The final set of sorted vertex poses X can be used to select
not only components from a MoG, as described in [6], but
also hyperedge components in the same way.

IV. EXPERIMENTS AND RESULTS

#edges with X modes/hypercomponents
# C(G) X=1 X=2 X=3 X=4 X=5 %
1 1 255 0/1 0 0 0 0.4
2 2 254 1/1 0 0 0 0.8
3 3 253 2/1 0 0 0 1.2
4 4 252 2/2 0 0 0 1.6
5 8 248 4/4 0 0 0 3.2
6 16 240 8/8 0 0 0 6.4
7 32 224 16/16 0 0 0 12.8
8 64 192 32/32 0 0 0 25
9 82.72 192 16/16 16/16 0 0 25

10 105.36 192 8/8 8/8 16/16 0 25
11 126.99 192 4/4 4/4 8/8 16/16 25

TABLE I
THE 11 COMPLEXITY CLASSES USED IN THE EXPERIMENTS.

A synthetic data set was generated, much like the one used
in [6]. Each generated graph consists of 128 vertices and 256
edges. The aim of the experiments is to find out how robust
the methods are with respect to ambiguities in the data, so
a number of pose graphs with different complexities were
generated. Specifically, the complexity metric introduced in
[6] was extended to encompass hyperedges as well:

C(G) = log2

∏
e∈E

N∑
j=1

Mj

 =
∑
e∈E

log2

 N∑
j=1

Mj

 (17)

This way, a hyperedge with n unimodal hypercomponents
has the same complexity as a hyperedge with just one
hypercomponent containing a MoG constraint with n modes.
The metric hence captures the fact that hypercomponents
and MoG components represent different alternative spatial
relations between nodes in the graph that can lead to a
combinatorial explosion. A detailed analysis over different
graph topologies and complexities would not have been
possible with existing benchmark datasets.

Table I shows a summary of generated complexity classes
and the distribution and number of components in the MoG
constraints and hyperedges. The overall percentage of non-
simple edges is also shown. A total of 110 graphs were
generated in 11 classes with an increasing complexity, 10
per class. The first 7 classes only contain MoG constraints
or hyperedges with two components in varying numbers. In
class 3, for example, the graphs contain two MoG constraints
and one hyperedge, both with two components (X = 2 in
the table). Classes 9 through 11 do not add more non-simple
edges, but more MoG or hyperedge components.

Instead of generating a completely new random graph for
the more complex classes, the already generated less complex
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Fig. 3. Final SSE metric relative to ground truth for each of the 11
complexity classes. The median and upper/lower quartiles are shown. Note
the log scale on the y axis. The final SSE metric of the optimization result
using the ground truth graph is also shown for comparison.
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Fig. 4. Runtimes for each of the methods on all 11 complexity classes.
The median and upper/lower quartiles are shown. Times were recorded on
an Intel i7-3770 3.4GHz with 16GB RAM. Note the log scale on the y
axis. Runtimes varied from 0.01s to 1.45s over all methods, quartiles are
between 0.03s and 0.44s.



(a) Optimization result with Max-Mixture from the traditional breadth-first
initialization, SSExy = 631554, SSEθ = 4.75323.

(b) Optimization result with Switchable Constraints also from breadth-first
initialization, SSExy = 1162181, SSEθ = 2.02238.

(c) Optimization result with RRR also from breadth-first initialization,
SSExy = 625717, SSEθ = 4.31798.

(d) Robust Gauss-Newton optimization result using the MoG and hyperedge
components chosen by Prefilter, SSExy = 168.343, SSEθ = 0.00173.

Fig. 2. One example graph of the data set of complexity class 7 and C(G) = 32, with a total of 16 multimodal MoG edges with two components and
16 hyperedges with two hypercomponents. Ground truth is shown in gray in the background.

graphs were reused. Thus, a total of 10 base graphs were
generated consisting completely of simple edges. For class 1,
one hypercomponent was added to a random simple edge of
the base graph. For class 2, one MoG component was added
to a random simple edge of the same graph. For class 3, one
MoG component was added to another random simple edge,
and so on. For more complex classes, existing components
on either hyperedges or MoG constraints were reused and
additional components added where necessary. This way, the
differences between the graphs in increasing complexity are
minimal, and thus the performance difference of the methods
is solely due to the additional components in either MoG
constraints or hyperedges.

Five main methods were tested and compared. The state-
of-the-art Max-Mixture [7], Switchable Constraints [10],
[11], and RRR [9] methods were used as a comparison basis
to evaluate the extended Prefilter method described above.
This is mostly a comparison of initialization methods, as

Max-Mixture is very sensitive to the initial condition, as
also noted by the authors of [7]. The Switchable Constraints
method is less susceptible, but still suffers significantly from
bad initial conditions. RRR is supposed to be independent
of the initial configuration, but fails to even maintain the
connectedness of the graph. A fifth method called Max rep-
resenting the traditional case where only the most weighted
component (hypercomponent or MoG component) is chosen,
i.e. j∗,m∗ = argmaxπjπm, is also used as a baseline for the
other methods [6]. This approach models the case where an
unreliable loop detection method and unimodal registration
method is used. A traditional breadth-first initialization was
performed before optimization with either of these methods.

The result of Prefilter was used to select components of
all hyperedges and MoG constraints analogous to the way
described in [6] for optimization with a standard robust
optimization method implemented in the g2o library [14].

The same solver, a Gauss-Newton method implemented in



g2o, was used for all three approaches, so their convergence
and computational complexity can be fairly evaluated. For
the Max, Max-Mixture, and Prefilter methods, a Cauchy
robust kernel with a width of 1 was used. Switchable Con-
straints implements explicit reweighting, so an implicit one
with a robust kernel was not used. The RRR implementation
hardcoded its solver of choice, which was left as is. All
methods other than RRR were run for 150 iterations. RRR
does not have an explicit parameter to control the number of
iterations. The odometry rate and loop closure rate parame-
ters of RRR were both set to 1.

Figure 3 shows the median and upper and lower quartiles
of the final SSExy and SSEθ error [15] relative to Ground
Truth of the ten sample pose graphs per complexity class
after optimization using all investigated methods. Note the
log scale of the y axis. As a comparison of achievable results
with Ground Truth initialization and no outliers, the final
SSE errors of the optimized Ground Truth base graphs is
also included. This optimization did not use a robust kernel,
therefore it is surprising, but not impossible that the Ground
Truth optimization result has a higher final error than some
of the other methods. It is obvious that, even though there is
a high variance for all methods, Prefilter performs multiple
orders of magnitude better than Max-Mixture, and around
an order of magnitude better than Switchable Constraints.
This especially holds in highly complex classes. Switchable
Constraints exhibits a slightly better robustness towards
graph complexity than Max-Mixture, though it also exhibits
a very large variance in the results. Surprisingly, RRR fails
at all graphs, and changing any of the exposed parameters
(odometry and loop rate) has no effect. This happens because
a very significant number of constraints are falsely rejected,
which breaks the graph (see figure 2c).

Figure 4 shows the runtimes of the compared methods.
Again, note the log scale of the y axis. The required runtime
of the Max-Mixture method increases significantly with the
graph complexity. A similar trend is evident in the time
required by the Switchable Constraints method, note the
large median runtime. The Prefilter method only needs more
computational time occasionally with very complex graphs,
indicated by the low median required time for this method
even at high complexities. However, at these complexities
(classes 8-11), the other methods no longer converge to
satisfactory results at all. Thus longer runtimes of Prefilter
relative to the less complex classes are definitely worth the
significant gain in robustness over the other methods.

V. CONCLUSIONS

In this paper, the Generalized Graph SLAM framework
was presented. Especially, a formal description of how
to use hyperedges to encode uncertain loop closures was
introduced. This method to handle global ambiguities is
combined with multimodal edge constraints to cope with
local ambiguities. Current state-of-the-art methods in robust
graph-based SLAM were shown to be special cases of this
Generalized Graph SLAM framework.

A method to generate good initial conditions for the
most general case of multimodal hypergraphs was presented
and validated with experiments on synthetic graphs. The
experiments showed that this extended Prefilter method
is both significantly more robust and less computationally
demanding than current state-of-the-art approaches.
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