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Abstract—Mobile robots in industrial environments require
accurate maps in order to perform navigation and service tasks.
This paper presents a SLAM framework consisting of different
optimization components aiming at building very accurate maps.
We incorporate high-level feature extractors in the front-end
supplying priors for data association. Due to perceptual aliasing
2D laser representations are likely to cause false loop closure
detections which is robustly solved by state-of-the-art graph
optimization techniques in the back-end. A final post-processing
step generates highly accurate maps using an advanced sensor
model incorporating specific characteristics of laser range finders.
The presented framework is evaluated on datasets obtained from
a typical industrial environment. The final map accuracy is
estimated given ground truth measurements of the traversed
environment.

I. INTRODUCTION

The autonomous operation of mobile robots in industrial
environments requires the precise position and orientation of
the platform with respect to a global reference frame. Setting
artificial landmarks such as visual markers can easily solve this
problem, however, requires the environment to be modified.
Prior maps built with onboard sensors, in contrast, enable
robots to navigate independently of the presence of markers.
Providing the path of the area traversed is known, a map
can easily be built. For most of the cases these paths are
not available respectively hard to obtain at high accuracy for
indoor environments. If both, map and path, are unknown,
the robot has to concurrently maintain estimates about its
position as well as the traversable environment which is
well known as the Simultaneous Localization and Mapping
(SLAM) problem. This paper presents a SLAM framework
enabling to build highly accurate maps using laser range
finders which is illustrated by Figure 1. This includes a front-
end providing spatial relations of robot poses by means of
local motions and loop closures. This information is passed
to a back-end that maintains pose relations and estimates the
path travelled by the robot. A joint pose and map optimization
is carried out afterwards given the estimated trajectory. The
presented framework utilizes g2o [1], a generic graph opti-
mization back-end, which is widely used among robotics and
computer vision. Particularly optimization based approaches
to the SLAM problem are quite actively researched. Hence
there exist a large number of previous work which is outlined
in excerpts. Olson et al. introduces an efficient method to pose
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graph optimization using gradient descent [2]. Grisetti et al.
presented a tree based implementation, coined TORO, which
explicitly bounds the graph optimization to the size of the map
instead of the length of the trajectory [3]. In [4] Kretzschmar
and Stachniss suggest to further reduce the complexity of pose
graphs by means of information theory. Blanco et al. pro-
posed a generic interface to hybrid metric-topological SLAM
building a graph of occupancy grid based submaps which is
well suited for mapping large-scale environments [5]. Metric-
based SLAM systems, such as RBPF [6], are supplemented by
place recognition methods as, for instance, FAB-MAP [7]. An
incremental solution enabling optimization based SLAM for
online applications is given by iSAM [8]. The key idea of this
approach is that only a small subset of the variables in a factor
graph need to be updated for incremental operation. Kaess
et al. further extended their algorithm enabling incremental
variable reordering and relinearization using a Bayes tree [9].
In [9] it is demonstrated that iSAM outperforms other state-
of-the-art approaches as HOG-MAN [10] and Spa2D [11] on
real-world datasets. However, our framework rather focusses
on building an accurate map which does not neccessarily have
to be performed online as datasets are rather batch processed
for this purpose.

The optimization based SLAM approaches mentioned above
provide substantial results in terms of accuracy as they seek
to find the optimal solution to the given graph representation
according to associated constraints. However it is assumed
that all loop closure detections are correct which poses a
high demand for data association in the front-end. Geometric
consistency checks as commonly found in visual SLAM
systems, as for example described in [12], can minimize the
number of false detections but cannot generally avoid them.
This is because some places can hardly be distinguished due
to perceptual aliasing, particularly for 2D laser scans in the
presence of many repetitive structures as, for instance, in
industrial environments. In addition to that, expensive data
association techniques are required that might also reject
true loop closures due to more pessimistic evaluations. False
constraints on the other side are likely to cause divergence
in graph optimization which cannot be suffiently mitigated
by robust methods such as pseudo Huber error functions as
shown in [13]. In [14] Sünderhauf and Protzel proposed a
robust optimization method enabling the back-end to modify
the pose graph by switching loop closure constraints. This
allows quite simple data association techniques in the front-
end passing a higher number of loop closure candidates and
associated confidences to the back-end which is able to disable



Figure 1. Framework overview.

wrong constraints. As this technique is incorporated in the
presented framework, a more detailed description is given in
the remainder of this paper.

From the robust back-end it is expected to obtain a topo-
logical consistent pose graph. The final map is then estimated
given this representation. As demonstrated by Ruhnke et al.
in [15] it is advantageous to model the physics of a laser
beam in order to maximize the local accuracy of maps.
This specifically addresses the range and the incident angle
of a beam. A highly accurate map representation can be
obtained by jointly optimizing the beam measurements with
respect to their characteristics, their local sorroundings and
the origin sensor poses [15]. This paper shows the benefit of
that idea with the specific application of mapping industrial
environments by mobile robots using only 2D laser range
finders and wheel odometry.

The remainder of this paper is organized as follows. The
Sections II and III describe the framework’s front- and back-
end with their components. We present experimental results in
Section IV before concluding in Section V.

II. THE MAPPING FRONT-END

This section describes the front-end of our mapping frame-
work. It provides an initial estimate about the successive robot
poses. In addition to that the front-end is responsible for
recognizing previously observed places and thus passes loop
closure candidates to the back-end. This is done by extracting
features from laser range scans which are matched to those
obtained from the previous scans.

A. Initial estimate

The relative transformations between successive robot poses
of the trajectory is given by odometric measurements. Due to
wheel slip these estimates are likely to drift quickly. We use
laser scan matching to correct the position estimates obtained
from the odometry. A point-to-line metric based ICP algorithm
is applied as presented in [16].

B. Feature extraction

We use Fast Laser Interest Region Transform (FLIRT) [17]
which is inspired by prior work on scale invariant point feature
detectors in computer vision. FLIRT considers the range data
of a laser as a one dimensional curve which is mapped into
a multi-scale representation. Hence we obtain curves for all
scales which are smoothed by varying Gaussian kernels. The
smoothing kernels are normalized in order to be invariant to
the sampling density. Local extrema are detected for each
scale. The mathematical derivation of this is given in [18].
Finally we obtain a set of interest points as local maxima
with gradients above a certain threshold. These points typically
refer to corners in the 2D representation of the scan.

The detected interest points are further assigned descriptors
in order to associate them with previously observed ones. Sim-
iliar to common feature detectors in computer vision Tipaldi et
al. proposed feature descriptors capturing local surroundings
of interest points [17] which enables to recognize observed
features in subsequent scans. Range measuring sensors such
as LRFs give explicit information about free and occupied
space covered by the sensor’s field of view (FOV). Hence
it is advantageous to incorporate this for the descriptors. A
polar tesselation encoding the occupancy probabilities around
each interest point is built. This is similiar to occupancy
grid mapping, however we only generate high-resolution grids
around the interest points instead of describing the entire area
covered by the laser scan. As FLIRT interest points are highly
distinctive and do not assume specific geometric primitives,
they are well suited for a number of environment types that are
not featureless (as for example long corridors). More details
on the feature detector and descriptor can be found in [17].

C. Detection of loop closures

The most important requirement of a SLAM system is
its ability to detect and incorporate information about places
that have already been visited which are referred to as loop
closures. These enable to reduce the accumulated pose un-



certainty increasing over time. Substantial research addressing
loop closure detection in 2D range scans has been carried out
and can be divided into grid map and feature based approaches.

Grid map based approaches usually do not scale well with
increasing map sizes as they encode a lot of free space.
This is particularly the case for approaches based on Rao-
Blackwellized particle filters (e.g. [6]) since each particle
holds an individual map of the entire trajectory. Feature based
approaches on the other side often assume specific structures
in environments such as corners which hampers their use in
structureless environments. However, industrial environments
which are the special focus of this paper typically consist
of fine structures originated by objects such as shelves or
machines. These structures are well taken into account by
FLIRT interest points extracted from each laser scan. These
are matched to the features of the previous scans using the
symmetric χ2 metric and a nearest neighbour strategy. The
set of corresponding features is passed to a RANSAC based
geometric consistency check. Each pair of interest points
having a distance in the descriptor space below a threshold
are threated as putative correspondences. A minimum set of
two pairs is randomly drawn from the correspondence set. The
RANSAC iteration is then carried out as follows. The spatial
distances of the putative matches are computed. If the offset of
these distances is below a threshold a hypothesis is generated
by estimating the transformation between these two points.
This transformation is applied to all observed features in order
to project these into the reference scans’ coordinate frame.
Hence, each observed feature point is assigned the closest
corresponding feature point of the reference scan. The squared
distances of all pairs are summed which serves as the matching
score for the two scans. Only those pairs having a distance
below a threshold are added to the inlier set. The outlined
procedure is repeated as common in RANSAC based data
association. A loop closure constraint is generated provided the
remaining set of inliers is above a threshold tmin. The value
of tmin highly depends on the robustness of the optimization
back-end, specifically on how well it handles data assocation
errors.

For performance reasons a lot of SLAM front-ends do not
consider all places of the trajectory for data association. For
instance, the implementation Karto which uses graph based
optimization as proposed in [11] defines a fixed search radius
around the current pose to reduce the operation time. However,
this is crucial for mapping large scale environments as pose
priors might deviate significantly from the true pose due to
accumulated odometric errors. Hence this radius should rather
be set dynamically according to the pose uncertainty. Also
Grisetti et al. suggest to limit the number of places to be
considered in the recognition due to performance reasons
and the risk of wrong associations. Since our framework
post-processes datasets we are not necessarily affected by
performance limitations. Based on robust optimization back-
ends such as proposed by [14] we are able to successfully
identify wrong loop closure constraints which is extensively
explained in Section III.

III. THE OPTIMIZATION BACK-END

Thanks to the front-end we are given an initial graph
of robot poses and relations expressing spatial constraints
between those. The optimization of this graph is the task of
the back-end. The remainder of this section briefly introduces
pose graph SLAM, explains how to handle false loop closure
detections and the final map is built.

A. Pose Graph SLAM

Providing the navigation of a mobile robot is carried out in a
2D space, its state vector can be described by x = (x, y,φ)T .
Pose graph SLAM only optimizes robot poses xi of a given
trajectory omitting optimization of landmarks respectively
scan points. The graph consists of vertices given by the
poses xi and edges between the poses xi and xj. The action
ui = ∆(x, y,φ) is carried out in order to get from the state
xi to xi+1 and is incorporated according to a motion model:

xi+1 ∼ N (f(xi,ui),Σi) (1)

Without loss of generality we can describe the motion of
loop closings detected for the poses xi and xj by uij, hence
we can postulate the following about state xj:

xj ∼ N (f(xi,uij),Λij) (2)

Given all states X and all actions U we aim at finding the
maximum a posteriori estimate of robot poses X∗ for the joint
probability distribution

X∗ = argmax
X

P (X|U) (3)

We can account for this by the following factorization:

P (X|U) ∝
�

P (xi+1|xi,ui) ·
�

ij

P (xj|xi,uij) (4)

with P (xi+1|xi, ui) expressing odometry constraints and
P (xj |xi, uij) the loop closure constraints. According to [19]
we can express the objective function 3 as a nonlinear least
squares optimization problem that can be solved using com-
mon methods such Gauss-Newton or Levenberg-Marquardt:

X∗ = argmin
X
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(5)

with eodoi = f(xi,ui)−xi+1 and elcij = f(xi,uij)−xj. An
extensive derivation of this is given by [13].

B. Robust optimization

In [20] Tipaldi et al. demonstrated the robustness and high
repeatability of FLIRT interest points in a SLAM framework.
However the authors used TORO [3] as optimization back-
end which is not robust in the presence of false loop closure
detections. This is a significant drawback for environments
with a multitude of repetitive structures that can be hardly
distinguished by 2D laser scans. A sliding window limiting



the pose search space to a local region around the current
estimate is proposed to minimize this problem. However, it
hampers the application in environments with large loops and
bad prior pose estimates as obtained, for instance, by wheel
odometers.

Conventional least squares based optimization approaches
to the SLAM problem keep the structure of the supplied pose
graph fixed assuming all loop closure constraints to be cor-
rect. Sünderhauf and Protzel proposed Switchable Constraints
tackling the optimization by a modified objective function.
Their work uses factors in the graphical model expressing
switchable loop closure constraints. Based on that the topology
of a graph is not fixed, but made subject to optimization as
well. Loop closures expressed as switch variables sij can be
disabled in this way. The contribution of a loop closure to
the optimization can be incorporated by its initial value γij
and a corresponding covariance Ξij . These estimtates can, for
instance, be given in terms of a degree of belief by a place
recognition system of the front-end. These switch priors are
neccessary to avoid all loop closures being switched off by the
optimizer as shown in [14]. In order to include the switchable
constraints in the optimization the objective function (Eq. 5)
is modified as follows:

X∗, S∗ = argmin
X,S

�

i

��eodoi

��2�
i
+
�

ij

��eslcij

��2
Λij

+
�

ij

��espij
��2
Ξij

with eslcij = Ψ(sij)·(f(xi,uij)−xj) expressing the switched
loop closure constraints and espij = γij − sij the switch priors.
The switching function Ψ maps the continous input numbers
sij to the interval [0, 1]. The loop closure constraint sij is
switched off by Ψ(sij)≈ 0. The optimization process can be
influenced by the choice of the switch function Ψ, the switch
priors γ and their covariances Ξ as explained in detail in [13].

C. Map building

Sparse surface adjustment (SSA) is a joint optimization
problem aiming at finding optimal settings of robot poses and
laser measurements. This method was presented by Ruhnke et
al. in [15] and is very similiar to Sparse Bundle Adjustment
(SBA) in computer vision. SBA optimizes a set of camera
poses and 3D points of an image sequence by minimizing over
the points’ reprojection errors. Similiarly SSA optimizes robot
poses and laser points, however SBA requires point-to-point
and SSA, in contrast, point-to-surface correspondences in the
data association. It is further assumed that the environment
consists of smooth surfaces which is very common for man-
made structures. A modified sensor model explicitely accounts
for uncertainty in distance measurements of laser range finders
that mainly occur due to incident angles and distance varying
local surface characteristics. This is done by describing the
laser scan as a set of surface tangents with each representing
one laser beam. The tangents are modelled as Gaussians with

the mean µik centred at the laser beam k of robot the pose
i and the covariance estimated

�
ik based on the surrouding

points. Surfaces are smoothly moved along their tangential
direction and more rigidly along their normal directions facing
the robot pose. The joint optimization problem of robot poses
X and surface patches M is formulated as follows [15]:

X∗,M∗ = argmin
X,M
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with esurfmn expressing the minimization term for the tan-
gential and normal error arising for the surface patches m and
n. The term emeas

ik ensures that each laser beam k is assigned
to a robot pose i. A more extensive derivation of this can be
found in [15].

IV. EXPERIMENTS

In order to evaluate the presented framework a number of
experiments were carried out. For this purpose we manually
steered a mobile robot through a warehouse capturing laser
range scans and wheel odometry. The following section briefly
introduces the mobile platform used for the experiments and
discusses the results obtained. First the necessity of a robust
optimization back-end is demonstrated. The second part shows
the final mapping accuracy achieved with the presented frame-
work in a typical industrial environment.

A. Platform

A Scitos G5 platform developed by Metralabs GmbH Ger-
many is used (see Figure 2). It is equipped with a rig of
four cameras, two laser range finders (Hokuyo URG04-LX,
SICK S300), a TOF camera (PMD Camcube 3.0) and wheel
odometry. Only the forward-facing SICK S300 is used for map
building.

Figure 2. A Scitos G5 navigating in a warehouse.



B. Contribution of a robust back-end

Even though FLIRT interest points are very distinctive
the number of false loop closure detections is high. This is
mainly due to perceptual aliasing arising from the limited
scene representation of 2D laser scans. Geometric consistency
checks cannot prevent this in all cases since the environment
is rich of repetitive structures such as shelves and boxes.
Figure 3 illustrates the results of the pose graph optimization
emphasizing the importance of a robust back-end. We used the
Switchable Constraints [14] implementation, coined vertigo,
with a linear switch function. Furthermore we made use
of the generic graph optimization back-end g2o [1]. Both
implementations are obtained from the openslam2 platform.

C. Mapping performance

Given the optimized pose graph as shown in Figure 4 a
final map is built by concurrently optimizing robot poses and
laser measurements as explained in Section III-C. It can be
clearly seen that pure pose graph optimization is not sufficient
to get accurate and consistent maps. The map consistency is
significantly improved by the joint optimization of robot poses
and laser measurements.

In order to estimate the final map accuracy a second exper-
iment was carried out in a subarea of the warehouse which is
illustrated by Figure 2. The robot was steered two loops in that
subarea. Ground truth was obtained by measuring distances
L1... L6 between salient points using a tape measure (see also
Figure 5a). The distances ∆ between these salient points were
also manually estimated in the final map obtained after opti-
mization (see Figure 5c). The results are shown in Table I. The
differences ∆ are supplemented by the mean µ and variance
Var over all differences. Note that GT determine the actual
ground truth distances measured. The values ∆, in contrast, are
the differences obtain from the distances that were manually
measured on the final map and the GT measurements. The
mean µ(L) is around 3cm, the high variance Var(L) is mainly
achieved due to the rather low distance for L4. Similiarly to
[15] we further estimated the entropy of the maps shown in
Figure 5b and 5c respectively which are given in Table II for
ICP, pose graph SLAM (pose only) and joint pose and laser
measurement optimization (SSA). The optimization of laser
measurements helps minimizing that points are spread around
objects which results in a lower entropy. As we do not aim
to reduce the actual information (here obstacles on the height
of the laser range finder), a lower boundary determining the
optimal representation should be approached.

V. CONCLUSIONS

This paper presented a framework consisting of state-of-the-
art algorithms in graph based SLAM. We combined existing
methods to achieve an overall solution which is able to
generate maps at high accuracy using laser range scans. The
importance of each component for achieving this final goal

2http://www.openslam.org

GT [mm] ∆[mm]
L1 1490.0 49.24
L2 762.0 47.05
L3 791.0 40.82
L4 650.0 8.34
L5 892.0 39.48
L6 1206.0 20.04
µ(L) - 34.16

Var(L) - 26.64

Table I
RESULTS OF EXPERIMENT 2.

ICP Pose only SSA
0.186 0.132 0.102

Table II
ENTROPY ON MAPS OF EXPERIMENT 2.

is extensively demonstrated for a complex industrial envi-
ronment, more precisely a warehouse, which poses the main
contribution of this work. The robust pose graph optimization
was shown to be essential in the presence of a multitude
of repetitive structures which naturally occur in 2D range
scans for this type of environment. The FLIRT interest points
were shown to be beneficial for loop closure detections. The
combination with a robust optimization back-end allows us to
tackle environments at much larger scales. Finally incorporat-
ing a post-optimization of robot poses and laser measurements
brings us significantly closer to more local map accuracy.
We evaluated the overall accuracy of the map that can be
achieved by means of ground truth comparisons obtained for
a specific scene in the warehouse. These high-resolution maps
are very contributive for the autonomous operation of mobile
robots in industrial settings. This specifically addresses the
localization in such environments hampering the setting of
artificial markers. It further enables precise positioning in
order to get close to surrounding objects or charging stations.
Most common environments in mobile robotics are represented
by occupancy grid maps serving as input for path planning,
obstacle avoidance and localization. In order to achieve op-
timal results it is recommended to keep grid sizes small
ensuring less information loss. However, holding maps of
large-scale environments at fine resolution is computationally
expensive. Hence, methods as presented by Einhorn et al.
[21] enable to manage occupancy grid maps with adaptive
grid sizes. In this way large free space can be described by
larger grid cells, whereas fine local structures can be kept at
high resolution. We will incorporate this technique in future
work in order to enable more autonomy for mobile robots in
industrial environments by achieving more robust navigation
and positioning.
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(a) Diverged optimization result without robust back-end. (b) Consistent pose graph using Switchable Constraints. Loop closure constraints
sij having switch values Ψ(sij)> 0.999 are enabled and plotted red, all others
are disabled and plotted black. It can be clearly seen that a high number of false
loop closures is correctly identified.

Figure 3. Results of the pose graph optimization using conventional (a) and robust back-ends (b) respectively.
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(a) Initial input obtained from pose graph SLAM. Some walls appear
twice in the map. Fine local structures are not accurately captured and
seem spread around objects.

(b) Results obtained through joint optimization of poses and laser points
using Sparse Surface Adjustment. Laser measurements are less spread
around objects. The effect of double appearing walls and structures is
significantly minimized.

Figure 4. Map building given a prior graph obtained by pose graph SLAM. Note that the angular resolution of the laser range finder (SICK S300) used for
this experiment is high resulting in a much more dense scan containing 541 measurements. The SICK LMS which is used for many publibly available datasets
in contrast only obtains 181 laser measurements. This difference becomes evident in the final map’s point density. It is also obvious that large continous
surface patches are well optimized, whereas very fine local structures such as lattice boxes seem less qualitively incorparated. This is due to the fact that these
surfaces are more challenging for the data association and surface based optimization.

(a) Ground truth map (b) Map built using the initial pose graph (c) Final map obtained after joint pose and laser
measurement optimization.

Figure 5. Ground truth measurements as references and final maps obtained for the scene shown in Figure 2.
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